메뉴 건너뛰기




Volumn 1863, Issue 8, 2017, Pages 2019-2030

The role of microRNAs in heart failure

Author keywords

Angiogenesis; Apoptosis; Fibrosis; Heart failure; Hypertrophy; MicroRNA

Indexed keywords

MICRORNA; MICRORNA 1; MICRORNA 101A; MICRORNA 126; MICRORNA 132; MICRORNA 133; MICRORNA 138; MICRORNA 15; MICRORNA 155; MICRORNA 17 92; MICRORNA 181C; MICRORNA 185; MICRORNA 199B; MICRORNA 19A 3P; MICRORNA 19B 3P; MICRORNA 208; MICRORNA 21; MICRORNA 210; MICRORNA 212; MICRORNA 214; MICRORNA 22; MICRORNA 23; MICRORNA 24; MICRORNA 26A; MICRORNA 28; MICRORNA 29; MICRORNA 30; MICRORNA 34; MICRORNA 378; MICRORNA 499; UNCLASSIFIED DRUG;

EID: 85010755083     PISSN: 09254439     EISSN: 1879260X     Source Type: Journal    
DOI: 10.1016/j.bbadis.2016.11.034     Document Type: Review
Times cited : (66)

References (158)
  • 1
    • 69249240312 scopus 로고    scopus 로고
    • American College of Cardiology/American Heart Association 2009 clinical guidelines for the diagnosis and management of heart failure in adults: update and clinical implications
    • Trupp, R.J., Abraham, W.T., American College of Cardiology/American Heart Association 2009 clinical guidelines for the diagnosis and management of heart failure in adults: update and clinical implications. Pol. Arch. Med. Wewn. 119:7–8 (2009), 436–438.
    • (2009) Pol. Arch. Med. Wewn. , vol.119 , Issue.7-8 , pp. 436-438
    • Trupp, R.J.1    Abraham, W.T.2
  • 2
    • 84990990458 scopus 로고    scopus 로고
    • 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol.
    • Yancy, C.W., et al., 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol., 2016.
    • (2016)
    • Yancy, C.W.1
  • 3
    • 41449086790 scopus 로고    scopus 로고
    • Cardiac plasticity
    • Hill, J.A., Olson, E.N., Cardiac plasticity. N. Engl. J. Med. 358:13 (2008), 1370–1380.
    • (2008) N. Engl. J. Med. , vol.358 , Issue.13 , pp. 1370-1380
    • Hill, J.A.1    Olson, E.N.2
  • 4
    • 84973375752 scopus 로고    scopus 로고
    • Epigenetics in heart failure phenotypes
    • Berezin, A., Epigenetics in heart failure phenotypes. BBA Clin. 6 (2016), 31–37.
    • (2016) BBA Clin. , vol.6 , pp. 31-37
    • Berezin, A.1
  • 5
    • 0034820506 scopus 로고    scopus 로고
    • More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure
    • Stewart, S., et al. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur. J. Heart Fail. 3:3 (2001), 315–322.
    • (2001) Eur. J. Heart Fail. , vol.3 , Issue.3 , pp. 315-322
    • Stewart, S.1
  • 6
    • 34250320026 scopus 로고    scopus 로고
    • Epidemiology of acute heart failure syndromes
    • Alla, F., Zannad, F., Filippatos, G., Epidemiology of acute heart failure syndromes. Heart Fail. Rev. 12:2 (2007), 91–95.
    • (2007) Heart Fail. Rev. , vol.12 , Issue.2 , pp. 91-95
    • Alla, F.1    Zannad, F.2    Filippatos, G.3
  • 7
    • 78650710691 scopus 로고    scopus 로고
    • Molecular pathways underlying cardiac remodeling during pathophysiological stimulation
    • Kehat, I., Molkentin, J.D., Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:25 (2010), 2727–2735.
    • (2010) Circulation , vol.122 , Issue.25 , pp. 2727-2735
    • Kehat, I.1    Molkentin, J.D.2
  • 8
    • 84888227537 scopus 로고    scopus 로고
    • Pathophysiology and etiology of heart failure
    • (vii)
    • Johnson, F.L., Pathophysiology and etiology of heart failure. Cardiol. Clin. 32:1 (2014), 9–19 (vii).
    • (2014) Cardiol. Clin. , vol.32 , Issue.1 , pp. 9-19
    • Johnson, F.L.1
  • 9
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
    • Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet. 9:2 (2008), 102–114.
    • (2008) Nat. Rev. Genet. , vol.9 , Issue.2 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 10
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature 489:7414 (2012), 57–74.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 57-74
    • Consortium, E.P.1
  • 11
    • 84865772716 scopus 로고    scopus 로고
    • Genomics: ENCODE explained
    • Ecker, J.R., et al. Genomics: ENCODE explained. Nature 489:7414 (2012), 52–55.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 52-55
    • Ecker, J.R.1
  • 12
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali, S., et al. Landscape of transcription in human cells. Nature 489:7414 (2012), 101–108.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 101-108
    • Djebali, S.1
  • 13
    • 84865739425 scopus 로고    scopus 로고
    • Architecture of the human regulatory network derived from ENCODE data
    • Gerstein, M.B., et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489:7414 (2012), 91–100.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 91-100
    • Gerstein, M.B.1
  • 14
    • 84865708757 scopus 로고    scopus 로고
    • An expansive human regulatory lexicon encoded in transcription factor footprints
    • Neph, S., et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:7414 (2012), 83–90.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 83-90
    • Neph, S.1
  • 15
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • Ha, M., Kim, V.N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:8 (2014), 509–524.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , Issue.8 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 16
    • 36749026906 scopus 로고    scopus 로고
    • Switching from repression to activation: microRNAs can up-regulate translation
    • Vasudevan, S., Tong, Y., Steitz, J.A., Switching from repression to activation: microRNAs can up-regulate translation. Science 318:5858 (2007), 1931–1934.
    • (2007) Science , vol.318 , Issue.5858 , pp. 1931-1934
    • Vasudevan, S.1    Tong, Y.2    Steitz, J.A.3
  • 17
    • 48749122914 scopus 로고    scopus 로고
    • Circulating microRNAs as stable blood-based markers for cancer detection
    • Mitchell, P.S., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105:30 (2008), 10513–10518.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.30 , pp. 10513-10518
    • Mitchell, P.S.1
  • 18
    • 53349177819 scopus 로고    scopus 로고
    • Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases
    • Chen, X., et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:10 (2008), 997–1006.
    • (2008) Cell Res. , vol.18 , Issue.10 , pp. 997-1006
    • Chen, X.1
  • 19
    • 43449102192 scopus 로고    scopus 로고
    • Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma
    • Lawrie, C.H., et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141:5 (2008), 672–675.
    • (2008) Br. J. Haematol. , vol.141 , Issue.5 , pp. 672-675
    • Lawrie, C.H.1
  • 20
    • 84876116399 scopus 로고    scopus 로고
    • MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation
    • (1475e1-28)
    • Dawson, K., et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127:14 (2013), 1466–1475 (1475e1-28).
    • (2013) Circulation , vol.127 , Issue.14 , pp. 1466-1475
    • Dawson, K.1
  • 21
    • 84868609009 scopus 로고    scopus 로고
    • Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction
    • Eitel, I., et al. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am. Heart J. 164:5 (2012), 706–714.
    • (2012) Am. Heart J. , vol.164 , Issue.5 , pp. 706-714
    • Eitel, I.1
  • 22
    • 84894197596 scopus 로고    scopus 로고
    • Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure
    • Oka, T., et al. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114:3 (2014), 565–571.
    • (2014) Circ. Res. , vol.114 , Issue.3 , pp. 565-571
    • Oka, T.1
  • 23
    • 68649114571 scopus 로고    scopus 로고
    • AngiomiRs–key regulators of angiogenesis
    • Wang, S., Olson, E.N., AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19:3 (2009), 205–211.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , Issue.3 , pp. 205-211
    • Wang, S.1    Olson, E.N.2
  • 24
    • 77954697250 scopus 로고    scopus 로고
    • Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells
    • Doebele, C., et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115:23 (2010), 4944–4950.
    • (2010) Blood , vol.115 , Issue.23 , pp. 4944-4950
    • Doebele, C.1
  • 25
    • 84876565511 scopus 로고    scopus 로고
    • miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression
    • Ohyagi-Hara, C., et al. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression. Am. J. Pathol. 182:5 (2013), 1876–1889.
    • (2013) Am. J. Pathol. , vol.182 , Issue.5 , pp. 1876-1889
    • Ohyagi-Hara, C.1
  • 26
    • 67649998366 scopus 로고    scopus 로고
    • MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice
    • Bonauer, A., et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:5935 (2009), 1710–1713.
    • (2009) Science , vol.324 , Issue.5935 , pp. 1710-1713
    • Bonauer, A.1
  • 27
    • 84883654580 scopus 로고    scopus 로고
    • Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model
    • Hinkel, R., et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128:10 (2013), 1066–1075.
    • (2013) Circulation , vol.128 , Issue.10 , pp. 1066-1075
    • Hinkel, R.1
  • 28
    • 48549106378 scopus 로고    scopus 로고
    • The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
    • Wang, S., et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15:2 (2008), 261–271.
    • (2008) Dev. Cell , vol.15 , Issue.2 , pp. 261-271
    • Wang, S.1
  • 29
    • 84967223701 scopus 로고    scopus 로고
    • The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease
    • Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y.V., The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell. Cardiol. 97 (2016), 47–55.
    • (2016) J. Mol. Cell. Cardiol. , vol.97 , pp. 47-55
    • Chistiakov, D.A.1    Orekhov, A.N.2    Bobryshev, Y.V.3
  • 30
    • 84871322435 scopus 로고    scopus 로고
    • Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity
    • Jakob, P., et al. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126:25 (2012), 2962–2975.
    • (2012) Circulation , vol.126 , Issue.25 , pp. 2962-2975
    • Jakob, P.1
  • 31
    • 48749130187 scopus 로고    scopus 로고
    • miR-126 regulates angiogenic signaling and vascular integrity
    • Fish, J.E., et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15:2 (2008), 272–284.
    • (2008) Dev. Cell , vol.15 , Issue.2 , pp. 272-284
    • Fish, J.E.1
  • 32
    • 34250165403 scopus 로고    scopus 로고
    • Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling
    • Taniguchi, K., et al. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol. Cell. Biol. 27:12 (2007), 4541–4550.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.12 , pp. 4541-4550
    • Taniguchi, K.1
  • 33
    • 84863981799 scopus 로고    scopus 로고
    • Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis
    • Silva ND, D.A. Jr., et al. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med. Sci. Sports Exerc. 44:8 (2012), 1453–1462.
    • (2012) Med. Sci. Sports Exerc. , vol.44 , Issue.8 , pp. 1453-1462
    • Silva ND, D.A.1
  • 34
    • 80051802344 scopus 로고    scopus 로고
    • MicroRNA-24 regulates vascularity after myocardial infarction
    • Fiedler, J., et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:6 (2011), 720–730.
    • (2011) Circulation , vol.124 , Issue.6 , pp. 720-730
    • Fiedler, J.1
  • 35
    • 84879686595 scopus 로고    scopus 로고
    • Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction
    • Meloni, M., et al. Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol. Ther. 21:7 (2013), 1390–1402.
    • (2013) Mol. Ther. , vol.21 , Issue.7 , pp. 1390-1402
    • Meloni, M.1
  • 36
    • 84928390077 scopus 로고    scopus 로고
    • MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis
    • Duan, Q., et al. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J. Cell. Physiol. 230:8 (2015), 1964–1973.
    • (2015) J. Cell. Physiol. , vol.230 , Issue.8 , pp. 1964-1973
    • Duan, Q.1
  • 37
    • 84874700585 scopus 로고    scopus 로고
    • MicroRNA-34a regulates cardiac ageing and function
    • Boon, R.A., et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495:7439 (2013), 107–110.
    • (2013) Nature , vol.495 , Issue.7439 , pp. 107-110
    • Boon, R.A.1
  • 38
    • 77955417245 scopus 로고    scopus 로고
    • MicroRNA-34a regulation of endothelial senescence
    • Ito, T., Yagi, S., Yamakuchi, M., MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398:4 (2010), 735–740.
    • (2010) Biochem. Biophys. Res. Commun. , vol.398 , Issue.4 , pp. 735-740
    • Ito, T.1    Yagi, S.2    Yamakuchi, M.3
  • 39
    • 77953457652 scopus 로고    scopus 로고
    • MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
    • Zhao, T., Li, J., Chen, A.F., MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299:1 (2010), E110–E116.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.299 , Issue.1 , pp. E110-E116
    • Zhao, T.1    Li, J.2    Chen, A.F.3
  • 40
    • 84861623180 scopus 로고    scopus 로고
    • Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease
    • Xu, Q., et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J. Am. Coll. Cardiol. 59:23 (2012), 2107–2117.
    • (2012) J. Am. Coll. Cardiol. , vol.59 , Issue.23 , pp. 2107-2117
    • Xu, Q.1
  • 41
    • 84867903854 scopus 로고    scopus 로고
    • Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
    • Bernardo, B.C., et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. U. S. A. 109:43 (2012), 17615–17620.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.43 , pp. 17615-17620
    • Bernardo, B.C.1
  • 42
    • 77957243894 scopus 로고    scopus 로고
    • MicroRNA-210 as a novel therapy for treatment of ischemic heart disease
    • Hu, S., et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:11 Suppl (2010), S124–S131.
    • (2010) Circulation , vol.122 , Issue.11 , pp. S124-S131
    • Hu, S.1
  • 43
    • 84872723386 scopus 로고    scopus 로고
    • MicroRNA 210 as a biomarker for congestive heart failure
    • Endo, K., et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol. Pharm. Bull. 36:1 (2013), 48–54.
    • (2013) Biol. Pharm. Bull. , vol.36 , Issue.1 , pp. 48-54
    • Endo, K.1
  • 44
    • 47049119934 scopus 로고    scopus 로고
    • MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3
    • Fasanaro, P., et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283:23 (2008), 15878–15883.
    • (2008) J. Biol. Chem. , vol.283 , Issue.23 , pp. 15878-15883
    • Fasanaro, P.1
  • 45
    • 34147153781 scopus 로고    scopus 로고
    • Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
    • Zhao, Y., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:2 (2007), 303–317.
    • (2007) Cell , vol.129 , Issue.2 , pp. 303-317
    • Zhao, Y.1
  • 46
    • 70349254444 scopus 로고    scopus 로고
    • Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
    • Rao, P.K., et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105:6 (2009), 585–594.
    • (2009) Circ. Res. , vol.105 , Issue.6 , pp. 585-594
    • Rao, P.K.1
  • 47
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA-133 controls cardiac hypertrophy
    • Care, A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13:5 (2007), 613–618.
    • (2007) Nat. Med. , vol.13 , Issue.5 , pp. 613-618
    • Care, A.1
  • 48
    • 84877727903 scopus 로고    scopus 로고
    • Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction
    • Zhang, R., et al. Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. Int. J. Cardiol. 166:1 (2013), 259–260.
    • (2013) Int. J. Cardiol. , vol.166 , Issue.1 , pp. 259-260
    • Zhang, R.1
  • 49
    • 84874361869 scopus 로고    scopus 로고
    • Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction
    • Gidlof, O., et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord., 13, 2013, 12.
    • (2013) BMC Cardiovasc. Disord. , vol.13 , pp. 12
    • Gidlof, O.1
  • 50
    • 33847038668 scopus 로고    scopus 로고
    • MicroRNAs play an essential role in the development of cardiac hypertrophy
    • Sayed, D., et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100:3 (2007), 416–424.
    • (2007) Circ. Res. , vol.100 , Issue.3 , pp. 416-424
    • Sayed, D.1
  • 51
    • 64649094112 scopus 로고    scopus 로고
    • MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
    • Ikeda, S., et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 29:8 (2009), 2193–2204.
    • (2009) Mol. Cell. Biol. , vol.29 , Issue.8 , pp. 2193-2204
    • Ikeda, S.1
  • 52
    • 73449086958 scopus 로고    scopus 로고
    • Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
    • Elia, L., et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120:23 (2009), 2377–2385.
    • (2009) Circulation , vol.120 , Issue.23 , pp. 2377-2385
    • Elia, L.1
  • 53
    • 84855171399 scopus 로고    scopus 로고
    • IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a
    • Hua, Y., Zhang, Y., Ren, J., IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J. Cell. Mol. Med. 16:1 (2012), 83–95.
    • (2012) J. Cell. Mol. Med. , vol.16 , Issue.1 , pp. 83-95
    • Hua, Y.1    Zhang, Y.2    Ren, J.3
  • 54
    • 77954895288 scopus 로고    scopus 로고
    • Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy
    • Li, Q., et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci. 123:Pt 14 (2010), 2444–2452.
    • (2010) J. Cell Sci. , vol.123 , pp. 2444-2452
    • Li, Q.1
  • 55
    • 84880816481 scopus 로고    scopus 로고
    • Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling
    • Karakikes, I., et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc., 2(2), 2013, e000078.
    • (2013) J. Am. Heart Assoc. , vol.2 , Issue.2 , pp. e000078
    • Karakikes, I.1
  • 56
    • 84872038762 scopus 로고    scopus 로고
    • The circulating level of FABP3 is an indirect biomarker of microRNA-1
    • Varrone, F., et al. The circulating level of FABP3 is an indirect biomarker of microRNA-1. J. Am. Coll. Cardiol. 61:1 (2013), 88–95.
    • (2013) J. Am. Coll. Cardiol. , vol.61 , Issue.1 , pp. 88-95
    • Varrone, F.1
  • 57
    • 84956628573 scopus 로고    scopus 로고
    • GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy
    • He, M., et al. GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS One, 10(12), 2015, e0145112.
    • (2015) PLoS One , vol.10 , Issue.12 , pp. e0145112
    • He, M.1
  • 58
    • 84882771252 scopus 로고    scopus 로고
    • Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients
    • Villar, A.V., et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int. J. Cardiol. 167:6 (2013), 2875–2881.
    • (2013) Int. J. Cardiol. , vol.167 , Issue.6 , pp. 2875-2881
    • Villar, A.V.1
  • 59
    • 84878065323 scopus 로고    scopus 로고
    • Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery
    • Danowski, N., et al. Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology 125:2 (2013), 125–130.
    • (2013) Cardiology , vol.125 , Issue.2 , pp. 125-130
    • Danowski, N.1
  • 60
    • 77950463916 scopus 로고    scopus 로고
    • Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy
    • Dong, D.L., et al. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55:4 (2010), 946–952.
    • (2010) Hypertension , vol.55 , Issue.4 , pp. 946-952
    • Dong, D.L.1
  • 61
    • 84938882907 scopus 로고    scopus 로고
    • Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via type 1 angiotensin II receptor
    • Diniz, G.P., et al. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via type 1 angiotensin II receptor. Basic Res. Cardiol., 110(5), 2015, 49.
    • (2015) Basic Res. Cardiol. , vol.110 , Issue.5 , pp. 49
    • Diniz, G.P.1
  • 62
    • 75449100509 scopus 로고    scopus 로고
    • miR133a regulates cardiomyocyte hypertrophy in diabetes
    • Feng, B., et al. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab. Res. Rev. 26:1 (2010), 40–49.
    • (2010) Diabetes Metab. Res. Rev. , vol.26 , Issue.1 , pp. 40-49
    • Feng, B.1
  • 63
    • 84894577814 scopus 로고    scopus 로고
    • Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
    • Chen, S., et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. 18:3 (2014), 415–421.
    • (2014) J. Cell. Mol. Med. , vol.18 , Issue.3 , pp. 415-421
    • Chen, S.1
  • 64
    • 84865565944 scopus 로고    scopus 로고
    • MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes
    • Chavali, V., Tyagi, S.C., Mishra, P.K., MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem. Biophys. Res. Commun. 425:3 (2012), 668–672.
    • (2012) Biochem. Biophys. Res. Commun. , vol.425 , Issue.3 , pp. 668-672
    • Chavali, V.1    Tyagi, S.C.2    Mishra, P.K.3
  • 65
    • 6644220044 scopus 로고    scopus 로고
    • Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor
    • Zhang, X., et al. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280:4 (2001), H1782–H1792.
    • (2001) Am. J. Physiol. Heart Circ. Physiol. , vol.280 , Issue.4 , pp. H1782-H1792
    • Zhang, X.1
  • 66
    • 31744432337 scopus 로고    scopus 로고
    • The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
    • Chen, J.F., et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:2 (2006), 228–233.
    • (2006) Nat. Genet. , vol.38 , Issue.2 , pp. 228-233
    • Chen, J.F.1
  • 67
    • 0028871928 scopus 로고
    • Involvement of multiple cis elements in basal- and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element
    • Sprenkle, A.B., Murray, S.F., Glembotski, C.C., Involvement of multiple cis elements in basal- and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Circ. Res. 77:6 (1995), 1060–1069.
    • (1995) Circ. Res. , vol.77 , Issue.6 , pp. 1060-1069
    • Sprenkle, A.B.1    Murray, S.F.2    Glembotski, C.C.3
  • 68
    • 23644456010 scopus 로고    scopus 로고
    • SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy
    • Nelson, T.J., et al. SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J. Mol. Cell. Cardiol. 39:3 (2005), 479–489.
    • (2005) J. Mol. Cell. Cardiol. , vol.39 , Issue.3 , pp. 479-489
    • Nelson, T.J.1
  • 69
    • 84878294979 scopus 로고    scopus 로고
    • MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
    • Ganesan, J., et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:21 (2013), 2097–2106.
    • (2013) Circulation , vol.127 , Issue.21 , pp. 2097-2106
    • Ganesan, J.1
  • 70
    • 84876553780 scopus 로고    scopus 로고
    • A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling
    • Nagalingam, R.S., et al. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J. Biol. Chem. 288:16 (2013), 11216–11232.
    • (2013) J. Biol. Chem. , vol.288 , Issue.16 , pp. 11216-11232
    • Nagalingam, R.S.1
  • 71
    • 84929470100 scopus 로고    scopus 로고
    • miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways
    • Kim, J.O., et al. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One, 10(3), 2015, e0122509.
    • (2015) PLoS One , vol.10 , Issue.3 , pp. e0122509
    • Kim, J.O.1
  • 72
    • 84901057904 scopus 로고    scopus 로고
    • Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy
    • Seok, H.Y., et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 114:10 (2014), 1585–1595.
    • (2014) Circ. Res. , vol.114 , Issue.10 , pp. 1585-1595
    • Seok, H.Y.1
  • 73
    • 84884672200 scopus 로고    scopus 로고
    • Macrophage microRNA-155 promotes cardiac hypertrophy and failure
    • Heymans, S., et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:13 (2013), 1420–1432.
    • (2013) Circulation , vol.128 , Issue.13 , pp. 1420-1432
    • Heymans, S.1
  • 74
    • 84980340130 scopus 로고    scopus 로고
    • miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy
    • Yang, Y., et al. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp. Ther. Med. 12:3 (2016), 1556–1562.
    • (2016) Exp. Ther. Med. , vol.12 , Issue.3 , pp. 1556-1562
    • Yang, Y.1
  • 75
    • 84937716567 scopus 로고    scopus 로고
    • High expression of microRNA-208 is associated with cardiac hypertrophy via the negative regulation of the sex-determining region Y-box 6 protein
    • Huang, X., et al. High expression of microRNA-208 is associated with cardiac hypertrophy via the negative regulation of the sex-determining region Y-box 6 protein. Exp. Ther. Med. 10:3 (2015), 921–926.
    • (2015) Exp. Ther. Med. , vol.10 , Issue.3 , pp. 921-926
    • Huang, X.1
  • 76
    • 80052015441 scopus 로고    scopus 로고
    • Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133
    • Wang, H.R., et al. Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chem. Biol. 6:8 (2011), 845–856.
    • (2011) ACS Chem. Biol. , vol.6 , Issue.8 , pp. 845-856
    • Wang, H.R.1
  • 77
    • 70349202176 scopus 로고    scopus 로고
    • MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
    • Callis, T.E., et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119:9 (2009), 2772–2786.
    • (2009) J. Clin. Invest. , vol.119 , Issue.9 , pp. 2772-2786
    • Callis, T.E.1
  • 78
    • 80053567152 scopus 로고    scopus 로고
    • Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
    • Montgomery, R.L., et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:14 (2011), 1537–1547.
    • (2011) Circulation , vol.124 , Issue.14 , pp. 1537-1547
    • Montgomery, R.L.1
  • 79
    • 84867009927 scopus 로고    scopus 로고
    • The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
    • Ucar, A., et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun., 3, 2012, 1078.
    • (2012) Nat. Commun. , vol.3 , pp. 1078
    • Ucar, A.1
  • 80
    • 84941271616 scopus 로고    scopus 로고
    • Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure
    • Mayer, S.C., et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ. Res. 117:7 (2015), 622–633.
    • (2015) Circ. Res. , vol.117 , Issue.7 , pp. 622-633
    • Mayer, S.C.1
  • 81
    • 78649843756 scopus 로고    scopus 로고
    • MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling
    • da Costa Martins, P.A., et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol. 12:12 (2010), 1220–1227.
    • (2010) Nat. Cell Biol. , vol.12 , Issue.12 , pp. 1220-1227
    • da Costa Martins, P.A.1
  • 82
    • 84862959239 scopus 로고    scopus 로고
    • Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy
    • Xu, X.D., et al. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J. Cell. Physiol. 227:4 (2012), 1391–1398.
    • (2012) J. Cell. Physiol. , vol.227 , Issue.4 , pp. 1391-1398
    • Xu, X.D.1
  • 83
    • 84877583076 scopus 로고    scopus 로고
    • MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
    • Huang, Z.P., et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 112:9 (2013), 1234–1243.
    • (2013) Circ. Res. , vol.112 , Issue.9 , pp. 1234-1243
    • Huang, Z.P.1
  • 84
    • 67749106564 scopus 로고    scopus 로고
    • miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy
    • Lin, Z., et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 106:29 (2009), 12103–12108.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , Issue.29 , pp. 12103-12108
    • Lin, Z.1
  • 85
    • 84855296257 scopus 로고    scopus 로고
    • Cardiac hypertrophy is positively regulated by microRNA miR-23a
    • Wang, K., et al. Cardiac hypertrophy is positively regulated by microRNA miR-23a. J. Biol. Chem. 287:1 (2012), 589–599.
    • (2012) J. Biol. Chem. , vol.287 , Issue.1 , pp. 589-599
    • Wang, K.1
  • 86
    • 79955031839 scopus 로고    scopus 로고
    • Fibroblasts and myofibroblasts: what are we talking about?
    • Baum, J., Duffy, H.S., Fibroblasts and myofibroblasts: what are we talking about?. J. Cardiovasc. Pharmacol. 57:4 (2011), 376–379.
    • (2011) J. Cardiovasc. Pharmacol. , vol.57 , Issue.4 , pp. 376-379
    • Baum, J.1    Duffy, H.S.2
  • 87
    • 84887207559 scopus 로고    scopus 로고
    • Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c
    • Abonnenc, M., et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ. Res. 113:10 (2013), 1138–1147.
    • (2013) Circ. Res. , vol.113 , Issue.10 , pp. 1138-1147
    • Abonnenc, M.1
  • 88
    • 79953223738 scopus 로고    scopus 로고
    • Assessment of psychosocial risk factors is missing in the 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults
    • (author reply 1571)
    • Manzoni, G.M., Castelnuovo, G., Proietti, R., Assessment of psychosocial risk factors is missing in the 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults. J. Am. Coll. Cardiol. 57:14 (2011), 1569–1570 (author reply 1571).
    • (2011) J. Am. Coll. Cardiol. , vol.57 , Issue.14 , pp. 1569-1570
    • Manzoni, G.M.1    Castelnuovo, G.2    Proietti, R.3
  • 89
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij, E., et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U. S. A. 105:35 (2008), 13027–13032.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.35 , pp. 13027-13032
    • van Rooij, E.1
  • 90
    • 84906268229 scopus 로고    scopus 로고
    • Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term
    • Romero, R., et al. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term. J. Matern. Fetal Neonatal Med. 27:14 (2014), 1397–1408.
    • (2014) J. Matern. Fetal Neonatal Med. , vol.27 , Issue.14 , pp. 1397-1408
    • Romero, R.1
  • 91
    • 84899982846 scopus 로고    scopus 로고
    • miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling
    • Zhang, Y., et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22:5 (2014), 974–985.
    • (2014) Mol. Ther. , vol.22 , Issue.5 , pp. 974-985
    • Zhang, Y.1
  • 92
    • 84863389824 scopus 로고    scopus 로고
    • Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts
    • Zhou, L., et al. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One, 7(3), 2012, e33766.
    • (2012) PLoS One , vol.7 , Issue.3 , pp. e33766
    • Zhou, L.1
  • 93
    • 84884546885 scopus 로고    scopus 로고
    • Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat
    • Zhu, J.N., et al. Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PLoS One, 8(9), 2013, e75557.
    • (2013) PLoS One , vol.8 , Issue.9 , pp. e75557
    • Zhu, J.N.1
  • 94
    • 57749121689 scopus 로고    scopus 로고
    • MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
    • Liu, N., et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22:23 (2008), 3242–3254.
    • (2008) Genes Dev. , vol.22 , Issue.23 , pp. 3242-3254
    • Liu, N.1
  • 95
    • 74049096307 scopus 로고    scopus 로고
    • MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts
    • Matkovich, S.J., et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 106:1 (2010), 166–175.
    • (2010) Circ. Res. , vol.106 , Issue.1 , pp. 166-175
    • Matkovich, S.J.1
  • 96
    • 67651111989 scopus 로고    scopus 로고
    • Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines
    • Shan, H., et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83:3 (2009), 465–472.
    • (2009) Cardiovasc. Res. , vol.83 , Issue.3 , pp. 465-472
    • Shan, H.1
  • 97
    • 82155163832 scopus 로고    scopus 로고
    • MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension
    • Castoldi, G., et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol. 227:2 (2012), 850–856.
    • (2012) J. Cell. Physiol. , vol.227 , Issue.2 , pp. 850-856
    • Castoldi, G.1
  • 98
    • 84947744763 scopus 로고    scopus 로고
    • Regulation of connective tissue growth factor and cardiac fibrosis by an SRF/microRNA-133a axis
    • Angelini, A., et al. Regulation of connective tissue growth factor and cardiac fibrosis by an SRF/microRNA-133a axis. PLoS One, 10(10), 2015, e0139858.
    • (2015) PLoS One , vol.10 , Issue.10 , pp. e0139858
    • Angelini, A.1
  • 99
    • 59849128881 scopus 로고    scopus 로고
    • miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
    • (6p following 178)
    • Duisters, R.F., et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104:2 (2009), 170–178 (6p following 178).
    • (2009) Circ. Res. , vol.104 , Issue.2 , pp. 170-178
    • Duisters, R.F.1
  • 100
    • 79251641860 scopus 로고    scopus 로고
    • RISC RNA sequencing for context-specific identification of in vivo microRNA targets
    • Matkovich, S.J., et al. RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ. Res. 108:1 (2011), 18–26.
    • (2011) Circ. Res. , vol.108 , Issue.1 , pp. 18-26
    • Matkovich, S.J.1
  • 101
    • 84875513890 scopus 로고    scopus 로고
    • NF-kappaB mediated miR-26a regulation in cardiac fibrosis
    • Wei, C., et al. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J. Cell. Physiol. 228:7 (2013), 1433–1442.
    • (2013) J. Cell. Physiol. , vol.228 , Issue.7 , pp. 1433-1442
    • Wei, C.1
  • 102
    • 84924573864 scopus 로고    scopus 로고
    • Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling
    • Qi, X.Y., et al. Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. Circ. Res. 116:5 (2015), 836–845.
    • (2015) Circ. Res. , vol.116 , Issue.5 , pp. 836-845
    • Qi, X.Y.1
  • 103
    • 84867767699 scopus 로고    scopus 로고
    • Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation
    • Harada, M., et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126:17 (2012), 2051–2064.
    • (2012) Circulation , vol.126 , Issue.17 , pp. 2051-2064
    • Harada, M.1
  • 104
    • 84964842234 scopus 로고    scopus 로고
    • Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts
    • Zou, M., et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts. Sci. Rep., 6, 2016, 24747.
    • (2016) Sci. Rep. , vol.6 , pp. 24747
    • Zou, M.1
  • 105
    • 84865439215 scopus 로고    scopus 로고
    • MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
    • Wang, J., et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J. Cell. Mol. Med. 16:9 (2012), 2150–2160.
    • (2012) J. Cell. Mol. Med. , vol.16 , Issue.9 , pp. 2150-2160
    • Wang, J.1
  • 106
    • 84866552877 scopus 로고    scopus 로고
    • Mir-24 regulates junctophilin-2 expression in cardiomyocytes
    • Xu, M., et al. Mir-24 regulates junctophilin-2 expression in cardiomyocytes. Circ. Res. 111:7 (2012), 837–841.
    • (2012) Circ. Res. , vol.111 , Issue.7 , pp. 837-841
    • Xu, M.1
  • 107
    • 84865206803 scopus 로고    scopus 로고
    • MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway
    • Pan, Z., et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:7 (2012), 840–850.
    • (2012) Circulation , vol.126 , Issue.7 , pp. 840-850
    • Pan, Z.1
  • 108
    • 84921376351 scopus 로고    scopus 로고
    • MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts
    • Zhao, X., et al. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts. Cell. Physiol. Biochem. 35:1 (2015), 213–226.
    • (2015) Cell. Physiol. Biochem. , vol.35 , Issue.1 , pp. 213-226
    • Zhao, X.1
  • 109
    • 57749168828 scopus 로고    scopus 로고
    • MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
    • Thum, T., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:7224 (2008), 980–984.
    • (2008) Nature , vol.456 , Issue.7224 , pp. 980-984
    • Thum, T.1
  • 110
    • 84861993799 scopus 로고    scopus 로고
    • Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy
    • Yang, K.C., et al. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy. J. Mol. Cell. Cardiol. 53:1 (2012), 101–112.
    • (2012) J. Mol. Cell. Cardiol. , vol.53 , Issue.1 , pp. 101-112
    • Yang, K.C.1
  • 111
    • 84866558680 scopus 로고    scopus 로고
    • A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis
    • Liang, H., et al. A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44:12 (2012), 2152–2160.
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , Issue.12 , pp. 2152-2160
    • Liang, H.1
  • 112
    • 84940172573 scopus 로고    scopus 로고
    • Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis
    • Lorenzen, J.M., et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur. Heart J. 36:32 (2015), 2184–2196.
    • (2015) Eur. Heart J. , vol.36 , Issue.32 , pp. 2184-2196
    • Lorenzen, J.M.1
  • 113
    • 84874157794 scopus 로고    scopus 로고
    • miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1
    • Bronnum, H., et al. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1. PLoS One, 8(2), 2013, e56280.
    • (2013) PLoS One , vol.8 , Issue.2 , pp. e56280
    • Bronnum, H.1
  • 114
    • 84871569496 scopus 로고    scopus 로고
    • Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure
    • Cardin, S., et al. Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ. Arrhythm. Electrophysiol. 5:5 (2012), 1027–1035.
    • (2012) Circ. Arrhythm. Electrophysiol. , vol.5 , Issue.5 , pp. 1027-1035
    • Cardin, S.1
  • 115
    • 84960402447 scopus 로고    scopus 로고
    • Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit
    • He, X., et al. Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels, 2016.
    • (2016) Heart Vessels
    • He, X.1
  • 116
    • 78049432896 scopus 로고    scopus 로고
    • Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
    • Patrick, D.M., et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120:11 (2010), 3912–3916.
    • (2010) J. Clin. Invest. , vol.120 , Issue.11 , pp. 3912-3916
    • Patrick, D.M.1
  • 117
    • 33845317603 scopus 로고    scopus 로고
    • A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
    • van Rooij, E., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U. S. A. 103:48 (2006), 18255–18260.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , Issue.48 , pp. 18255-18260
    • van Rooij, E.1
  • 118
    • 84913580883 scopus 로고    scopus 로고
    • The microRNA-15 family inhibits the TGFbeta-pathway in the heart
    • Tijsen, A.J., et al. The microRNA-15 family inhibits the TGFbeta-pathway in the heart. Cardiovasc. Res. 104:1 (2014), 61–71.
    • (2014) Cardiovasc. Res. , vol.104 , Issue.1 , pp. 61-71
    • Tijsen, A.J.1
  • 119
    • 84855350458 scopus 로고    scopus 로고
    • Inhibition of miR-15 protects against cardiac ischemic injury
    • Hullinger, T.G., et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110:1 (2012), 71–81.
    • (2012) Circ. Res. , vol.110 , Issue.1 , pp. 71-81
    • Hullinger, T.G.1
  • 120
    • 84871992154 scopus 로고    scopus 로고
    • Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
    • Porrello, E.R., et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U. S. A. 110:1 (2013), 187–192.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.1 , pp. 187-192
    • Porrello, E.R.1
  • 121
    • 50649111705 scopus 로고    scopus 로고
    • Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart
    • Luo, X., et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283:29 (2008), 20045–20052.
    • (2008) J. Biol. Chem. , vol.283 , Issue.29 , pp. 20045-20052
    • Luo, X.1
  • 122
    • 82755165053 scopus 로고    scopus 로고
    • MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex
    • Belevych, A.E., et al. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 6(12), 2011, e28324.
    • (2011) PLoS One , vol.6 , Issue.12 , pp. e28324
    • Belevych, A.E.1
  • 123
    • 84880776742 scopus 로고    scopus 로고
    • MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts
    • Curcio, A., et al. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One, 8(7), 2013, e70158.
    • (2013) PLoS One , vol.8 , Issue.7 , pp. e70158
    • Curcio, A.1
  • 124
    • 84894985306 scopus 로고    scopus 로고
    • The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy
    • Liu, M., et al. The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy. Biomaterials 35:11 (2014), 3697–3707.
    • (2014) Biomaterials , vol.35 , Issue.11 , pp. 3697-3707
    • Liu, M.1
  • 125
    • 61949226650 scopus 로고    scopus 로고
    • miR-1 overexpression enhances Ca(2 +) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2
    • Terentyev, D., et al. miR-1 overexpression enhances Ca(2 +) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104:4 (2009), 514–521.
    • (2009) Circ. Res. , vol.104 , Issue.4 , pp. 514-521
    • Terentyev, D.1
  • 126
    • 84929347068 scopus 로고    scopus 로고
    • Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload
    • Schiattarella, G.G., Hill, J.A., Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131:16 (2015), 1435–1447.
    • (2015) Circulation , vol.131 , Issue.16 , pp. 1435-1447
    • Schiattarella, G.G.1    Hill, J.A.2
  • 127
    • 84959374845 scopus 로고    scopus 로고
    • The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure
    • Briasoulis, A., et al. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail. Rev. 21:2 (2016), 169–176.
    • (2016) Heart Fail. Rev. , vol.21 , Issue.2 , pp. 169-176
    • Briasoulis, A.1
  • 128
    • 84939986310 scopus 로고    scopus 로고
    • Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
    • Galluzzi, L., et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22:1 (2015), 58–73.
    • (2015) Cell Death Differ. , vol.22 , Issue.1 , pp. 58-73
    • Galluzzi, L.1
  • 129
    • 34250308322 scopus 로고    scopus 로고
    • Apoptosis: a review of programmed cell death
    • Elmore, S., Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:4 (2007), 495–516.
    • (2007) Toxicol. Pathol. , vol.35 , Issue.4 , pp. 495-516
    • Elmore, S.1
  • 130
    • 84907497918 scopus 로고    scopus 로고
    • beta-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression
    • Xu, C., et al. beta-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J. Mol. Cell. Cardiol. 75 (2014), 111–121.
    • (2014) J. Mol. Cell. Cardiol. , vol.75 , pp. 111-121
    • Xu, C.1
  • 131
    • 84908542709 scopus 로고    scopus 로고
    • MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1
    • Volk, N., et al. MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J. Neurosci. 34:45 (2014), 15070–15082.
    • (2014) J. Neurosci. , vol.34 , Issue.45 , pp. 15070-15082
    • Volk, N.1
  • 132
    • 79952612217 scopus 로고    scopus 로고
    • Role of miR-1 and miR-133a in myocardial ischemic postconditioning
    • He, B., et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J. Biomed. Sci., 18, 2011, 22.
    • (2011) J. Biomed. Sci. , vol.18 , pp. 22
    • He, B.1
  • 133
    • 84893560910 scopus 로고    scopus 로고
    • NF-kappaB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress
    • Wei, C., et al. NF-kappaB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic. Res. 48:3 (2014), 282–291.
    • (2014) Free Radic. Res. , vol.48 , Issue.3 , pp. 282-291
    • Wei, C.1
  • 134
    • 67349106068 scopus 로고    scopus 로고
    • MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4
    • Cheng, Y., et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. 47:1 (2009), 5–14.
    • (2009) J. Mol. Cell. Cardiol. , vol.47 , Issue.1 , pp. 5-14
    • Cheng, Y.1
  • 135
    • 84899698561 scopus 로고    scopus 로고
    • MicroRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism
    • Yang, Q., Yang, K., Li, A., MicroRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol. Med. Rep. 9:6 (2014), 2213–2220.
    • (2014) Mol. Med. Rep. , vol.9 , Issue.6 , pp. 2213-2220
    • Yang, Q.1    Yang, K.2    Li, A.3
  • 136
    • 62349141343 scopus 로고    scopus 로고
    • MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
    • Roy, S., et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82:1 (2009), 21–29.
    • (2009) Cardiovasc. Res. , vol.82 , Issue.1 , pp. 21-29
    • Roy, S.1
  • 137
    • 59749095843 scopus 로고    scopus 로고
    • Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione
    • Viappiani, S., et al. Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem. Pharmacol. 77:5 (2009), 826–834.
    • (2009) Biochem. Pharmacol. , vol.77 , Issue.5 , pp. 826-834
    • Viappiani, S.1
  • 138
    • 85017659667 scopus 로고    scopus 로고
    • MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway
    • Huang, Z., et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J. Cell. Mol. Med., 2016.
    • (2016) J. Cell. Mol. Med.
    • Huang, Z.1
  • 139
    • 85015666348 scopus 로고    scopus 로고
    • Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice
    • Huang, W., et al. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol. Ther. Nucleic Acids, 5, 2016, e296.
    • (2016) Mol. Ther. Nucleic Acids , vol.5 , pp. e296
    • Huang, W.1
  • 140
    • 84894084047 scopus 로고    scopus 로고
    • MicroRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2
    • Dong, S., et al. MicroRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 7:2 (2014), 565–574.
    • (2014) Int. J. Clin. Exp. Pathol. , vol.7 , Issue.2 , pp. 565-574
    • Dong, S.1
  • 141
    • 76749157966 scopus 로고    scopus 로고
    • miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway
    • Li, J., et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet., 6(1), 2010, e1000795.
    • (2010) PLoS Genet. , vol.6 , Issue.1 , pp. e1000795
    • Li, J.1
  • 142
    • 84957309633 scopus 로고    scopus 로고
    • Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis
    • Roca-Alonso, L., et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis., 6, 2015, e1754.
    • (2015) Cell Death Dis. , vol.6 , pp. e1754
    • Roca-Alonso, L.1
  • 143
    • 84954305581 scopus 로고    scopus 로고
    • Up-regulation of miR-138 inhibits hypoxia-induced cardiomyocyte apoptosis via down-regulating lipocalin-2 expression
    • Xiong, H., et al. Up-regulation of miR-138 inhibits hypoxia-induced cardiomyocyte apoptosis via down-regulating lipocalin-2 expression. Exp. Biol. Med. (Maywood) 241:1 (2016), 25–30.
    • (2016) Exp. Biol. Med. (Maywood) , vol.241 , Issue.1 , pp. 25-30
    • Xiong, H.1
  • 144
    • 17644373073 scopus 로고    scopus 로고
    • Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades
    • Brancho, D., et al. Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol. Cell. Biol. 25:9 (2005), 3670–3681.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.9 , pp. 3670-3681
    • Brancho, D.1
  • 145
    • 0036731701 scopus 로고    scopus 로고
    • Mixed-lineage kinase control of JNK and p38 MAPK pathways
    • Gallo, K.A., Johnson, G.L., Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat. Rev. Mol. Cell Biol. 3:9 (2002), 663–672.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , Issue.9 , pp. 663-672
    • Gallo, K.A.1    Johnson, G.L.2
  • 146
    • 84888827430 scopus 로고    scopus 로고
    • miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway
    • He, S., et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem. Biophys. Res. Commun. 441:4 (2013), 763–769.
    • (2013) Biochem. Biophys. Res. Commun. , vol.441 , Issue.4 , pp. 763-769
    • He, S.1
  • 147
    • 84959421788 scopus 로고    scopus 로고
    • Mechanical stretch inhibits microRNA499 via p53 to regulate calcineurin-A expression in rat cardiomyocytes
    • Chua, S.K., et al. Mechanical stretch inhibits microRNA499 via p53 to regulate calcineurin-A expression in rat cardiomyocytes. PLoS One, 11(2), 2016, e0148683.
    • (2016) PLoS One , vol.11 , Issue.2 , pp. e0148683
    • Chua, S.K.1
  • 148
    • 84940788564 scopus 로고    scopus 로고
    • MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
    • Wang, H., et al. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J. Cell. Mol. Med. 19:9 (2015), 2084–2097.
    • (2015) J. Cell. Mol. Med. , vol.19 , Issue.9 , pp. 2084-2097
    • Wang, H.1
  • 149
    • 84976271979 scopus 로고    scopus 로고
    • MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling
    • Zhu, R.Y., et al. MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling. In Vitro Cell. Dev. Biol. Anim., 2016.
    • (2016) In Vitro Cell. Dev. Biol. Anim.
    • Zhu, R.Y.1
  • 150
    • 71249147300 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?
    • Budas, G.R., Disatnik, M.H., Mochly-Rosen, D., Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?. Trends Cardiovasc. Med. 19:5 (2009), 158–164.
    • (2009) Trends Cardiovasc. Med. , vol.19 , Issue.5 , pp. 158-164
    • Budas, G.R.1    Disatnik, M.H.2    Mochly-Rosen, D.3
  • 151
    • 51749104191 scopus 로고    scopus 로고
    • Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart
    • Chen, C.H., et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:5895 (2008), 1493–1495.
    • (2008) Science , vol.321 , Issue.5895 , pp. 1493-1495
    • Chen, C.H.1
  • 152
    • 79954488111 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde
    • Ma, H., et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32:8 (2011), 1025–1038.
    • (2011) Eur. Heart J. , vol.32 , Issue.8 , pp. 1025-1038
    • Ma, H.1
  • 153
    • 84942094054 scopus 로고    scopus 로고
    • miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes
    • Li, S.P., et al. miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes. Eur. Rev. Med. Pharmacol. Sci. 19:5 (2015), 752–758.
    • (2015) Eur. Rev. Med. Pharmacol. Sci. , vol.19 , Issue.5 , pp. 752-758
    • Li, S.P.1
  • 154
    • 79251590758 scopus 로고    scopus 로고
    • Assessment of plasma miRNAs in congestive heart failure
    • Fukushima, Y., et al. Assessment of plasma miRNAs in congestive heart failure. Circ. J. 75:2 (2011), 336–340.
    • (2011) Circ. J. , vol.75 , Issue.2 , pp. 336-340
    • Fukushima, Y.1
  • 155
    • 77950973372 scopus 로고    scopus 로고
    • MiR423-5p as a circulating biomarker for heart failure
    • Tijsen, A.J., et al. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 106:6 (2010), 1035–1039.
    • (2010) Circ. Res. , vol.106 , Issue.6 , pp. 1035-1039
    • Tijsen, A.J.1
  • 156
    • 84884862516 scopus 로고    scopus 로고
    • Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients
    • Ellis, K.L., et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail. 15:10 (2013), 1138–1147.
    • (2013) Eur. J. Heart Fail. , vol.15 , Issue.10 , pp. 1138-1147
    • Ellis, K.L.1
  • 157
    • 84873661316 scopus 로고    scopus 로고
    • Functions of microRNAs in cardiovascular biology and disease
    • Hata, A., Functions of microRNAs in cardiovascular biology and disease. Annu. Rev. Physiol. 75 (2013), 69–93.
    • (2013) Annu. Rev. Physiol. , vol.75 , pp. 69-93
    • Hata, A.1
  • 158
    • 63649117394 scopus 로고    scopus 로고
    • Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy
    • Suckau, L., et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119:9 (2009), 1241–1252.
    • (2009) Circulation , vol.119 , Issue.9 , pp. 1241-1252
    • Suckau, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.