-
1
-
-
80052253522
-
-
In Optimization for Machine Learning. S. Sra, S. Nowozin, S. J. Wright
-
F. R. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsityinducing norms. In Optimization for Machine Learning. S. Sra, S. Nowozin, S. J. Wright., 2011.
-
(2011)
Convex Optimization with Sparsityinducing Norms
-
-
Bach, F.R.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
2
-
-
77956524818
-
High-dimensional non-linear variable selection through hierarchical kernel learning
-
F. R. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. Technical report, 2009.
-
(2009)
Technical Report
-
-
Bach, F.R.1
-
3
-
-
14344252374
-
-
In ICML
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
-
(2004)
Multiple Kernel Learning, Conic Duality, and the SMO Algorithm
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
4
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imaging Sciences, 2(1):183-202, 2009.
-
(2009)
SIAMJ. on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
5
-
-
84865309891
-
-
In NIPS
-
B . Blum, M. I. Jordan, D. E. Kim, R. Das, P. Bradley, and D. Baker. Feature selection methods for improving protein structure prediction with rosetta. In NIPS, 2007.
-
(2007)
Feature Selection Methods for Improving Protein Structure Prediction with Rosetta
-
-
Blum, B.1
Jordan, M.I.2
Kim, D.E.3
Das, R.4
Bradley, P.5
Baker, D.6
-
8
-
-
77951969231
-
Training and testing low-degree polynomial data mappings via linear SVM
-
Y. W. Chang, C. J. Hsieh, K. W. Chang, M. Ringgaard, and C. J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. JMLR, 11:1471-1490, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1471-1490
-
-
Chang, Y.W.1
Hsieh, C.J.2
Chang, K.W.3
Ringgaard, M.4
Lin, C.J.5
-
10
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Mach. Learn., 46(1):131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
14
-
-
75249102673
-
Ecient online and batch learning using forward backward splitting
-
J. Duchi and Y. Singer. Ecient online and batch learning using forward backward splitting. JMLR, 10:2899-2934, 2009.
-
(2009)
JMLR
, vol.10
, pp. 2899-2934
-
-
Duchi, J.1
Singer, Y.2
-
16
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R. Fan, P. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. JMLR, 6:1889-1918, 2005. (Pubitemid 41798130)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
17
-
-
39449126969
-
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
-
DOI 10.1109/JSTSP.2007.910281
-
M Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces.: Special Issue on Convex Optimization Methods for Signal Processing, 1(4):586-597, 2007. (Pubitemid 351276802)
-
(2007)
IEEE Journal on Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 586-597
-
-
Figueiredo, M.A.T.1
Nowak, R.D.2
Wright, S.J.3
-
18
-
-
3543109140
-
A feature selection newton method for support vector machine classication
-
G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine classication. Comput. Optim. Appl., 28:185-202, 2004.
-
(2004)
Comput. Optim. Appl
, vol.28
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
20
-
-
35348830833
-
Molecular classication of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, and P. Tamayo. Molecular classication of cancer: class discovery and class prediction by gene expression monitoring. Science, 7:286-531, 1999.
-
(1999)
Science
, vol.7
, pp. 286-531
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
24
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elissee. An introduction to variable and feature selection. JMLR, 3: 1157-1182, 2003.
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elissee, A.2
-
25
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classication using support vector machines. Mach. Learn., 46:389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
26
-
-
56449086680
-
-
In ICML
-
C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear svm. In ICML, 2008.
-
(2008)
A Dual Coordinate Descent Method for Large-scale Linear Svm
-
-
Hsieh, C.J.1
Chang, K.W.2
Lin, C.J.3
Keerthi, S.S.4
Sundararajan, S.5
-
28
-
-
70049092408
-
Structured variable selection with sparsity-inducing norms
-
R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2011a.
-
(2011)
Technical Report
-
-
Jenatton, R.1
Audibert, J.2
Bach, F.3
-
29
-
-
80052234083
-
Proximal methods for hierarchical sparse coding
-
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. JMLR, 12:2297-2334, 2011b.
-
(2011)
JMLR
, vol.12
, pp. 2297-2334
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
31
-
-
0001547779
-
The cutting plane method for solving convex programs
-
J. E. Kelley. The cutting plane method for solving convex programs. J. Soc. Ind. Appl. Math., 8(4):703 -712, 1960.
-
(1960)
J. Soc. Ind. Appl. Math
, vol.8
, Issue.4
, pp. 703-712
-
-
Kelley, J.E.1
-
32
-
-
84870038047
-
Tree-guided group lasso for multi-response regression with structured sparsity, with applications to eQTL mapping
-
S. Kim and E. P. Xing. Tree-guided group lasso for multi-response regression with structured sparsity, with applications to eQTL mapping. Ann. Statist., Forthcoming, 2012.
-
(2012)
Ann. Statist., Forthcoming
-
-
Kim, S.1
Xing, E.P.2
-
34
-
-
84972513554
-
On general minimax theorems
-
S. Kim and S. Boyd. On general minimax theorems. Pacic J. Math., 1958, 8(1):171-176, 1958.
-
(1958)
Pacic J. Math 1958
, vol.8
, Issue.1
, pp. 171-176
-
-
Kim, S.1
Boyd, S.2
-
35
-
-
84869166429
-
On the convergence rate of p-norm multiple kernel learning
-
M. Kloft and G. Blanchard. On the convergence rate of p-norm multiple kernel learning. JMLR, 13:2465-2501, 2012.
-
(2012)
JMLR
, vol.13
, pp. 2465-2501
-
-
Kloft, M.1
Blanchard, G.2
-
36
-
-
84858738634
-
Ecient and accurate p-norm multiple kernel learning
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K. M-uller, and A. Zien. Ecient and accurate p-norm multiple kernel learning. NIPS, 22(22):997-1005, 2009.
-
(2009)
NIPS
, vol.22
, Issue.22
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
M-uller, K.5
Zien, A.6
-
37
-
-
79955848223
-
Lp-norm multiple kernel learning
-
M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Lp-norm multiple kernel learning. JMLR, 12:953-997, 2011.
-
(2011)
JMLR
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
38
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. John. Wrappers for feature subset selection. Artif. Intell., 97:273-324, 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
39
-
-
8844278523
-
Learning the kernel matrix with semidenite programming
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidenite programming. JMLR, 5:27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
40
-
-
64149115569
-
Sparse online learning via truncated gradient
-
J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR, 10:777-801, 2009.
-
(2009)
JMLR
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
44
-
-
80052424654
-
Ecient l1/lq norm regularization
-
J. Liu and J. Ye. Ecient l1/lq norm regularization. Technical report, 2010.
-
(2010)
Technical Report
-
-
Liu, J.1
Ye, J.2
-
47
-
-
84880901313
-
A feature selection method for multivariate performance measures
-
Q. Mao and I. W. Tsang. A feature selection method for multivariate performance measures. IEEE Trans. Pattern Anal. Mach., 35(9):2051-2063, 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach
, vol.35
, Issue.9
, pp. 2051-2063
-
-
Mao, Q.1
Tsang, I.W.2
-
48
-
-
84868289230
-
Online multiple kernel learning for structured prediction
-
A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. Online multiple kernel learning for structured prediction. Technical report, 2010.
-
(2010)
Technical Report
-
-
Martins, A.F.T.1
Figueiredo, M.A.T.2
Aguiar, P.M.Q.3
Smith, N.A.4
Xing, E.P.5
-
50
-
-
70349492899
-
Cutting-set methods for robust convex optimization with pessimizing oracles
-
A. Mutapcic and S. Boyd. Cutting-set methods for robust convex optimization with pessimizing oracles. Optim. Method Softw., 24(3):381-06, 2009.
-
(2009)
Optim. Method Softw
, vol.24
, Issue.3
, pp. 381-406
-
-
Mutapcic, A.1
Boyd, S.2
-
51
-
-
70349687250
-
Subgradient methods for saddle-point problems
-
A. Nedic and A. Ozdaglar. Subgradient methods for saddle-point problems. J. Optimiz. Theory App., 142(1):205-228, 2009.
-
(2009)
J. Optimiz. Theory App
, vol.142
, Issue.1
, pp. 205-228
-
-
Nedic, A.1
Ozdaglar, A.2
-
52
-
-
14944353419
-
Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
-
DOI 10.1137/S1052623403425629
-
A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Opt., 15:229-251, 2005. (Pubitemid 40360669)
-
(2005)
SIAM Journal on Optimization
, vol.15
, Issue.1
, pp. 229-251
-
-
Nemirovski, A.1
-
53
-
-
67651063011
-
Gradient methods for minimizing composite objective function
-
Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, 2007.
-
(2007)
Technical Report
-
-
Nesterov, Y.1
-
57
-
-
84901630424
-
On solving large-scalenite minimax problems using exponential smoothing
-
online
-
E. Y. Pee and J. O. Royset. On solving large-scalenite minimax problems using exponential smoothing. J. Optimiz. Theory App., online, 2010.
-
(2010)
J. Optimiz. Theory App
-
-
Pee, E.Y.1
Royset, J.O.2
-
58
-
-
84872903067
-
Ecient block-coordinate descent algorithms for the group lasso
-
Z. Qin, K. Scheinberg, and D. Goldfarb. Ecient block-coordinate descent algorithms for the group lasso. Technical report, 2010.
-
(2010)
Technical Report
-
-
Qin, Z.1
Scheinberg, K.2
Goldfarb, D.3
-
59
-
-
84890447445
-
Variable selection using svm-based criteria
-
A. Rakotomamonjy. Variable selection using svm-based criteria. JMLR, 3:1357-1370, 2003.
-
(2003)
JMLR
, vol.3
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
60
-
-
57249084590
-
-
A. Rakotomamonjy, F. R. Bach, Y. Grandvalet, and S. Canu SimpleMKL. JMLR, 9: 2491-2521, 2008.
-
(2008)
JMLR
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.R.2
Grandvalet, Y.3
Canu Simplemkl, S.4
-
64
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss minimization
-
S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. JMLR, 14:567-599, 2013.
-
(2013)
JMLR
, vol.14
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
65
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. R-atsch, C. Sch-afer, and B. Sch-olkopf. Large Scale Multiple Kernel Learning. JMLR, 7:1531-1565, 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
68
-
-
84885171377
-
Minimax sparse logistic regression for very highdimensional feature selection
-
M. Tan, I. W. Tsang, and L. Wang. Minimax sparse logistic regression for very highdimensional feature selection. IEEE Trans. Neural Netw. Learning Syst., 24(10):1609-1622, 2013.
-
(2013)
IEEE Trans. Neural Netw. Learning Syst
, vol.24
, Issue.10
, pp. 1609-1622
-
-
Tan, M.1
Tsang, I.W.2
Wang, L.3
-
70
-
-
70049104930
-
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
-
K. C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Technical report, 2009.
-
(2009)
Technical Report
-
-
Toh, K.C.1
Yun, S.2
-
72
-
-
0035533631
-
Convergence of a block coordinate descent method for nondierentiable minimization
-
P. Tseng. Convergence of a block coordinate descent method for nondierentiable minimization. J. Optimiz. Theory App., 109(3):475-494, 2001.
-
(2001)
J. Optimiz. Theory App
, vol.109
, Issue.3
, pp. 475-494
-
-
Tseng, P.1
-
76
-
-
71149087699
-
-
In ICML
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML, 2009.
-
(2009)
Feature Hashing for Large Scale Multitask Learning
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
77
-
-
33645427310
-
-
In NIPS
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for svms. In NIPS, 2000.
-
(2000)
Feature Selection for Svms
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
78
-
-
84866634608
-
Ecient hik svm learning for image classication
-
J. Wu. Ecient hik svm learning for image classication. IEEE Trans. Image Process, 21(10):4442-4453, 2012.
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.10
, pp. 4442-4453
-
-
Wu, J.1
-
80
-
-
71149100436
-
-
In ICML
-
Z. Xu, R. Jin, Ye J., Michael R. Lyu, and King I. Non-monotonic feature selection. In ICML, 2009a.
-
(2009)
Non-monotonic Feature Selection
-
-
Xu, Z.1
Jin, R.2
Ye, J.3
Lyu, M.R.4
King, I.5
-
82
-
-
77956547440
-
-
In ICML
-
Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and ecient multiple kernel learning by group lasso. In ICML, 2010.
-
(2010)
Simple and Ecient Multiple Kernel Learning by Group Lasso
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, R.M.5
-
83
-
-
79551500651
-
A comparison of optimization methods and software for large-scale l1-regularized linear classication
-
G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classication. JMLR, 11:3183-3236, 2010.
-
(2010)
JMLR
, vol.11
, pp. 3183-3236
-
-
Yuan, G.X.1
Chang, K.W.2
Hsieh, C.J.3
Lin, C.J.4
-
84
-
-
84864920041
-
An improved GLMNET for l1-regularized logistic regression and support vector machines
-
G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for l1-regularized logistic regression and support vector machines. JMLR, 13:1999-2030, 2012.
-
(2012)
JMLR
, vol.13
, pp. 1999-2030
-
-
Yuan, G.X.1
Ho, C.H.2
Lin, C.J.3
-
86
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
C. H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38(2):894-942, 2010a.
-
(2010)
Ann. Statist
, vol.38
, Issue.2
, pp. 894-942
-
-
Zhang, C.H.1
-
87
-
-
50949096321
-
The sparsity and bias of the lasso selection in high-dimensional linear regression
-
C. H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist., 36(4):1567-1594, 2008.
-
(2008)
Ann. Statist
, vol.36
, Issue.4
, pp. 1567-1594
-
-
Zhang, C.H.1
Huang, J.2
-
89
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. JMLR, 11: 1081-1107, 2010b.
-
(2010)
JMLR
, vol.11
, pp. 1081-1107
-
-
Zhang, T.1
|