메뉴 건너뛰기




Volumn 9, Issue 3, 2014, Pages 14-26

The emerging ?Big dimensionality?

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84904651375     PISSN: 1556603X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCI.2014.2326099     Document Type: Article
Times cited : (208)

References (123)
  • 1
    • 84904622485 scopus 로고    scopus 로고
    • IBM, Armonk, NY, Tech Rep., Oct.
    • IBM big data success stories, IBM, Armonk, NY, Tech. Rep., Oct. 2011.
    • (2011) IBM Big Data Success Stories
  • 4
    • 84880170201 scopus 로고    scopus 로고
    • Artificial intelligence and big data
    • D. E. O'Leary, "Artificial intelligence and big data," IEEE Intell. Syst., vol. 28, no. 2, pp. 96-99, 2013.
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.2 , pp. 96-99
    • O'Leary, D.E.1
  • 6
    • 83755217707 scopus 로고    scopus 로고
    • June [Online]. Available
    • J. Gantz and D. Reinsel. (2011, June). Extracting value from chaos, std. [Online]. Available: http://www.emc.com/collateral/analyst-reports/idc- extracting-value-from-chaos-ar.pdf
    • (2011) Extracting Value from Chaos Std
    • Gantz, J.1    Reinsel, D.2
  • 8
    • 84904698106 scopus 로고    scopus 로고
    • Going big in data dimensionality-Challenges and solutions in mining high dimensional data
    • Nov.
    • P. Kröger, "Going big in data dimensionality-Challenges and solutions in mining high dimensional data," in Proc. Symp. Scalable Analytics, Garching bei München, Germany, Nov. 2012.
    • (2012) Proc. Symp. Scalable Analytics, Garching Bei München, Germany
    • Kröger, P.1
  • 9
    • 66849136997 scopus 로고    scopus 로고
    • On generalization bounds, projection profile, and margin distribution
    • Sydney, Australia
    • A. Garg, S. Har-Peled, and D. Roth, "On generalization bounds, projection profile, and margin distribution," in Proc. Int. Conf. Machine Learning, Sydney, Australia, 2002, pp. 171-178.
    • (2002) Proc. Int. Conf. Machine Learning , pp. 171-178
    • Garg, A.1    Har-Peled, S.2    Roth, D.3
  • 11
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    • DOI 10.3150/bj/1106314847
    • P. J. Bickel and E. Levina, "Some theory for Fishers linear discriminant function, Naive Bayes, and some alternatives when there are many more variables than observations," Bernoulli, vol. 10, no. 6, pp. 989-1010, Dec. 2004. (Pubitemid 44242745)
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 12
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Dec.
    • E. Candes and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," Ann. Statist., vol. 35, no. 6, pp. 2313-2351, Dec. 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 13
    • 84893371329 scopus 로고    scopus 로고
    • Efficient multi-template learning for structured prediction
    • Q. Mao and I. W. Tsang, "Efficient multi-template learning for structured prediction," IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 2, pp. 248-261, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst. , vol.24 , Issue.2 , pp. 248-261
    • Mao, Q.1    Tsang, I.W.2
  • 15
    • 84904669477 scopus 로고    scopus 로고
    • The 1st international workshop high dimensional data mining
    • Dec. [Online]. Available
    • (2013, Dec.). The 1st International Workshop High Dimensional Data Mining. IEEE Int. Conf. Data Mining. Dallas, Texas. [Online]. Available: http://www.cs.bham.ac.uk/~axk/HDM.htm
    • (2013) IEEE Int. Conf. Data Mining. Dallas, Texas
  • 16
    • 84904615156 scopus 로고    scopus 로고
    • EC generalisation in high-dimensional input spaces
    • [Online]. Available
    • (2014). EC generalisation in high-dimensional input spaces. Special Session for WCCI 2014. [Online]. Available: http://ieee-cis.blogspot.sg/2013/11/ call-for-papers-special-session-for.html
    • (2014) Special Session for WCCI 2014
  • 18
    • 84880901313 scopus 로고    scopus 로고
    • A feature selection method for multivariate performance measures
    • Q. Mao and I. W. Tsang, "A feature selection method for multivariate performance measures," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2051-2063, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.9 , pp. 2051-2063
    • Mao, Q.1    Tsang, I.W.2
  • 23
    • 84904669484 scopus 로고    scopus 로고
    • [Online] Available
    • (2013). YouTube Statistic. [Online]. Available: http://www.youtube.com/ yt/press/statistics.html
    • (2013) You Tube Statistic
  • 24
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 26
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Nov.
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 30
    • 0021392348 scopus 로고
    • A representation for shape based on peaks and ridges in the difference of low pass transform
    • Mar.
    • J. L. Crowley and A. C. Parker, "A representation for shape based on peaks and ridges in the difference of low pass transform," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 2, pp. 156-170, Mar. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.2 , pp. 156-170
    • Crowley, J.L.1    Parker, A.C.2
  • 35
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Díaz-Uriarte and S. A. de Andrés, "Gene selection and classification of microarray data using random forest," BMC Bioinformatics, vol. 7, no. 3, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andrés, S.A.2
  • 36
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine Learn., vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 45
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 47
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, nos. 1-2, pp. 245-271, 1997. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 48
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 51
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • July
    • G. M. Fung and O. L. Mangasarian, "A feature selection Newton method for support vector machine classification," Comput. Optim. Applicat., vol. 28, no. 2, pp. 185-202, July 2004.
    • (2004) Comput. Optim. Applicat. , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 53
    • 84867122131 scopus 로고    scopus 로고
    • Discovering support and affiliated features from very high dimensions
    • J. Langford and J. Pineau, Eds. Edinburgh, Scotland, U.K.: Omnipress, July
    • Y. Zhai, M. Tan, I. W. Tsang, and Y.-S. Ong, "Discovering support and affiliated features from very high dimensions," in Proc. 29th Int. Conf. Machine Learning, J. Langford and J. Pineau, Eds. Edinburgh, Scotland, U.K.: Omnipress, July 2012, pp. 1455-1462.
    • (2012) Proc. 29th Int. Conf. Machine Learning , pp. 1455-1462
    • Zhai, Y.1    Tan, M.2    Tsang, I.W.3    Ong, Y.-S.4
  • 54
    • 61949139765 scopus 로고    scopus 로고
    • Identification of discriminating biomarkers for human disease using integrative network biology
    • J. T. Dudley and A. J. Butte, "Identification of discriminating biomarkers for human disease using integrative network biology," in Proc. Pacific Symp. Biocomputing, 2009, pp. 27-38.
    • (2009) Proc. Pacific Symp. Biocomputing , pp. 27-38
    • Dudley, J.T.1    Butte, A.J.2
  • 55
    • 70149098541 scopus 로고    scopus 로고
    • Statistical estimation of correlated genome associations to a quantitative trait network
    • S. Kim and E. P. Xing, "Statistical estimation of correlated genome associations to a quantitative trait network," PLoS Genet., vol. 5, no. 8, p. e1000587, 2009.
    • (2009) PLoS Genet. , vol.5 , Issue.8
    • Kim, S.1    Xing, E.P.2
  • 56
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • DOI 10.1111/j.1541-0420.2007.00843.x
    • H. D. Bondell and B. J. Reich, "Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR," Biometrics, vol. 64, pp. 115-123, Mar. 2008. (Pubitemid 351316873)
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 60
    • 0032997217 scopus 로고    scopus 로고
    • The essence of SNPs
    • DOI 10.1016/S0378-1119(99)00219-X, PII S037811199900219X
    • A. J. Brookes, "The essence of SNPs," Gene, vol. 234, no. 2, pp. 177-186, July 1999. (Pubitemid 29298180)
    • (1999) Gene , vol.234 , Issue.2 , pp. 177-186
    • Brookes, A.J.1
  • 61
    • 73949142211 scopus 로고    scopus 로고
    • Feature fusion using locally linear embedding for classification
    • B.-Y. Sun, X. Zhang, J. Li, and X.-M. Mao, "Feature fusion using locally linear embedding for classification," IEEE Trans. Neural Networks, vol. 21, no. 1, pp. 163-168, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.1 , pp. 163-168
    • Sun, B.-Y.1    Zhang, X.2    Li, J.3    Mao, X.-M.4
  • 62
    • 73949091826 scopus 로고    scopus 로고
    • Relevance units latent variable model and nonlinear dimensionality reduction
    • J. Gao, J. Zhang, and D. Tien, "Relevance units latent variable model and nonlinear dimensionality reduction," IEEE Trans. Neural Networks, vol. 21, no. 1, pp. 123-135, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.1 , pp. 123-135
    • Gao, J.1    Zhang, J.2    Tien, D.3
  • 63
    • 76749135664 scopus 로고    scopus 로고
    • Representation of a Fisher criterion function in a kernel feature space
    • S. W. Lee and Z. Bien, "Representation of a Fisher criterion function in a kernel feature space," IEEE Trans. Neural Networks, vol. 21, no. 2, pp. 333-339, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.2 , pp. 333-339
    • Lee, S.W.1    Bien, Z.2
  • 64
    • 76849113747 scopus 로고    scopus 로고
    • A dynamically constrained multiobjective genetic fuzzy system for regression problems,"
    • P. Pulkkinen and H. Koivisto, "A dynamically constrained multiobjective genetic fuzzy system for regression problems," IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 161-177, 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.1 , pp. 161-177
    • Pulkkinen, P.1    Koivisto, H.2
  • 65
    • 77951939084 scopus 로고    scopus 로고
    • Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions
    • May
    • Y. Aksu, D. J. Miller, G. Kesidis, and Q. X. Yang, "Margin- maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions," IEEE Trans. Neural Networks, vol. 5, no. 21, pp. 710-717, May 2010.
    • (2010) IEEE Trans. Neural Networks , vol.5 , Issue.21 , pp. 710-717
    • Aksu, Y.1    Miller, D.J.2    Kesidis, G.3    Yang, Q.X.4
  • 66
    • 77951263213 scopus 로고    scopus 로고
    • Towards a memetic feature selection paradigm
    • May
    • Z. Zhu, S. Jia, and Z. Ji, "Towards a memetic feature selection paradigm," IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 41-53, May 2010.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.2 , pp. 41-53
    • Zhu, Z.1    Jia, S.2    Ji, Z.3
  • 67
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancy-constrained class separability
    • L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancy-constrained class separability," IEEE Trans. Neural Networks, vol. 21, no. 5, pp. 853-858, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 68
    • 77953081384 scopus 로고    scopus 로고
    • Generalizing surrogate-assisted evolutionary computation
    • May
    • D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, "Generalizing surrogate-assisted evolutionary computation," IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 329-355, May 2010.
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.3 , pp. 329-355
    • Lim, D.1    Jin, Y.2    Ong, Y.-S.3    Sendhoff, B.4
  • 69
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems
    • M. J. Gacto, R. Alcalá, and F. Herrera, "Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 18, no. 3, pp. 515-531, 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.3 , pp. 515-531
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 70
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nyström method for large scale manifold learning and dimension reduction,"
    • K. Zhang and J. T. Kwok, "Clustered Nyström method for large scale manifold learning and dimension reduction," IEEE Trans. Neural Networks, vol. 21, no. 10, pp. 1576-1587, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.10 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2
  • 71
    • 78651299749 scopus 로고    scopus 로고
    • Super-resolution method for face recognition using nonlinear mappings on coherent features,"
    • H. Huang and H. He, "Super-resolution method for face recognition using nonlinear mappings on coherent features," IEEE Trans. Neural Networks, vol. 22, no. 1, pp. 121-130, 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.1 , pp. 121-130
    • Huang, H.1    He, H.2
  • 73
    • 79551627018 scopus 로고    scopus 로고
    • A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises,"
    • X. Yang, G. Zhang, J. Lu, and J. Ma, "A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises," IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 105-115, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.1 , pp. 105-115
    • Yang, X.1    Zhang, G.2    Lu, J.3    Ma, J.4
  • 74
    • 79551625451 scopus 로고    scopus 로고
    • LDA-based clustering algorithm and its application to an unsupervised feature extraction,"
    • C.-H. Li, B.-C. Kuo, and C.-T. Lin, "LDA-based clustering algorithm and its application to an unsupervised feature extraction," IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 152-163, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.1 , pp. 152-163
    • Li, C.-H.1    Kuo, B.-C.2    Lin, C.-T.3
  • 75
    • 79953646805 scopus 로고    scopus 로고
    • Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation
    • Z. Deng, K.-S. Choi, F.-L. Chung, and S. Wang, "Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 210-226, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 210-226
    • Deng, Z.1    Choi, K.-S.2    Chung, F.-L.3    Wang, S.4
  • 76
    • 79955824877 scopus 로고    scopus 로고
    • Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop-based training
    • R. N. Mahdi and E. C. Rouchka, "Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop-based training," IEEE Trans. Neural Networks, vol. 22, no. 5, pp. 673-686, 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.5 , pp. 673-686
    • Mahdi, R.N.1    Rouchka, E.C.2
  • 77
    • 79957992972 scopus 로고    scopus 로고
    • Feature selection using probabilistic prediction of support vector regression
    • J.-B. Yang and C. J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Networks, vol. 22, no. 6, pp. 954-962, 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.6 , pp. 954-962
    • Yang, J.-B.1    Ong, C.J.2
  • 78
    • 79961027662 scopus 로고    scopus 로고
    • A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems
    • H. K. Singh, A. Isaacs, and T. Ray, "A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems," IEEE Trans. Evol. Comput., vol. 15, no. 4, pp. 539-556, 2011.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.4 , pp. 539-556
    • Singh, H.K.1    Isaacs, A.2    Ray, T.3
  • 79
    • 79955565544 scopus 로고    scopus 로고
    • A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems
    • R. Alcalá, M. J. Gacto, and F. Herrera, "A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 666-681, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 666-681
    • Alcalá, R.1    Gacto, M.J.2    Herrera, F.3
  • 80
    • 79960004548 scopus 로고    scopus 로고
    • Fuzzy-Portfolio-selection models with value-at-risk
    • B. Wang, S. Wang, and J. Watada, "Fuzzy-portfolio-selection models with value-at-risk," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 758-769, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 758-769
    • Wang, B.1    Wang, S.2    Watada, J.3
  • 81
    • 80053653987 scopus 로고    scopus 로고
    • A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
    • J. Alcalá-Fdez, R. Alcalá, and F. Herrera, "A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning," IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp. 857-872, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.5 , pp. 857-872
    • Alcalá-Fdez, J.1    Alcalá, R.2    Herrera, F.3
  • 84
    • 84867796463 scopus 로고    scopus 로고
    • Semi-supervised dimension reduction using trace ratio criterion
    • Y. Huang, D. Xu, and F. Nie, "Semi-supervised dimension reduction using trace ratio criterion," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 3, pp. 519-526, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.3 , pp. 519-526
    • Huang, Y.1    Xu, D.2    Nie, F.3
  • 85
    • 84876709455 scopus 로고    scopus 로고
    • Feature extraction with deep neural networks by a generalized discriminant analysis,"
    • A. Stuhlsatz, J. Lippel, and T. Zielke, "Feature extraction with deep neural networks by a generalized discriminant analysis," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 4, pp. 596-608, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.4 , pp. 596-608
    • Stuhlsatz, A.1    Lippel, J.2    Zielke, T.3
  • 86
    • 84859719176 scopus 로고    scopus 로고
    • Cooperatively coevolving particle swarms for large scale optimization
    • X. Li and X. Yao, "Cooperatively coevolving particle swarms for large scale optimization," IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210-224, 2012.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.2 , pp. 210-224
    • Li, X.1    Yao, X.2
  • 87
    • 84859731717 scopus 로고    scopus 로고
    • Genetic training instance selection in multiobjective evolutionary fuzzy systems: A coevolutionary approach
    • M. Antonelli, P. Ducange, and F. Marcelloni, "Genetic training instance selection in multiobjective evolutionary fuzzy systems: A coevolutionary approach," IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 276-290, 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.2 , pp. 276-290
    • Antonelli, M.1    Ducange, P.2    Marcelloni, F.3
  • 88
    • 84876913392 scopus 로고    scopus 로고
    • Complexity-reduced scheme for feature extraction with linear discriminant analysis
    • Y. Hou, I. Song, H.-K. Min, and C. H. Park, "Complexity-reduced scheme for feature extraction with linear discriminant analysis," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 6, pp. 1003-1009, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.6 , pp. 1003-1009
    • Hou, Y.1    Song, I.2    Min, H.-K.3    Park, C.H.4
  • 89
    • 84861819017 scopus 로고    scopus 로고
    • Grammatical evolution of local search heuristics
    • E. K. Burke, M. R. Hyde, and G. Kendall, "Grammatical evolution of local search heuristics," IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 406-417, 2012.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.3 , pp. 406-417
    • Burke, E.K.1    Hyde, M.R.2    Kendall, G.3
  • 90
    • 84861829465 scopus 로고    scopus 로고
    • A study of collapse in bare bones particle swarm optimization,"
    • T. Blackwell, "A study of collapse in bare bones particle swarm optimization," IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 354-372, 2012.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.3 , pp. 354-372
    • Blackwell, T.1
  • 92
    • 84864690491 scopus 로고    scopus 로고
    • An integrated mechanism for feature selection and fuzzy rule extraction for classification
    • Y.-C. Chen, N. R. Pal, and I.-F. Chung, "An integrated mechanism for feature selection and fuzzy rule extraction for classification," IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 683-698, 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.4 , pp. 683-698
    • Chen, Y.-C.1    Pal, N.R.2    Chung, I.-F.3
  • 93
    • 84864686001 scopus 로고    scopus 로고
    • A practical approach to R&D portfolio selection using the fuzzy pay-off method
    • F. Hassanzadeh, M. Collan, and M. Modarres, "A practical approach to R&D portfolio selection using the fuzzy pay-off method," IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 615-622, 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.4 , pp. 615-622
    • Hassanzadeh, F.1    Collan, M.2    Modarres, M.3
  • 94
    • 84876117777 scopus 로고    scopus 로고
    • Efficient sparse modeling with automatic feature grouping
    • L. W. Zhong and J. T. Kwok, "Efficient sparse modeling with automatic feature grouping," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 9, pp. 1436-1447, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.9 , pp. 1436-1447
    • Zhong, L.W.1    Kwok, J.T.2
  • 95
    • 84876913577 scopus 로고    scopus 로고
    • A discrimination analysis for unsupervised feature selection via optic diffraction principle
    • P. Padungweang, C. Lursinsap, and K. Sunat, "A discrimination analysis for unsupervised feature selection via optic diffraction principle," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 10, pp. 1587-1600, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.10 , pp. 1587-1600
    • Padungweang, P.1    Lursinsap, C.2    Sunat, K.3
  • 96
    • 84876921784 scopus 로고    scopus 로고
    • Multiclass feature selection with kernel Gram-matrix-based criteria
    • M. Ramona, G. Richard, and B. David, "Multiclass feature selection with kernel Gram-matrix-based criteria," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 10, pp. 1611-1623, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.10 , pp. 1611-1623
    • Ramona, M.1    Richard, G.2    David, B.3
  • 97
    • 84867043811 scopus 로고    scopus 로고
    • A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming
    • K. Neshatian, M. Zhang, and P. Andreae, "A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming," IEEE Trans. Evol. Comput., vol. 16, no. 5, pp. 645-661, 2012.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.5 , pp. 645-661
    • Neshatian, K.1    Zhang, M.2    Andreae, P.3
  • 98
    • 84875878163 scopus 로고    scopus 로고
    • Discriminative least squares regression for multiclass classification and feature selection
    • S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, "Discriminative least squares regression for multiclass classification and feature selection," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 11, pp. 1738-1754, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.11 , pp. 1738-1754
    • Xiang, S.1    Nie, F.2    Meng, G.3    Pan, C.4    Zhang, C.5
  • 99
    • 84876122116 scopus 로고    scopus 로고
    • Boosted network classifiers for local feature selection
    • T. Hancock and H. Mamitsuka, "Boosted network classifiers for local feature selection," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 11, pp. 1767-1778, 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.11 , pp. 1767-1778
    • Hancock, T.1    Mamitsuka, H.2
  • 101
    • 84870551925 scopus 로고    scopus 로고
    • An artificial immune system for classification with local feature selection
    • G. Dudek, "An artificial immune system for classification with local feature selection," IEEE Trans. Evol. Comput., vol. 16, no. 6, pp. 847-860, 2012.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.6 , pp. 847-860
    • Dudek, G.1
  • 102
    • 84884936397 scopus 로고    scopus 로고
    • Local coordinates alignment with global preservation for dimensionality reduction
    • J. Chen, Z. Ma, and Y. Liu, "Local coordinates alignment with global preservation for dimensionality reduction," IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 1, pp. 106-117, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst. , vol.24 , Issue.1 , pp. 106-117
    • Chen, J.1    Ma, Z.2    Liu, Y.3
  • 103
    • 84873302479 scopus 로고    scopus 로고
    • Objective reduction in many-objective optimization: Linear and nonlinear algorithms
    • D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, "Objective reduction in many-objective optimization: Linear and nonlinear algorithms," IEEE Trans. Evol. Comput., vol. 17, no. 1, pp. 77-99, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.1 , pp. 77-99
    • Saxena, D.K.1    Duro, J.A.2    Tiwari, A.3    Deb, K.4    Zhang, Q.5
  • 104
    • 84873291602 scopus 로고    scopus 로고
    • A new sequential covering strategy for inducing classification rules with ant colony algorithms
    • F. E. B. Otero, A. A. Freitas, and C. G. Johnson, "A new sequential covering strategy for inducing classification rules with ant colony algorithms," IEEE Trans. Evol. Comput., vol. 17, no. 1, pp. 64-76, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.1 , pp. 64-76
    • Otero, F.E.B.1    Freitas, A.A.2    Johnson, C.G.3
  • 105
    • 84873282303 scopus 로고    scopus 로고
    • Parent selection pressure auto-tuning for tournament selection in genetic programming
    • H. Xie and M. Zhang, "Parent selection pressure auto-tuning for tournament selection in genetic programming," IEEE Trans. Evol. Comput., vol. 17, no. 1, pp. 1-19, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.1 , pp. 1-19
    • Xie, H.1    Zhang, M.2
  • 106
    • 84875721261 scopus 로고    scopus 로고
    • Evolved features for DNA sequence classification and their fitness landscapes
    • W. Ashlock and S. Datta, "Evolved features for DNA sequence classification and their fitness landscapes," IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 185-197, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.2 , pp. 185-197
    • Ashlock, W.1    Datta, S.2
  • 107
    • 84876145996 scopus 로고    scopus 로고
    • Fractional norm regularization: Learning with very few relevant features
    • A. Kaban, "Fractional norm regularization: Learning with very few relevant features," IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 6, pp. 953-963, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst. , vol.24 , Issue.6 , pp. 953-963
    • Kaban, A.1
  • 108
    • 84878714889 scopus 로고    scopus 로고
    • IVTURS: A linguistic fuzzy rulebased classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection
    • J. A. Sanz, A. Fernández, H. Bustince, and F. Herrera, "IVTURS: A linguistic fuzzy rulebased classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection," IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 399-411, 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.3 , pp. 399-411
    • Sanz, J.A.1    Fernández, A.2    Bustince, H.3    Herrera, F.4
  • 109
    • 84878394942 scopus 로고    scopus 로고
    • Evolving diverse ensembles using genetic programming for classification with unbalanced data
    • U. Bhowan, M. Johnston, M. Zhang, and X. Yao, "Evolving diverse ensembles using genetic programming for classification with unbalanced data," IEEE Trans. Evol. Comput., vol. 17, no. 3, pp. 368-386, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.3 , pp. 368-386
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3    Yao, X.4
  • 110
    • 84881333563 scopus 로고    scopus 로고
    • Reliable all-pairs evolving fuzzy classifiers
    • E. Lughofer and O. Buchtala, "Reliable all-pairs evolving fuzzy classifiers," IEEE Trans. Fuzzy Syst., vol. 21, no. 4, pp. 625-641, 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.4 , pp. 625-641
    • Lughofer, E.1    Buchtala, O.2
  • 111
    • 84885171377 scopus 로고    scopus 로고
    • Minimax sparse logistic regression for very highdimensional feature selection
    • M. Tan, I. W. Tsang, and L. Wang, "Minimax sparse logistic regression for very highdimensional feature selection," IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 10, pp. 1609-1622, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst. , vol.24 , Issue.10 , pp. 1609-1622
    • Tan, M.1    Tsang, I.W.2    Wang, L.3
  • 112
    • 84885576232 scopus 로고    scopus 로고
    • Clustering spatiotemporal data: An augmented fuzzy c-means
    • H. Izakian, W. Pedrycz, and I. Jamal, "Clustering spatiotemporal data: An augmented fuzzy c-means," IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp. 855-868, 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.5 , pp. 855-868
    • Izakian, H.1    Pedrycz, W.2    Jamal, I.3
  • 113
    • 84883341234 scopus 로고    scopus 로고
    • Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection
    • A. Basak, S. Das, and K. C. Tan, "Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection," IEEE Trans. Evol. Comput., vol. 17, no. 5, pp. 666-685, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.5 , pp. 666-685
    • Basak, A.1    Das, S.2    Tan, K.C.3
  • 114
    • 84888005581 scopus 로고    scopus 로고
    • Semisupervised multitask learning with Gaussian processes
    • G. Skolidis and G. Sanguinetti, "Semisupervised multitask learning with Gaussian processes," IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 12, pp. 2101-2112, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst. , vol.24 , Issue.12 , pp. 2101-2112
    • Skolidis, G.1    Sanguinetti, G.2
  • 115
    • 84897710607 scopus 로고    scopus 로고
    • A metacognitive neuro-fuzzy inference system (McFIS) for sequential classification problems
    • K. Subramanian, S. Suresh, and N. Sundararajan, "A metacognitive neuro-fuzzy inference system (McFIS) for sequential classification problems," IEEE Trans. Fuzzy Syst., vol. 21, no. 6, pp. 1080-1095, 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.6 , pp. 1080-1095
    • Subramanian, K.1    Suresh, S.2    Sundararajan, N.3
  • 116
    • 84890397212 scopus 로고    scopus 로고
    • Scaling up estimation of distribution algorithms for continuous optimization
    • W. Dong, T. Chen, P. Tino, and X. Yao, "Scaling up estimation of distribution algorithms for continuous optimization," IEEE Trans. Evol. Comput., vol. 17, no. 6, pp. 797-822, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.6 , pp. 797-822
    • Dong, W.1    Chen, T.2    Tino, P.3    Yao, X.4
  • 117
    • 84890324796 scopus 로고    scopus 로고
    • Striking a mean-and parent-centric balance in real-valued crossover operators
    • H. Someya, "Striking a mean-and parent-centric balance in real-valued crossover operators," IEEE Trans. Evol. Comput., vol. 17, no. 6, pp. 737-754, 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.6 , pp. 737-754
    • Someya, H.1
  • 120
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-A new frontier in artificial intelligence research
    • Nov.
    • I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-A new frontier in artificial intelligence research," IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 121
    • 80054688019 scopus 로고    scopus 로고
    • A multi-facet survey on memetic computation
    • Oct.
    • X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, "A multi-facet survey on memetic computation," IEEE Trans. Evol. Comput., vol. 15, no. 5, pp. 591-607, Oct. 2011.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.5 , pp. 591-607
    • Chen, X.1    Ong, Y.-S.2    Lim, M.-H.3    Tan, K.C.4
  • 123
    • 67349191003 scopus 로고    scopus 로고
    • A proposition on memes and meta-memes in computing for higher-order learning
    • R. Meuth, M.-H. Lim, Y.-S. Ong, and D. C. Wunsch, "A proposition on memes and meta-memes in computing for higher-order learning," Memetic Compt., vol. 1, no. 2, pp. 85-100, 2009.
    • (2009) Memetic Compt. , vol.1 , Issue.2 , pp. 85-100
    • Meuth, R.1    Lim, M.-H.2    Ong, Y.-S.3    Wunsch, D.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.