메뉴 건너뛰기




Volumn 6, Issue 14, 2013, Pages 1678-1689

PREDIcT: Towards predicting the runtime of large scale iterative analytics

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; FORECASTING; GRAPH ALGORITHMS; LEARNING ALGORITHMS; MACHINE LEARNING;

EID: 84891109198     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2556549.2556553     Document Type: Article
Times cited : (52)

References (39)
  • 2
    • 77952771914 scopus 로고    scopus 로고
    • Interaction-aware Prediction of Business Intelligence Workload Completion Times
    • M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Interaction-aware Prediction of Business Intelligence Workload Completion Times. In ICDE, pages 413-416, 2010.
    • (2010) ICDE , pp. 413-416
    • Ahmad, M.1    Duan, S.2    Aboulnaga, A.3    Babu, S.4
  • 3
    • 33748060966 scopus 로고    scopus 로고
    • How Slow is the k-means Method?
    • D. Arthur and S. Vassilvitskii. How Slow is the k-means Method? In SCG, pages 144-153, 2006.
    • (2006) SCG , pp. 144-153
    • Arthur, D.1    Vassilvitskii, S.2
  • 4
    • 84976736962 scopus 로고
    • An Amateur's Introduction to Recursive Query Processing Strategies
    • F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive Query Processing Strategies. In SIGMOD, pages 16-52, 1986.
    • (1986) SIGMOD , pp. 16-52
    • Bancilhon, F.1    Ramakrishnan, R.2
  • 6
    • 79956351190 scopus 로고    scopus 로고
    • HaLoop: Eficient Iterative Data Processing on Large Clusters
    • Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Eficient Iterative Data Processing on Large Clusters. PVLDB, 3:285-296, 2010.
    • (2010) PVLDB , vol.3 , pp. 285-296
    • Bu, Y.1    Howe, B.2    Balazinska, M.3    Ernst, M.D.4
  • 7
    • 84890768200 scopus 로고    scopus 로고
    • Measuring User In uence in Twitter: The Million Follower Fallacy
    • M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring User In uence in Twitter: The Million Follower Fallacy. In ICWSM, 2010.
    • (2010) ICWSM
    • Cha, M.1    Haddadi, H.2    Benevenuto, F.3    Gummadi, K.P.4
  • 8
    • 29844453835 scopus 로고    scopus 로고
    • When Can We Trust Progress Estimators for SQL Queries?
    • S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can We Trust Progress Estimators for SQL Queries? In SIGMOD, pages 575-586, 2005.
    • SIGMOD , Issue.2005 , pp. 575-586
    • Chaudhuri, S.1    Kaushik, R.2    Ramamurthy, R.3
  • 9
    • 0032089874 scopus 로고    scopus 로고
    • Random Sampling for Histogram Construction: How Much is Enough?
    • S. Chaudhuri, R. Motwani, and V. Narasayya. Random Sampling for Histogram Construction: How Much is Enough? In SIGMOD, pages 436-447, 1998.
    • (1998) SIGMOD , pp. 436-447
    • Chaudhuri, S.1    Motwani, R.2    Narasayya, V.3
  • 10
    • 84868307166 scopus 로고    scopus 로고
    • MAD Skills: New Analysis Practices for Big Data
    • J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. MAD Skills: New Analysis Practices for Big Data. PVLDB, 2(2):1481-1492, 2009.
    • (2009) PVLDB , vol.2 , Issue.2 , pp. 1481-1492
    • Cohen, J.1    Dolan, B.2    Dunlap, M.3    Hellerstein, J.M.4    Welton, C.5
  • 11
    • 50249126090 scopus 로고    scopus 로고
    • Adaptive query processing. Found
    • A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Found. Trends databases, 1(1):1-140, 2007.
    • (2007) Trends databases , vol.1 , Issue.1 , pp. 1-140
    • Deshpande, A.1    Ives, Z.2    Raman, V.3
  • 12
    • 79960005600 scopus 로고    scopus 로고
    • Performance Prediction for Concurrent Database Workloads
    • J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Performance Prediction for Concurrent Database Workloads. In SIGMOD, pages 337-348, 2011.
    • (2011) SIGMOD , pp. 337-348
    • Duggan, J.1    Cetintemel, U.2    Papaemmanouil, O.3    Upfal, E.4
  • 13
    • 84870501280 scopus 로고    scopus 로고
    • Spinning Fast Iterative Data Flows
    • S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning Fast Iterative Data Flows. PVLDB, 5(11):1268-1279, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1268-1279
    • Ewen, S.1    Tzoumas, K.2    Kaufmann, M.3    Markl, V.4
  • 14
    • 67649639298 scopus 로고    scopus 로고
    • Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning
    • A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE, pages 592-603, 2009.
    • (2009) ICDE , pp. 592-603
    • Ganapathi, A.1    Kuno, H.2    Dayal, U.3    Wiener, J.L.4    Fox, A.5    Jordan, M.6    Patterson, D.7
  • 15
    • 77953303843 scopus 로고    scopus 로고
    • Walking in Facebook: A Case Study of Unbiased Sampling of OSNs
    • M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in Facebook: A Case Study of Unbiased Sampling of OSNs. In INFOCOM, pages 2498-2506, 2010.
    • (2010) INFOCOM , pp. 2498-2506
    • Gjoka, M.1    Kurant, M.2    Butts, C.T.3    Markopoulou, A.4
  • 16
    • 11244293701 scopus 로고    scopus 로고
    • How Fast is the k-means Method?
    • S. Har-Peled and B. Sadri. How Fast is the k-means Method? In SODA, pages 185-202, 2005.
    • (2005) SODA , pp. 185-202
    • Har-Peled, S.1    Sadri, B.2
  • 17
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining
    • Inference and Prediction, Second Edition. Springer
    • T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction, Second Edition. Springer, 2008.
    • (2008)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 18
    • 82155174846 scopus 로고    scopus 로고
    • Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs
    • H. Herodotou and S. Babu. Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs. PVLDB, 4(11):1111-1122, 2011.
    • (2011) PVLDB , vol.4 , Issue.11 , pp. 1111-1122
    • Herodotou, H.1    Babu, S.2
  • 20
    • 77951152705 scopus 로고    scopus 로고
    • PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
    • U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations. In ICDM, pages 229-238, 2009.
    • (2009) ICDM , pp. 229-238
    • Kang, U.1    Tsourakakis, C.E.2    Faloutsos, C.3
  • 21
    • 84877705020 scopus 로고    scopus 로고
    • Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing
    • Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing. In EuroSys, pages 169-182, 2013.
    • (2013) EuroSys , pp. 169-182
    • Khayyat, Z.1    Awara, K.2    Alonazi, A.3    Jamjoom, H.4    Williams, D.5    Kalnis, P.6
  • 22
    • 84906232105 scopus 로고    scopus 로고
    • Deeper Inside PageRank
    • A. N. Langville and C. D. Meyer. Deeper Inside PageRank. Internet Mathematics, 1(3):335-380, 2003. [23] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In KDD, pages 631-636, 2006.
    • (2003) Internet Mathematics , vol.1 , Issue.3 , pp. 335-380
    • Langville, A.N.1    Meyer, C.D.2
  • 23
    • 33749581229 scopus 로고    scopus 로고
    • Sampling from Large Graphs
    • J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In KDD, pages 631-636, 2006.
    • (2006) KDD , pp. 631-636
    • Leskovec, J.1    Faloutsos, C.2
  • 24
    • 52949106331 scopus 로고    scopus 로고
    • Statistical Properties of Community Structure in Large Social and Information Networks
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical Properties of Community Structure in Large Social and Information Networks. In WWW, pages 695-704, 2008.
    • (2008) WWW , pp. 695-704
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 25
    • 84873159089 scopus 로고    scopus 로고
    • Robust Estimation of Resource Consumption for SQL Queries Using Statistical Techniques
    • J. Li, A. C. König, V. Narasayya, and S. Chaudhuri. Robust Estimation of Resource Consumption for SQL Queries Using Statistical Techniques. PVLDB, 5(11):1555-1566, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1555-1566
    • Li, J.1    König, A.C.2    Narasayya, V.3    Chaudhuri, S.4
  • 26
    • 84863735533 scopus 로고    scopus 로고
    • Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud
    • Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. PVLDB, 5(8):716-727, 2012.
    • (2012) PVLDB , vol.5 , Issue.8 , pp. 716-727
    • Low, Y.1    Bickson, D.2    Gonzalez, J.3    Guestrin, C.4    Kyrola, A.5    Hellerstein, J.M.6
  • 27
    • 33745594793 scopus 로고    scopus 로고
    • Multi-query SQL Progress Indicators
    • G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL Progress Indicators. In EDBT, pages 921-941, 2006.
    • (2006) EDBT , pp. 921-941
    • Luo, G.1    Naughton, J.F.2    Yu, P.S.3
  • 29
    • 77954732118 scopus 로고    scopus 로고
    • ParaTimer: A Progress Indicator for MapReduce DAGs
    • K. Morton, M. Balazinska, and D. Grossman. ParaTimer: A Progress Indicator for MapReduce DAGs. In SIGMOD, pages 507-518, 2010.
    • (2010) SIGMOD , pp. 507-518
    • Morton, K.1    Balazinska, M.2    Grossman, D.3
  • 30
    • 0003780986 scopus 로고    scopus 로고
    • The PageRank Citation Ranking: Bringing Order to the Web
    • Technical Report 1999-66, Stanford InfoLab
    • L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab, 1999.
    • (1999)
    • Page, L.1    Brin, S.2    Motwani, R.3    Winograd, T.4
  • 31
    • 84891107423 scopus 로고    scopus 로고
    • Towards Predicting the Runtime of Iterative Analytics with PREDIcT
    • Technical Report 187356, EPFL
    • A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki. Towards Predicting the Runtime of Iterative Analytics with PREDIcT. Technical Report 187356, EPFL, 2013.
    • (2013)
    • Popescu, A.D.1    Balmin, A.2    Ercegovac, V.3    Ailamaki, A.4
  • 34
    • 0025467711 scopus 로고
    • A Bridging Model for Parallel Computation
    • L. G. Valiant. A Bridging Model for Parallel Computation. CACM, 33(8):103-111, 1990.
    • (1990) CACM , vol.33 , Issue.8 , pp. 103-111
    • Valiant, L.G.1
  • 35
    • 23744454242 scopus 로고    scopus 로고
    • A Cluster Algorithm for Graphs
    • Technical Report INS-R0010, CWI
    • S. van Dongen. A Cluster Algorithm for Graphs. Technical Report INS-R0010, CWI, 2000.
    • (2000)
    • van Dongen, S.1
  • 36
    • 79960196705 scopus 로고    scopus 로고
    • ARIA: Automatic Resource Inference and Allocation for MapReduce Environments
    • A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: Automatic Resource Inference and Allocation for MapReduce Environments. In ICAC, pages 235-244, 2011.
    • (2011) ICAC , pp. 235-244
    • Verma, A.1    Cherkasova, L.2    Campbell, R.H.3
  • 37
    • 85084012076 scopus 로고    scopus 로고
    • Asynchronous Large-Scale Graph Processing Made Easy
    • G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous Large-Scale Graph Processing Made Easy. In CIDR, 2013.
    • (2013) CIDR
    • Wang, G.1    Xie, W.2    Demers, A.J.3    Gehrke, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.