메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1371-1429

Towards ultrahigh dimensional feature selection for big data

Author keywords

Big data; Feature generation; Feature selection; Multiple kernel learning; Nonlinear feature selection; Ultrahigh dimensionality

Indexed keywords

FEATURE EXTRACTION; ITERATIVE METHODS; MATHEMATICAL PROGRAMMING; VIRTUAL REALITY;

EID: 84901642365     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (142)

References (91)
  • 2
    • 77956524818 scopus 로고    scopus 로고
    • High-dimensional non-linear variable selection through hierarchical kernel learning
    • F. R. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. Technical report, 2009.
    • (2009) Technical Report
    • Bach, F.R.1
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAMJ. on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 8
    • 77951969231 scopus 로고    scopus 로고
    • Training and testing low-degree polynomial data mappings via linear SVM
    • Y. W. Chang, C. J. Hsieh, K. W. Chang, M. Ringgaard, and C. J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. JMLR, 11:1471-1490, 2010.
    • (2010) JMLR , vol.11 , pp. 1471-1490
    • Chang, Y.W.1    Hsieh, C.J.2    Chang, K.W.3    Ringgaard, M.4    Lin, C.J.5
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Mach. Learn., 46(1):131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 14
    • 75249102673 scopus 로고    scopus 로고
    • Ecient online and batch learning using forward backward splitting
    • J. Duchi and Y. Singer. Ecient online and batch learning using forward backward splitting. JMLR, 10:2899-2934, 2009.
    • (2009) JMLR , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 16
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R. Fan, P. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. JMLR, 6:1889-1918, 2005. (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 17
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • DOI 10.1109/JSTSP.2007.910281
    • M Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces.: Special Issue on Convex Optimization Methods for Signal Processing, 1(4):586-597, 2007. (Pubitemid 351276802)
    • (2007) IEEE Journal on Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 18
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classication
    • G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine classication. Comput. Optim. Appl., 28:185-202, 2004.
    • (2004) Comput. Optim. Appl , vol.28 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 20
    • 35348830833 scopus 로고    scopus 로고
    • Molecular classication of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, D. K. Slonim, and P. Tamayo. Molecular classication of cancer: class discovery and class prediction by gene expression monitoring. Science, 7:286-531, 1999.
    • (1999) Science , vol.7 , pp. 286-531
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 24
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elissee. An introduction to variable and feature selection. JMLR, 3: 1157-1182, 2003.
    • (2003) JMLR , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elissee, A.2
  • 25
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classication using support vector machines. Mach. Learn., 46:389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 28
    • 70049092408 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2011a.
    • (2011) Technical Report
    • Jenatton, R.1    Audibert, J.2    Bach, F.3
  • 29
    • 80052234083 scopus 로고    scopus 로고
    • Proximal methods for hierarchical sparse coding
    • R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. JMLR, 12:2297-2334, 2011b.
    • (2011) JMLR , vol.12 , pp. 2297-2334
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 31
    • 0001547779 scopus 로고
    • The cutting plane method for solving convex programs
    • J. E. Kelley. The cutting plane method for solving convex programs. J. Soc. Ind. Appl. Math., 8(4):703 -712, 1960.
    • (1960) J. Soc. Ind. Appl. Math , vol.8 , Issue.4 , pp. 703-712
    • Kelley, J.E.1
  • 32
    • 84870038047 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-response regression with structured sparsity, with applications to eQTL mapping
    • S. Kim and E. P. Xing. Tree-guided group lasso for multi-response regression with structured sparsity, with applications to eQTL mapping. Ann. Statist., Forthcoming, 2012.
    • (2012) Ann. Statist., Forthcoming
    • Kim, S.1    Xing, E.P.2
  • 34
    • 84972513554 scopus 로고
    • On general minimax theorems
    • S. Kim and S. Boyd. On general minimax theorems. Pacic J. Math., 1958, 8(1):171-176, 1958.
    • (1958) Pacic J. Math 1958 , vol.8 , Issue.1 , pp. 171-176
    • Kim, S.1    Boyd, S.2
  • 35
    • 84869166429 scopus 로고    scopus 로고
    • On the convergence rate of p-norm multiple kernel learning
    • M. Kloft and G. Blanchard. On the convergence rate of p-norm multiple kernel learning. JMLR, 13:2465-2501, 2012.
    • (2012) JMLR , vol.13 , pp. 2465-2501
    • Kloft, M.1    Blanchard, G.2
  • 36
  • 37
    • 79955848223 scopus 로고    scopus 로고
    • Lp-norm multiple kernel learning
    • M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Lp-norm multiple kernel learning. JMLR, 12:953-997, 2011.
    • (2011) JMLR , vol.12 , pp. 953-997
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Zien, A.4
  • 38
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artif. Intell., 97:273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 40
    • 64149115569 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR, 10:777-801, 2009.
    • (2009) JMLR , vol.10 , pp. 777-801
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 44
    • 80052424654 scopus 로고    scopus 로고
    • Ecient l1/lq norm regularization
    • J. Liu and J. Ye. Ecient l1/lq norm regularization. Technical report, 2010.
    • (2010) Technical Report
    • Liu, J.1    Ye, J.2
  • 47
    • 84880901313 scopus 로고    scopus 로고
    • A feature selection method for multivariate performance measures
    • Q. Mao and I. W. Tsang. A feature selection method for multivariate performance measures. IEEE Trans. Pattern Anal. Mach., 35(9):2051-2063, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach , vol.35 , Issue.9 , pp. 2051-2063
    • Mao, Q.1    Tsang, I.W.2
  • 49
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • L. Meier, S. Van De Geer, and P. B-uhlmann. The group lasso for logistic regression. J. Roy. Stat. Soc. B., 70(1):53-71, 2008.
    • (2008) J. Roy. Stat. Soc. B , vol.70 , Issue.1 , pp. 53-71
    • Meier, L.1    Geer De S.Van2    Buhlmann, P.3
  • 50
    • 70349492899 scopus 로고    scopus 로고
    • Cutting-set methods for robust convex optimization with pessimizing oracles
    • A. Mutapcic and S. Boyd. Cutting-set methods for robust convex optimization with pessimizing oracles. Optim. Method Softw., 24(3):381-06, 2009.
    • (2009) Optim. Method Softw , vol.24 , Issue.3 , pp. 381-406
    • Mutapcic, A.1    Boyd, S.2
  • 51
    • 70349687250 scopus 로고    scopus 로고
    • Subgradient methods for saddle-point problems
    • A. Nedic and A. Ozdaglar. Subgradient methods for saddle-point problems. J. Optimiz. Theory App., 142(1):205-228, 2009.
    • (2009) J. Optimiz. Theory App , vol.142 , Issue.1 , pp. 205-228
    • Nedic, A.1    Ozdaglar, A.2
  • 52
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • DOI 10.1137/S1052623403425629
    • A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Opt., 15:229-251, 2005. (Pubitemid 40360669)
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 53
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, 2007.
    • (2007) Technical Report
    • Nesterov, Y.1
  • 57
    • 84901630424 scopus 로고    scopus 로고
    • On solving large-scalenite minimax problems using exponential smoothing
    • online
    • E. Y. Pee and J. O. Royset. On solving large-scalenite minimax problems using exponential smoothing. J. Optimiz. Theory App., online, 2010.
    • (2010) J. Optimiz. Theory App
    • Pee, E.Y.1    Royset, J.O.2
  • 58
    • 84872903067 scopus 로고    scopus 로고
    • Ecient block-coordinate descent algorithms for the group lasso
    • Z. Qin, K. Scheinberg, and D. Goldfarb. Ecient block-coordinate descent algorithms for the group lasso. Technical report, 2010.
    • (2010) Technical Report
    • Qin, Z.1    Scheinberg, K.2    Goldfarb, D.3
  • 59
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using svm-based criteria
    • A. Rakotomamonjy. Variable selection using svm-based criteria. JMLR, 3:1357-1370, 2003.
    • (2003) JMLR , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 64
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. JMLR, 14:567-599, 2013.
    • (2013) JMLR , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 68
    • 84885171377 scopus 로고    scopus 로고
    • Minimax sparse logistic regression for very highdimensional feature selection
    • M. Tan, I. W. Tsang, and L. Wang. Minimax sparse logistic regression for very highdimensional feature selection. IEEE Trans. Neural Netw. Learning Syst., 24(10):1609-1622, 2013.
    • (2013) IEEE Trans. Neural Netw. Learning Syst , vol.24 , Issue.10 , pp. 1609-1622
    • Tan, M.1    Tsang, I.W.2    Wang, L.3
  • 70
    • 70049104930 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • K. C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Technical report, 2009.
    • (2009) Technical Report
    • Toh, K.C.1    Yun, S.2
  • 72
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondierentiable minimization
    • P. Tseng. Convergence of a block coordinate descent method for nondierentiable minimization. J. Optimiz. Theory App., 109(3):475-494, 2001.
    • (2001) J. Optimiz. Theory App , vol.109 , Issue.3 , pp. 475-494
    • Tseng, P.1
  • 78
    • 84866634608 scopus 로고    scopus 로고
    • Ecient hik svm learning for image classication
    • J. Wu. Ecient hik svm learning for image classication. IEEE Trans. Image Process, 21(10):4442-4453, 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.10 , pp. 4442-4453
    • Wu, J.1
  • 83
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale l1-regularized linear classication
    • G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classication. JMLR, 11:3183-3236, 2010.
    • (2010) JMLR , vol.11 , pp. 3183-3236
    • Yuan, G.X.1    Chang, K.W.2    Hsieh, C.J.3    Lin, C.J.4
  • 84
    • 84864920041 scopus 로고    scopus 로고
    • An improved GLMNET for l1-regularized logistic regression and support vector machines
    • G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for l1-regularized logistic regression and support vector machines. JMLR, 13:1999-2030, 2012.
    • (2012) JMLR , vol.13 , pp. 1999-2030
    • Yuan, G.X.1    Ho, C.H.2    Lin, C.J.3
  • 86
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C. H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38(2):894-942, 2010a.
    • (2010) Ann. Statist , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 87
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • C. H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist., 36(4):1567-1594, 2008.
    • (2008) Ann. Statist , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 89
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. JMLR, 11: 1081-1107, 2010b.
    • (2010) JMLR , vol.11 , pp. 1081-1107
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.