메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1631-1642

Recursive deep models for semantic compositionality over a sentiment treebank

Author keywords

[No Author keywords available]

Indexed keywords

NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS;

EID: 84926358845     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7960)

References (44)
  • 1
    • 78650686637 scopus 로고    scopus 로고
    • Distributional memory: A general framework for corpus-based semantics
    • M. Baroni and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4):673-721.
    • (2010) Computational Linguistics , vol.36 , Issue.4 , pp. 673-721
    • Baroni, M.1    Lenci, A.2
  • 3
    • 0007290780 scopus 로고
    • Denial and contrast: A relevance theoretic analysis of 'but'
    • D. Blakemore. 1989. Denial and contrast: A relevance theoretic analysis of 'but'. Linguistics and Philosophy, 12:15-37.
    • (1989) Linguistics and Philosophy , vol.12 , pp. 15-37
    • Blakemore, D.1
  • 6
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 7
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • 12, July
    • J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12, July.
    • (2011) JMLR
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 8
    • 80053377616 scopus 로고    scopus 로고
    • A structured vector space model for word meaning in context
    • K. Erk and S. Padó. 2008. A structured vector space model for word meaning in context. In EMNLP.
    • (2008) EMNLP
    • Erk, K.1    Padó, S.2
  • 10
    • 80053235817 scopus 로고    scopus 로고
    • Experimental support for a categorical compositional distributional model of meaning
    • E. Grefenstette and M. Sadrzadeh. 2011. Experimental support for a categorical compositional distributional model of meaning. In EMNLP.
    • (2011) EMNLP
    • Grefenstette, E.1    Sadrzadeh, M.2
  • 11
    • 84943741021 scopus 로고    scopus 로고
    • Multi-step regression learning for compositional distributional semantics
    • E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and M. Baroni. 2013. Multi-step regression learning for compositional distributional semantics. In IWCS.
    • (2013) IWCS
    • Grefenstette, E.1    Dinu, G.2    Zhang, Y.-Z.3    Sadrzadeh, M.4    Baroni, M.5
  • 12
    • 0025519204 scopus 로고
    • Mapping part-whole hierarchies into connectionist networks
    • G. E. Hinton. 1990. Mapping part-whole hierarchies into connectionist networks. Artificial Intelligence, 46(1-2).
    • (1990) Artificial Intelligence , vol.46 , Issue.1-2
    • Hinton, G.E.1
  • 13
    • 0003543311 scopus 로고
    • University of Chicago Press Chicago
    • L. R. Horn. 1989. A natural history of negation, volume 960. University of Chicago Press Chicago.
    • (1989) A Natural History of Negation , vol.960
    • Horn, L.R.1
  • 14
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. 2012. Improving Word Representations via Global Context and Multiple Word Prototypes. In ACL.
    • (2012) ACL
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 15
    • 84937332468 scopus 로고    scopus 로고
    • Minimizers, maximizers, and the rhetoric of scalar reasoning
    • M. Israel. 2001. Minimizers, maximizers, and the rhetoric of scalar reasoning. Journal of Semantics, 18(4):297-331.
    • (2001) Journal of Semantics , vol.18 , Issue.4 , pp. 297-331
    • Israel, M.1
  • 16
    • 84877742658 scopus 로고    scopus 로고
    • A latent factor model for highly multi-relational data
    • R. Jenatton, N. Le Roux, A. Bordes, and G. Obozinski. 2012. A latent factor model for highly multi-relational data. In NIPS.
    • (2012) NIPS
    • Jenatton, R.1    Le Roux, N.2    Bordes, A.3    Obozinski, G.4
  • 17
    • 85146417759 scopus 로고    scopus 로고
    • Accurate unlexical-ized parsing
    • D. Klein and C. D. Manning. 2003. Accurate unlexical-ized parsing. In ACL.
    • (2003) ACL
    • Klein, D.1    Manning, C.D.2
  • 18
    • 0001810642 scopus 로고
    • If's, and's, and but's about conjunction
    • Charles J. Fillmore and D. Terence Langendoen, editors Holt, Rinehart, and Winston, New York
    • R. Lakoff. 1971. If's, and's, and but's about conjunction. In Charles J. Fillmore and D. Terence Langendoen, editors, Studies in Linguistic Semantics, pages 114-149. Holt, Rinehart, and Winston, New York.
    • (1971) Studies in Linguistic Semantics , pp. 114-149
    • Lakoff, R.1
  • 19
    • 0038673464 scopus 로고    scopus 로고
    • Information, relevance, and social deci-sionmaking: Some principles and results of decision-theoretic semantics
    • Lawrence S. Moss, Jonathan Ginzburg, and Maarten de Rijke, editors CSLI, Stanford, CA
    • A. Merin. 1999. Information, relevance, and social deci-sionmaking: Some principles and results of decision-theoretic semantics. In Lawrence S. Moss, Jonathan Ginzburg, and Maarten de Rijke, editors, Logic, Language, and Information, Volume 2. CSLI, Stanford, CA.
    • (1999) Logic, Language, and Information , vol.2
    • Merin, A.1
  • 20
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • J. Mitchell and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive Science, 34(8):1388-1429.
    • (2010) Cognitive Science , vol.34 , Issue.8 , pp. 1388-1429
    • Mitchell, J.1    Lapata, M.2
  • 22
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using CRFs with hidden variables
    • HLT
    • T. Nakagawa, K. Inui, and S. Kurohashi. 2010. Dependency tree-based sentiment classification using CRFs with hidden variables. In NAACL, HLT.
    • (2010) NAACL
    • Nakagawa, T.1    Inui, K.2    Kurohashi, S.3
  • 23
    • 34347357484 scopus 로고    scopus 로고
    • Dependency-based construction of semantic space models
    • S. Pado and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161-199.
    • (2007) Computational Linguistics , vol.33 , Issue.2 , pp. 161-199
    • Pado, S.1    Lapata, M.2
  • 24
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • B. Pang and L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124.
    • (2005) ACL , pp. 115-124
    • Pang, B.1    Lee, L.2
  • 26
    • 0029310084 scopus 로고
    • Holographic reduced representations
    • T. A. Plate. 1995. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3):623-641.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.3 , pp. 623-641
    • Plate, T.A.1
  • 28
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • November
    • J. B. Pollack. 1990. Recursive distributed representations. Artificial Intelligence, 46, November.
    • (1990) Artificial Intelligence , vol.46
    • Pollack, J.B.1
  • 29
    • 77956000948 scopus 로고    scopus 로고
    • Factored 3-way restricted boltzmann machines for modeling natural images
    • M. Ranzato and A. Krizhevsky G. E. Hinton. 2010. Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images. AISTATS.
    • (2010) AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.E.3
  • 31
    • 80053259376 scopus 로고    scopus 로고
    • Compositional matrix-space models of language
    • S. Rudolph and E. Giesbrecht. 2010. Compositional matrix-space models of language. In ACL.
    • (2010) ACL
    • Rudolph, S.1    Giesbrecht, E.2
  • 32
    • 84858377530 scopus 로고    scopus 로고
    • Multiple aspect ranking using the good grief algorithm
    • B. Snyder and R. Barzilay. 2007. Multiple aspect ranking using the Good Grief algorithm. In HLT-NAACL.
    • (2007) HLT-NAACL
    • Snyder, B.1    Barzilay, R.2
  • 34
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • R. Socher, C. Lin, A. Y. Ng, and C.D. Manning. 2011a. Parsing Natural Scenes and Natural Language with Recursive Neural Networks. In ICML.
    • (2011) ICML
    • Socher, R.1    Lin, C.2    Ng, A.Y.3    Manning, C.D.4
  • 35
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. 2011b. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. In EMNLP.
    • (2011) EMNLP
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 36
    • 84870715081 scopus 로고    scopus 로고
    • Semantic compositionality through recursive matrix-vector spaces
    • R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In EMNLP.
    • (2012) EMNLP
    • Socher, R.1    Huval, B.2    Manning, C.D.3    Ng, A.Y.4
  • 37
    • 84858720748 scopus 로고    scopus 로고
    • Modelling relational data using Bayesian clustered tensor factorization
    • I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. 2009. Modelling relational data using Bayesian clustered tensor factorization. In NIPS.
    • (2009) NIPS
    • Sutskever, I.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 41
    • 80053240499 scopus 로고    scopus 로고
    • Compositional matrix-space models for sentiment analysis
    • A. Yessenalina and C. Cardie. 2011. Compositional matrix-space models for sentiment analysis. In EMNLP.
    • (2011) EMNLP
    • Yessenalina, A.1    Cardie, C.2
  • 42
    • 84878405171 scopus 로고    scopus 로고
    • Large vocabulary speech recognition using deep tensor neural networks
    • D. Yu, L. Deng, and F. Seide. 2012. Large vocabulary speech recognition using deep tensor neural networks. In INTERSPEECH.
    • (2012) INTERSPEECH
    • Yu, D.1    Deng, L.2    Seide, F.3
  • 44
    • 70350647388 scopus 로고    scopus 로고
    • Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
    • L. Zettlemoyer and M. Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In UAI.
    • (2005) UAI
    • Zettlemoyer, L.1    Collins, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.