-
1
-
-
84906351367
-
Analyzing the performance of multilayer neural networks for object recognition,
-
P. Agrawal, R. Girshick, J. Malik, Analyzing the performance of multilayer neural networks for object recognition, in: Proceedings of European Conference on Computer Vision, 2014, pp. 329-344.
-
(2014)
Proceedings of European Conference on Computer Vision
, pp. 329-344
-
-
Agrawal, P.1
Girshick, R.2
Malik, J.3
-
2
-
-
84937246562
-
Ten years of pedestrian detection, what have we learned?
-
R. Benenson, M. Omran, J. Hosang, B. Schiele, Ten years of pedestrian detection, what have we learned? in: European Conference on Computer Vision, CVRSUAD workshop, 2014.
-
(2014)
European Conference on Computer Vision, CVRSUAD workshop
-
-
Benenson, R.1
Omran, M.2
Hosang, J.3
Schiele, B.4
-
4
-
-
84857435937
-
Pedestrian detection. an evaluation of the state-of-the-art
-
Dollar P., Wojek C., Schiele B., Perona P. Pedestrian detection. an evaluation of the state-of-the-art. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(4):743-761.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
5
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb P., Girshick R., McAllester D., Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32(9):1627-1645.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
6
-
-
84921339610
-
Descriptor matching with convolutional neural networks: a comparison to sift
-
P. Fischer, A. Dosovitskiy, T. Brox, Descriptor matching with convolutional neural networks: a comparison to sift, 2014. http://arXiv:1405.5769.
-
, Issue.2014
-
-
Fischer, P.1
Dosovitskiy, A.2
Brox, T.3
-
7
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587.
-
(2014)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
84897769461
-
Fast image scanning with deep max-pooling convolutional neural networks
-
A. Giusti, D. Ciresan, J. Masci, L. Gambardella, J. Schmidhuber, Fast image scanning with deep max-pooling convolutional neural networks, in: Proceedings of IEEE International Conference on Image Processing, 2013, pp. 4034-4038.
-
(2013)
Proceedings of IEEE International Conference on Image Processing
, pp. 4034-4038
-
-
Giusti, A.1
Ciresan, D.2
Masci, J.3
Gambardella, L.4
Schmidhuber, J.5
-
9
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, in: Proceedings of European Conference on Computer Vision, 2014, pp 346-361.
-
(2014)
Proceedings of European Conference on Computer Vision
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84893717942
-
Goal-oriented behavior sequence generation based on semantic commands using multiple timescales recurrent neural network with initial state correction
-
Jeonga S., Parkb Y., Mallipeddia R., Tanic J., Leea M. Goal-oriented behavior sequence generation based on semantic commands using multiple timescales recurrent neural network with initial state correction. Neurocomputing 2014, 129(4):67-77.
-
(2014)
Neurocomputing
, vol.129
, Issue.4
, pp. 67-77
-
-
Jeonga, S.1
Parkb, Y.2
Mallipeddia, R.3
Tanic, J.4
Leea, M.5
-
12
-
-
84913580146
-
Caffe: convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 675-678.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
13
-
-
84922815734
-
Flexible sliding windows with adaptive pixel strides
-
Jiang X., Pang Y., Pan J., Li X. Flexible sliding windows with adaptive pixel strides. Signal Process. 2015, 110:37-45.
-
(2015)
Signal Process.
, vol.110
, pp. 37-45
-
-
Jiang, X.1
Pang, Y.2
Pan, J.3
Li, X.4
-
14
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
Technical Report, University of Toronto
-
A. Krizhevsky, Learning multiple layers of features from tiny images, Technical Report, University of Toronto, 2009.
-
(2009)
-
-
Krizhevsky, A.1
-
16
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, F. Li, Large-scale video classification with convolutional neural networks, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.
-
(2014)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Li, F.6
-
17
-
-
84933280308
-
AU-inspired deep networks for facial expression feature learning
-
Liu M., Li S., Shan S., Chen X. AU-inspired deep networks for facial expression feature learning. Neurocomputing 2015, 159(2):126-136.
-
(2015)
Neurocomputing
, vol.159
, Issue.2
, pp. 126-136
-
-
Liu, M.1
Li, S.2
Shan, S.3
Chen, X.4
-
18
-
-
84911449919
-
Switchable deep network for pedestrian detection
-
P. Luo, Y. Tian, X. Wang, X. Tang, Switchable deep network for pedestrian detection, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 899-906.
-
(2014)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 899-906
-
-
Luo, P.1
Tian, Y.2
Wang, X.3
Tang, X.4
-
19
-
-
84937814279
-
An improved radial basis function neural network for object image retrieval
-
Montaze G., Giveki D. An improved radial basis function neural network for object image retrieval. Neurocomputing 2015, 168(11):221-233.
-
(2015)
Neurocomputing
, vol.168
, Issue.11
, pp. 221-233
-
-
Montaze, G.1
Giveki, D.2
-
20
-
-
84952047704
-
DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection
-
W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, Z. Zhu, R. Wang, C. Loy, X. Wang, X. Tang, DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection, 2014. http://arXiv:1409.3505.
-
(2014)
-
-
Ouyang, W.1
Luo, P.2
Zeng, X.3
Qiu, S.4
Tian, Y.5
Li, H.6
Yang, S.7
Wang, Z.8
Xiong, Y.9
Qian, C.10
Zhu, Z.11
Wang, R.12
Loy, C.13
Wang, X.14
Tang, X.15
-
24
-
-
84908360910
-
Distributed object detection with linear SVMs
-
Pang Y., Zhang K., Yuan Y., Wang K. Distributed object detection with linear SVMs. IEEE Trans. Cybern. 2014, 44(11):2122-2133.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.11
, pp. 2122-2133
-
-
Pang, Y.1
Zhang, K.2
Yuan, Y.3
Wang, K.4
-
25
-
-
84908537903
-
Cnn features off-the-shelf: an astounding baseline for recognition
-
A. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, Cnn features off-the-shelf: an astounding baseline for recognition, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 512-519.
-
(2014)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 512-519
-
-
Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
26
-
-
84887328988
-
Pedestrian detection with unsupervised multi-stage feature learning
-
P. Sermanet, K. Kavukcuoglu, S. Chintala, Y. LeCun, Pedestrian detection with unsupervised multi-stage feature learning, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2013, pp. 3626-3633.
-
(2013)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 3626-3633
-
-
Sermanet, P.1
Kavukcuoglu, K.2
Chintala, S.3
LeCun, Y.4
-
27
-
-
85027952715
-
Efficient object detection by prediction in 3D space
-
Pang Y., Jiang X., Li X., Pan J. Efficient object detection by prediction in 3D space. Signal Process. 2015, 112:64-73.
-
(2015)
Signal Process.
, vol.112
, pp. 64-73
-
-
Pang, Y.1
Jiang, X.2
Li, X.3
Pan, J.4
-
29
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. http://arXiv:1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
30
-
-
84906347546
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
arXiv:1312.6229v4
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: Integrated recognition, localization and detection using convolutional networks, .arXiv:1312.6229v4, 2013.
-
(2013)
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
31
-
-
84881160857
-
Selective search for object recognition
-
Uijlings J., van de Sande K., Gevers T., Smeulders A. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104(2):154-171.
-
(2013)
Int. J. Comput. Vis.
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.1
van de Sande, K.2
Gevers, T.3
Smeulders, A.4
-
32
-
-
77956007891
-
New features and insights for pedestrian detection
-
S. Walk, N. Majer, K. Schindler, B. Schiele, New features and insights for pedestrian detection, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2010, pp. 1030-1037.
-
(2010)
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 1030-1037
-
-
Walk, S.1
Majer, N.2
Schindler, K.3
Schiele, B.4
-
35
-
-
84898828144
-
Multi-stage contextual deep learning for pedestrian detection
-
X. Zeng, W. Ouyang, X. Wang, Multi-stage contextual deep learning for pedestrian detection, in: Proceedings of IEEE International Conference on Computer Vision, 2013, pp. 121-128.
-
(2013)
Proceedings of IEEE International Conference on Computer Vision
, pp. 121-128
-
-
Zeng, X.1
Ouyang, W.2
Wang, X.3
|