-
1
-
-
69249240312
-
American College of Cardiology/American Heart Association 2009 clinical guidelines for the diagnosis and management of heart failure in adults: update and clinical implications
-
Trupp, R.J., Abraham, W.T., American College of Cardiology/American Heart Association 2009 clinical guidelines for the diagnosis and management of heart failure in adults: update and clinical implications. Pol. Arch. Med. Wewn. 119:7–8 (2009), 436–438.
-
(2009)
Pol. Arch. Med. Wewn.
, vol.119
, Issue.7-8
, pp. 436-438
-
-
Trupp, R.J.1
Abraham, W.T.2
-
2
-
-
84990990458
-
-
2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol.
-
Yancy, C.W., et al., 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol., 2016.
-
(2016)
-
-
Yancy, C.W.1
-
3
-
-
41449086790
-
Cardiac plasticity
-
Hill, J.A., Olson, E.N., Cardiac plasticity. N. Engl. J. Med. 358:13 (2008), 1370–1380.
-
(2008)
N. Engl. J. Med.
, vol.358
, Issue.13
, pp. 1370-1380
-
-
Hill, J.A.1
Olson, E.N.2
-
4
-
-
84973375752
-
Epigenetics in heart failure phenotypes
-
Berezin, A., Epigenetics in heart failure phenotypes. BBA Clin. 6 (2016), 31–37.
-
(2016)
BBA Clin.
, vol.6
, pp. 31-37
-
-
Berezin, A.1
-
5
-
-
0034820506
-
More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure
-
Stewart, S., et al. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur. J. Heart Fail. 3:3 (2001), 315–322.
-
(2001)
Eur. J. Heart Fail.
, vol.3
, Issue.3
, pp. 315-322
-
-
Stewart, S.1
-
6
-
-
34250320026
-
Epidemiology of acute heart failure syndromes
-
Alla, F., Zannad, F., Filippatos, G., Epidemiology of acute heart failure syndromes. Heart Fail. Rev. 12:2 (2007), 91–95.
-
(2007)
Heart Fail. Rev.
, vol.12
, Issue.2
, pp. 91-95
-
-
Alla, F.1
Zannad, F.2
Filippatos, G.3
-
7
-
-
78650710691
-
Molecular pathways underlying cardiac remodeling during pathophysiological stimulation
-
Kehat, I., Molkentin, J.D., Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:25 (2010), 2727–2735.
-
(2010)
Circulation
, vol.122
, Issue.25
, pp. 2727-2735
-
-
Kehat, I.1
Molkentin, J.D.2
-
8
-
-
84888227537
-
Pathophysiology and etiology of heart failure
-
(vii)
-
Johnson, F.L., Pathophysiology and etiology of heart failure. Cardiol. Clin. 32:1 (2014), 9–19 (vii).
-
(2014)
Cardiol. Clin.
, vol.32
, Issue.1
, pp. 9-19
-
-
Johnson, F.L.1
-
9
-
-
38349169664
-
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
-
Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet. 9:2 (2008), 102–114.
-
(2008)
Nat. Rev. Genet.
, vol.9
, Issue.2
, pp. 102-114
-
-
Filipowicz, W.1
Bhattacharyya, S.N.2
Sonenberg, N.3
-
10
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature 489:7414 (2012), 57–74.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 57-74
-
-
Consortium, E.P.1
-
11
-
-
84865772716
-
Genomics: ENCODE explained
-
Ecker, J.R., et al. Genomics: ENCODE explained. Nature 489:7414 (2012), 52–55.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 52-55
-
-
Ecker, J.R.1
-
12
-
-
84865757142
-
Landscape of transcription in human cells
-
Djebali, S., et al. Landscape of transcription in human cells. Nature 489:7414 (2012), 101–108.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 101-108
-
-
Djebali, S.1
-
13
-
-
84865739425
-
Architecture of the human regulatory network derived from ENCODE data
-
Gerstein, M.B., et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489:7414 (2012), 91–100.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 91-100
-
-
Gerstein, M.B.1
-
14
-
-
84865708757
-
An expansive human regulatory lexicon encoded in transcription factor footprints
-
Neph, S., et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:7414 (2012), 83–90.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 83-90
-
-
Neph, S.1
-
15
-
-
84904985459
-
Regulation of microRNA biogenesis
-
Ha, M., Kim, V.N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:8 (2014), 509–524.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, Issue.8
, pp. 509-524
-
-
Ha, M.1
Kim, V.N.2
-
16
-
-
36749026906
-
Switching from repression to activation: microRNAs can up-regulate translation
-
Vasudevan, S., Tong, Y., Steitz, J.A., Switching from repression to activation: microRNAs can up-regulate translation. Science 318:5858 (2007), 1931–1934.
-
(2007)
Science
, vol.318
, Issue.5858
, pp. 1931-1934
-
-
Vasudevan, S.1
Tong, Y.2
Steitz, J.A.3
-
17
-
-
48749122914
-
Circulating microRNAs as stable blood-based markers for cancer detection
-
Mitchell, P.S., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105:30 (2008), 10513–10518.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.30
, pp. 10513-10518
-
-
Mitchell, P.S.1
-
18
-
-
53349177819
-
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases
-
Chen, X., et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:10 (2008), 997–1006.
-
(2008)
Cell Res.
, vol.18
, Issue.10
, pp. 997-1006
-
-
Chen, X.1
-
19
-
-
43449102192
-
Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma
-
Lawrie, C.H., et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141:5 (2008), 672–675.
-
(2008)
Br. J. Haematol.
, vol.141
, Issue.5
, pp. 672-675
-
-
Lawrie, C.H.1
-
20
-
-
84876116399
-
MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation
-
(1475e1-28)
-
Dawson, K., et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127:14 (2013), 1466–1475 (1475e1-28).
-
(2013)
Circulation
, vol.127
, Issue.14
, pp. 1466-1475
-
-
Dawson, K.1
-
21
-
-
84868609009
-
Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction
-
Eitel, I., et al. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am. Heart J. 164:5 (2012), 706–714.
-
(2012)
Am. Heart J.
, vol.164
, Issue.5
, pp. 706-714
-
-
Eitel, I.1
-
22
-
-
84894197596
-
Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure
-
Oka, T., et al. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114:3 (2014), 565–571.
-
(2014)
Circ. Res.
, vol.114
, Issue.3
, pp. 565-571
-
-
Oka, T.1
-
23
-
-
68649114571
-
AngiomiRs–key regulators of angiogenesis
-
Wang, S., Olson, E.N., AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19:3 (2009), 205–211.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, Issue.3
, pp. 205-211
-
-
Wang, S.1
Olson, E.N.2
-
24
-
-
77954697250
-
Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells
-
Doebele, C., et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115:23 (2010), 4944–4950.
-
(2010)
Blood
, vol.115
, Issue.23
, pp. 4944-4950
-
-
Doebele, C.1
-
25
-
-
84876565511
-
miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression
-
Ohyagi-Hara, C., et al. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression. Am. J. Pathol. 182:5 (2013), 1876–1889.
-
(2013)
Am. J. Pathol.
, vol.182
, Issue.5
, pp. 1876-1889
-
-
Ohyagi-Hara, C.1
-
26
-
-
67649998366
-
MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice
-
Bonauer, A., et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:5935 (2009), 1710–1713.
-
(2009)
Science
, vol.324
, Issue.5935
, pp. 1710-1713
-
-
Bonauer, A.1
-
27
-
-
84883654580
-
Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model
-
Hinkel, R., et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128:10 (2013), 1066–1075.
-
(2013)
Circulation
, vol.128
, Issue.10
, pp. 1066-1075
-
-
Hinkel, R.1
-
28
-
-
48549106378
-
The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
-
Wang, S., et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15:2 (2008), 261–271.
-
(2008)
Dev. Cell
, vol.15
, Issue.2
, pp. 261-271
-
-
Wang, S.1
-
29
-
-
84967223701
-
The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease
-
Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y.V., The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell. Cardiol. 97 (2016), 47–55.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.97
, pp. 47-55
-
-
Chistiakov, D.A.1
Orekhov, A.N.2
Bobryshev, Y.V.3
-
30
-
-
84871322435
-
Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity
-
Jakob, P., et al. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126:25 (2012), 2962–2975.
-
(2012)
Circulation
, vol.126
, Issue.25
, pp. 2962-2975
-
-
Jakob, P.1
-
31
-
-
48749130187
-
miR-126 regulates angiogenic signaling and vascular integrity
-
Fish, J.E., et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15:2 (2008), 272–284.
-
(2008)
Dev. Cell
, vol.15
, Issue.2
, pp. 272-284
-
-
Fish, J.E.1
-
32
-
-
34250165403
-
Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling
-
Taniguchi, K., et al. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol. Cell. Biol. 27:12 (2007), 4541–4550.
-
(2007)
Mol. Cell. Biol.
, vol.27
, Issue.12
, pp. 4541-4550
-
-
Taniguchi, K.1
-
33
-
-
84863981799
-
Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis
-
Silva ND, D.A. Jr., et al. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med. Sci. Sports Exerc. 44:8 (2012), 1453–1462.
-
(2012)
Med. Sci. Sports Exerc.
, vol.44
, Issue.8
, pp. 1453-1462
-
-
Silva ND, D.A.1
-
34
-
-
80051802344
-
MicroRNA-24 regulates vascularity after myocardial infarction
-
Fiedler, J., et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:6 (2011), 720–730.
-
(2011)
Circulation
, vol.124
, Issue.6
, pp. 720-730
-
-
Fiedler, J.1
-
35
-
-
84879686595
-
Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction
-
Meloni, M., et al. Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol. Ther. 21:7 (2013), 1390–1402.
-
(2013)
Mol. Ther.
, vol.21
, Issue.7
, pp. 1390-1402
-
-
Meloni, M.1
-
36
-
-
84928390077
-
MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis
-
Duan, Q., et al. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J. Cell. Physiol. 230:8 (2015), 1964–1973.
-
(2015)
J. Cell. Physiol.
, vol.230
, Issue.8
, pp. 1964-1973
-
-
Duan, Q.1
-
37
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
Boon, R.A., et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495:7439 (2013), 107–110.
-
(2013)
Nature
, vol.495
, Issue.7439
, pp. 107-110
-
-
Boon, R.A.1
-
38
-
-
77955417245
-
MicroRNA-34a regulation of endothelial senescence
-
Ito, T., Yagi, S., Yamakuchi, M., MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398:4 (2010), 735–740.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.398
, Issue.4
, pp. 735-740
-
-
Ito, T.1
Yagi, S.2
Yamakuchi, M.3
-
39
-
-
77953457652
-
MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
-
Zhao, T., Li, J., Chen, A.F., MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299:1 (2010), E110–E116.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
, Issue.1
, pp. E110-E116
-
-
Zhao, T.1
Li, J.2
Chen, A.F.3
-
40
-
-
84861623180
-
Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease
-
Xu, Q., et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J. Am. Coll. Cardiol. 59:23 (2012), 2107–2117.
-
(2012)
J. Am. Coll. Cardiol.
, vol.59
, Issue.23
, pp. 2107-2117
-
-
Xu, Q.1
-
41
-
-
84867903854
-
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
-
Bernardo, B.C., et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. U. S. A. 109:43 (2012), 17615–17620.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, Issue.43
, pp. 17615-17620
-
-
Bernardo, B.C.1
-
42
-
-
77957243894
-
MicroRNA-210 as a novel therapy for treatment of ischemic heart disease
-
Hu, S., et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:11 Suppl (2010), S124–S131.
-
(2010)
Circulation
, vol.122
, Issue.11
, pp. S124-S131
-
-
Hu, S.1
-
43
-
-
84872723386
-
MicroRNA 210 as a biomarker for congestive heart failure
-
Endo, K., et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol. Pharm. Bull. 36:1 (2013), 48–54.
-
(2013)
Biol. Pharm. Bull.
, vol.36
, Issue.1
, pp. 48-54
-
-
Endo, K.1
-
44
-
-
47049119934
-
MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3
-
Fasanaro, P., et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283:23 (2008), 15878–15883.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.23
, pp. 15878-15883
-
-
Fasanaro, P.1
-
45
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
-
Zhao, Y., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:2 (2007), 303–317.
-
(2007)
Cell
, vol.129
, Issue.2
, pp. 303-317
-
-
Zhao, Y.1
-
46
-
-
70349254444
-
Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
-
Rao, P.K., et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105:6 (2009), 585–594.
-
(2009)
Circ. Res.
, vol.105
, Issue.6
, pp. 585-594
-
-
Rao, P.K.1
-
47
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care, A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13:5 (2007), 613–618.
-
(2007)
Nat. Med.
, vol.13
, Issue.5
, pp. 613-618
-
-
Care, A.1
-
48
-
-
84877727903
-
Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction
-
Zhang, R., et al. Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. Int. J. Cardiol. 166:1 (2013), 259–260.
-
(2013)
Int. J. Cardiol.
, vol.166
, Issue.1
, pp. 259-260
-
-
Zhang, R.1
-
49
-
-
84874361869
-
Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction
-
Gidlof, O., et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord., 13, 2013, 12.
-
(2013)
BMC Cardiovasc. Disord.
, vol.13
, pp. 12
-
-
Gidlof, O.1
-
50
-
-
33847038668
-
MicroRNAs play an essential role in the development of cardiac hypertrophy
-
Sayed, D., et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100:3 (2007), 416–424.
-
(2007)
Circ. Res.
, vol.100
, Issue.3
, pp. 416-424
-
-
Sayed, D.1
-
51
-
-
64649094112
-
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
-
Ikeda, S., et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 29:8 (2009), 2193–2204.
-
(2009)
Mol. Cell. Biol.
, vol.29
, Issue.8
, pp. 2193-2204
-
-
Ikeda, S.1
-
52
-
-
73449086958
-
Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
-
Elia, L., et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120:23 (2009), 2377–2385.
-
(2009)
Circulation
, vol.120
, Issue.23
, pp. 2377-2385
-
-
Elia, L.1
-
53
-
-
84855171399
-
IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a
-
Hua, Y., Zhang, Y., Ren, J., IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J. Cell. Mol. Med. 16:1 (2012), 83–95.
-
(2012)
J. Cell. Mol. Med.
, vol.16
, Issue.1
, pp. 83-95
-
-
Hua, Y.1
Zhang, Y.2
Ren, J.3
-
54
-
-
77954895288
-
Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy
-
Li, Q., et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci. 123:Pt 14 (2010), 2444–2452.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 2444-2452
-
-
Li, Q.1
-
55
-
-
84880816481
-
Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling
-
Karakikes, I., et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc., 2(2), 2013, e000078.
-
(2013)
J. Am. Heart Assoc.
, vol.2
, Issue.2
, pp. e000078
-
-
Karakikes, I.1
-
56
-
-
84872038762
-
The circulating level of FABP3 is an indirect biomarker of microRNA-1
-
Varrone, F., et al. The circulating level of FABP3 is an indirect biomarker of microRNA-1. J. Am. Coll. Cardiol. 61:1 (2013), 88–95.
-
(2013)
J. Am. Coll. Cardiol.
, vol.61
, Issue.1
, pp. 88-95
-
-
Varrone, F.1
-
57
-
-
84956628573
-
GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy
-
He, M., et al. GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS One, 10(12), 2015, e0145112.
-
(2015)
PLoS One
, vol.10
, Issue.12
, pp. e0145112
-
-
He, M.1
-
58
-
-
84882771252
-
Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients
-
Villar, A.V., et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int. J. Cardiol. 167:6 (2013), 2875–2881.
-
(2013)
Int. J. Cardiol.
, vol.167
, Issue.6
, pp. 2875-2881
-
-
Villar, A.V.1
-
59
-
-
84878065323
-
Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery
-
Danowski, N., et al. Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology 125:2 (2013), 125–130.
-
(2013)
Cardiology
, vol.125
, Issue.2
, pp. 125-130
-
-
Danowski, N.1
-
60
-
-
77950463916
-
Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy
-
Dong, D.L., et al. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55:4 (2010), 946–952.
-
(2010)
Hypertension
, vol.55
, Issue.4
, pp. 946-952
-
-
Dong, D.L.1
-
61
-
-
84938882907
-
Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via type 1 angiotensin II receptor
-
Diniz, G.P., et al. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via type 1 angiotensin II receptor. Basic Res. Cardiol., 110(5), 2015, 49.
-
(2015)
Basic Res. Cardiol.
, vol.110
, Issue.5
, pp. 49
-
-
Diniz, G.P.1
-
62
-
-
75449100509
-
miR133a regulates cardiomyocyte hypertrophy in diabetes
-
Feng, B., et al. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab. Res. Rev. 26:1 (2010), 40–49.
-
(2010)
Diabetes Metab. Res. Rev.
, vol.26
, Issue.1
, pp. 40-49
-
-
Feng, B.1
-
63
-
-
84894577814
-
Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
-
Chen, S., et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. 18:3 (2014), 415–421.
-
(2014)
J. Cell. Mol. Med.
, vol.18
, Issue.3
, pp. 415-421
-
-
Chen, S.1
-
64
-
-
84865565944
-
MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes
-
Chavali, V., Tyagi, S.C., Mishra, P.K., MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem. Biophys. Res. Commun. 425:3 (2012), 668–672.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.425
, Issue.3
, pp. 668-672
-
-
Chavali, V.1
Tyagi, S.C.2
Mishra, P.K.3
-
65
-
-
6644220044
-
Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor
-
Zhang, X., et al. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280:4 (2001), H1782–H1792.
-
(2001)
Am. J. Physiol. Heart Circ. Physiol.
, vol.280
, Issue.4
, pp. H1782-H1792
-
-
Zhang, X.1
-
66
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen, J.F., et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:2 (2006), 228–233.
-
(2006)
Nat. Genet.
, vol.38
, Issue.2
, pp. 228-233
-
-
Chen, J.F.1
-
67
-
-
0028871928
-
Involvement of multiple cis elements in basal- and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element
-
Sprenkle, A.B., Murray, S.F., Glembotski, C.C., Involvement of multiple cis elements in basal- and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Circ. Res. 77:6 (1995), 1060–1069.
-
(1995)
Circ. Res.
, vol.77
, Issue.6
, pp. 1060-1069
-
-
Sprenkle, A.B.1
Murray, S.F.2
Glembotski, C.C.3
-
68
-
-
23644456010
-
SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy
-
Nelson, T.J., et al. SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J. Mol. Cell. Cardiol. 39:3 (2005), 479–489.
-
(2005)
J. Mol. Cell. Cardiol.
, vol.39
, Issue.3
, pp. 479-489
-
-
Nelson, T.J.1
-
69
-
-
84878294979
-
MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
-
Ganesan, J., et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:21 (2013), 2097–2106.
-
(2013)
Circulation
, vol.127
, Issue.21
, pp. 2097-2106
-
-
Ganesan, J.1
-
70
-
-
84876553780
-
A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling
-
Nagalingam, R.S., et al. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J. Biol. Chem. 288:16 (2013), 11216–11232.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.16
, pp. 11216-11232
-
-
Nagalingam, R.S.1
-
71
-
-
84929470100
-
miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways
-
Kim, J.O., et al. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One, 10(3), 2015, e0122509.
-
(2015)
PLoS One
, vol.10
, Issue.3
, pp. e0122509
-
-
Kim, J.O.1
-
72
-
-
84901057904
-
Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy
-
Seok, H.Y., et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 114:10 (2014), 1585–1595.
-
(2014)
Circ. Res.
, vol.114
, Issue.10
, pp. 1585-1595
-
-
Seok, H.Y.1
-
73
-
-
84884672200
-
Macrophage microRNA-155 promotes cardiac hypertrophy and failure
-
Heymans, S., et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:13 (2013), 1420–1432.
-
(2013)
Circulation
, vol.128
, Issue.13
, pp. 1420-1432
-
-
Heymans, S.1
-
74
-
-
84980340130
-
miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy
-
Yang, Y., et al. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp. Ther. Med. 12:3 (2016), 1556–1562.
-
(2016)
Exp. Ther. Med.
, vol.12
, Issue.3
, pp. 1556-1562
-
-
Yang, Y.1
-
75
-
-
84937716567
-
High expression of microRNA-208 is associated with cardiac hypertrophy via the negative regulation of the sex-determining region Y-box 6 protein
-
Huang, X., et al. High expression of microRNA-208 is associated with cardiac hypertrophy via the negative regulation of the sex-determining region Y-box 6 protein. Exp. Ther. Med. 10:3 (2015), 921–926.
-
(2015)
Exp. Ther. Med.
, vol.10
, Issue.3
, pp. 921-926
-
-
Huang, X.1
-
76
-
-
80052015441
-
Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133
-
Wang, H.R., et al. Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chem. Biol. 6:8 (2011), 845–856.
-
(2011)
ACS Chem. Biol.
, vol.6
, Issue.8
, pp. 845-856
-
-
Wang, H.R.1
-
77
-
-
70349202176
-
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
-
Callis, T.E., et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119:9 (2009), 2772–2786.
-
(2009)
J. Clin. Invest.
, vol.119
, Issue.9
, pp. 2772-2786
-
-
Callis, T.E.1
-
78
-
-
80053567152
-
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
-
Montgomery, R.L., et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:14 (2011), 1537–1547.
-
(2011)
Circulation
, vol.124
, Issue.14
, pp. 1537-1547
-
-
Montgomery, R.L.1
-
79
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar, A., et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun., 3, 2012, 1078.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1078
-
-
Ucar, A.1
-
80
-
-
84941271616
-
Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure
-
Mayer, S.C., et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ. Res. 117:7 (2015), 622–633.
-
(2015)
Circ. Res.
, vol.117
, Issue.7
, pp. 622-633
-
-
Mayer, S.C.1
-
81
-
-
78649843756
-
MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling
-
da Costa Martins, P.A., et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol. 12:12 (2010), 1220–1227.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.12
, pp. 1220-1227
-
-
da Costa Martins, P.A.1
-
82
-
-
84862959239
-
Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy
-
Xu, X.D., et al. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J. Cell. Physiol. 227:4 (2012), 1391–1398.
-
(2012)
J. Cell. Physiol.
, vol.227
, Issue.4
, pp. 1391-1398
-
-
Xu, X.D.1
-
83
-
-
84877583076
-
MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
-
Huang, Z.P., et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 112:9 (2013), 1234–1243.
-
(2013)
Circ. Res.
, vol.112
, Issue.9
, pp. 1234-1243
-
-
Huang, Z.P.1
-
84
-
-
67749106564
-
miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy
-
Lin, Z., et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 106:29 (2009), 12103–12108.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, Issue.29
, pp. 12103-12108
-
-
Lin, Z.1
-
85
-
-
84855296257
-
Cardiac hypertrophy is positively regulated by microRNA miR-23a
-
Wang, K., et al. Cardiac hypertrophy is positively regulated by microRNA miR-23a. J. Biol. Chem. 287:1 (2012), 589–599.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.1
, pp. 589-599
-
-
Wang, K.1
-
86
-
-
79955031839
-
Fibroblasts and myofibroblasts: what are we talking about?
-
Baum, J., Duffy, H.S., Fibroblasts and myofibroblasts: what are we talking about?. J. Cardiovasc. Pharmacol. 57:4 (2011), 376–379.
-
(2011)
J. Cardiovasc. Pharmacol.
, vol.57
, Issue.4
, pp. 376-379
-
-
Baum, J.1
Duffy, H.S.2
-
87
-
-
84887207559
-
Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c
-
Abonnenc, M., et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ. Res. 113:10 (2013), 1138–1147.
-
(2013)
Circ. Res.
, vol.113
, Issue.10
, pp. 1138-1147
-
-
Abonnenc, M.1
-
88
-
-
79953223738
-
Assessment of psychosocial risk factors is missing in the 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults
-
(author reply 1571)
-
Manzoni, G.M., Castelnuovo, G., Proietti, R., Assessment of psychosocial risk factors is missing in the 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults. J. Am. Coll. Cardiol. 57:14 (2011), 1569–1570 (author reply 1571).
-
(2011)
J. Am. Coll. Cardiol.
, vol.57
, Issue.14
, pp. 1569-1570
-
-
Manzoni, G.M.1
Castelnuovo, G.2
Proietti, R.3
-
89
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij, E., et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U. S. A. 105:35 (2008), 13027–13032.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.35
, pp. 13027-13032
-
-
van Rooij, E.1
-
90
-
-
84906268229
-
Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term
-
Romero, R., et al. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term. J. Matern. Fetal Neonatal Med. 27:14 (2014), 1397–1408.
-
(2014)
J. Matern. Fetal Neonatal Med.
, vol.27
, Issue.14
, pp. 1397-1408
-
-
Romero, R.1
-
91
-
-
84899982846
-
miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling
-
Zhang, Y., et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22:5 (2014), 974–985.
-
(2014)
Mol. Ther.
, vol.22
, Issue.5
, pp. 974-985
-
-
Zhang, Y.1
-
92
-
-
84863389824
-
Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts
-
Zhou, L., et al. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One, 7(3), 2012, e33766.
-
(2012)
PLoS One
, vol.7
, Issue.3
, pp. e33766
-
-
Zhou, L.1
-
93
-
-
84884546885
-
Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat
-
Zhu, J.N., et al. Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PLoS One, 8(9), 2013, e75557.
-
(2013)
PLoS One
, vol.8
, Issue.9
, pp. e75557
-
-
Zhu, J.N.1
-
94
-
-
57749121689
-
MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu, N., et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22:23 (2008), 3242–3254.
-
(2008)
Genes Dev.
, vol.22
, Issue.23
, pp. 3242-3254
-
-
Liu, N.1
-
95
-
-
74049096307
-
MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts
-
Matkovich, S.J., et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 106:1 (2010), 166–175.
-
(2010)
Circ. Res.
, vol.106
, Issue.1
, pp. 166-175
-
-
Matkovich, S.J.1
-
96
-
-
67651111989
-
Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines
-
Shan, H., et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83:3 (2009), 465–472.
-
(2009)
Cardiovasc. Res.
, vol.83
, Issue.3
, pp. 465-472
-
-
Shan, H.1
-
97
-
-
82155163832
-
MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension
-
Castoldi, G., et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol. 227:2 (2012), 850–856.
-
(2012)
J. Cell. Physiol.
, vol.227
, Issue.2
, pp. 850-856
-
-
Castoldi, G.1
-
98
-
-
84947744763
-
Regulation of connective tissue growth factor and cardiac fibrosis by an SRF/microRNA-133a axis
-
Angelini, A., et al. Regulation of connective tissue growth factor and cardiac fibrosis by an SRF/microRNA-133a axis. PLoS One, 10(10), 2015, e0139858.
-
(2015)
PLoS One
, vol.10
, Issue.10
, pp. e0139858
-
-
Angelini, A.1
-
99
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
-
(6p following 178)
-
Duisters, R.F., et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104:2 (2009), 170–178 (6p following 178).
-
(2009)
Circ. Res.
, vol.104
, Issue.2
, pp. 170-178
-
-
Duisters, R.F.1
-
100
-
-
79251641860
-
RISC RNA sequencing for context-specific identification of in vivo microRNA targets
-
Matkovich, S.J., et al. RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ. Res. 108:1 (2011), 18–26.
-
(2011)
Circ. Res.
, vol.108
, Issue.1
, pp. 18-26
-
-
Matkovich, S.J.1
-
101
-
-
84875513890
-
NF-kappaB mediated miR-26a regulation in cardiac fibrosis
-
Wei, C., et al. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J. Cell. Physiol. 228:7 (2013), 1433–1442.
-
(2013)
J. Cell. Physiol.
, vol.228
, Issue.7
, pp. 1433-1442
-
-
Wei, C.1
-
102
-
-
84924573864
-
Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling
-
Qi, X.Y., et al. Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. Circ. Res. 116:5 (2015), 836–845.
-
(2015)
Circ. Res.
, vol.116
, Issue.5
, pp. 836-845
-
-
Qi, X.Y.1
-
103
-
-
84867767699
-
Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation
-
Harada, M., et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126:17 (2012), 2051–2064.
-
(2012)
Circulation
, vol.126
, Issue.17
, pp. 2051-2064
-
-
Harada, M.1
-
104
-
-
84964842234
-
Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts
-
Zou, M., et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts. Sci. Rep., 6, 2016, 24747.
-
(2016)
Sci. Rep.
, vol.6
, pp. 24747
-
-
Zou, M.1
-
105
-
-
84865439215
-
MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
-
Wang, J., et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J. Cell. Mol. Med. 16:9 (2012), 2150–2160.
-
(2012)
J. Cell. Mol. Med.
, vol.16
, Issue.9
, pp. 2150-2160
-
-
Wang, J.1
-
106
-
-
84866552877
-
Mir-24 regulates junctophilin-2 expression in cardiomyocytes
-
Xu, M., et al. Mir-24 regulates junctophilin-2 expression in cardiomyocytes. Circ. Res. 111:7 (2012), 837–841.
-
(2012)
Circ. Res.
, vol.111
, Issue.7
, pp. 837-841
-
-
Xu, M.1
-
107
-
-
84865206803
-
MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway
-
Pan, Z., et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:7 (2012), 840–850.
-
(2012)
Circulation
, vol.126
, Issue.7
, pp. 840-850
-
-
Pan, Z.1
-
108
-
-
84921376351
-
MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts
-
Zhao, X., et al. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts. Cell. Physiol. Biochem. 35:1 (2015), 213–226.
-
(2015)
Cell. Physiol. Biochem.
, vol.35
, Issue.1
, pp. 213-226
-
-
Zhao, X.1
-
109
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
Thum, T., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:7224 (2008), 980–984.
-
(2008)
Nature
, vol.456
, Issue.7224
, pp. 980-984
-
-
Thum, T.1
-
110
-
-
84861993799
-
Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy
-
Yang, K.C., et al. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy. J. Mol. Cell. Cardiol. 53:1 (2012), 101–112.
-
(2012)
J. Mol. Cell. Cardiol.
, vol.53
, Issue.1
, pp. 101-112
-
-
Yang, K.C.1
-
111
-
-
84866558680
-
A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis
-
Liang, H., et al. A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44:12 (2012), 2152–2160.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, Issue.12
, pp. 2152-2160
-
-
Liang, H.1
-
112
-
-
84940172573
-
Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis
-
Lorenzen, J.M., et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur. Heart J. 36:32 (2015), 2184–2196.
-
(2015)
Eur. Heart J.
, vol.36
, Issue.32
, pp. 2184-2196
-
-
Lorenzen, J.M.1
-
113
-
-
84874157794
-
miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1
-
Bronnum, H., et al. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1. PLoS One, 8(2), 2013, e56280.
-
(2013)
PLoS One
, vol.8
, Issue.2
, pp. e56280
-
-
Bronnum, H.1
-
114
-
-
84871569496
-
Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure
-
Cardin, S., et al. Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ. Arrhythm. Electrophysiol. 5:5 (2012), 1027–1035.
-
(2012)
Circ. Arrhythm. Electrophysiol.
, vol.5
, Issue.5
, pp. 1027-1035
-
-
Cardin, S.1
-
115
-
-
84960402447
-
Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit
-
He, X., et al. Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels, 2016.
-
(2016)
Heart Vessels
-
-
He, X.1
-
116
-
-
78049432896
-
Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
-
Patrick, D.M., et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120:11 (2010), 3912–3916.
-
(2010)
J. Clin. Invest.
, vol.120
, Issue.11
, pp. 3912-3916
-
-
Patrick, D.M.1
-
117
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij, E., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U. S. A. 103:48 (2006), 18255–18260.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, Issue.48
, pp. 18255-18260
-
-
van Rooij, E.1
-
118
-
-
84913580883
-
The microRNA-15 family inhibits the TGFbeta-pathway in the heart
-
Tijsen, A.J., et al. The microRNA-15 family inhibits the TGFbeta-pathway in the heart. Cardiovasc. Res. 104:1 (2014), 61–71.
-
(2014)
Cardiovasc. Res.
, vol.104
, Issue.1
, pp. 61-71
-
-
Tijsen, A.J.1
-
119
-
-
84855350458
-
Inhibition of miR-15 protects against cardiac ischemic injury
-
Hullinger, T.G., et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110:1 (2012), 71–81.
-
(2012)
Circ. Res.
, vol.110
, Issue.1
, pp. 71-81
-
-
Hullinger, T.G.1
-
120
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
-
Porrello, E.R., et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U. S. A. 110:1 (2013), 187–192.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.1
, pp. 187-192
-
-
Porrello, E.R.1
-
121
-
-
50649111705
-
Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart
-
Luo, X., et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283:29 (2008), 20045–20052.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.29
, pp. 20045-20052
-
-
Luo, X.1
-
122
-
-
82755165053
-
MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex
-
Belevych, A.E., et al. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 6(12), 2011, e28324.
-
(2011)
PLoS One
, vol.6
, Issue.12
, pp. e28324
-
-
Belevych, A.E.1
-
123
-
-
84880776742
-
MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts
-
Curcio, A., et al. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One, 8(7), 2013, e70158.
-
(2013)
PLoS One
, vol.8
, Issue.7
, pp. e70158
-
-
Curcio, A.1
-
124
-
-
84894985306
-
The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy
-
Liu, M., et al. The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy. Biomaterials 35:11 (2014), 3697–3707.
-
(2014)
Biomaterials
, vol.35
, Issue.11
, pp. 3697-3707
-
-
Liu, M.1
-
125
-
-
61949226650
-
miR-1 overexpression enhances Ca(2 +) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2
-
Terentyev, D., et al. miR-1 overexpression enhances Ca(2 +) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104:4 (2009), 514–521.
-
(2009)
Circ. Res.
, vol.104
, Issue.4
, pp. 514-521
-
-
Terentyev, D.1
-
126
-
-
84929347068
-
Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload
-
Schiattarella, G.G., Hill, J.A., Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131:16 (2015), 1435–1447.
-
(2015)
Circulation
, vol.131
, Issue.16
, pp. 1435-1447
-
-
Schiattarella, G.G.1
Hill, J.A.2
-
127
-
-
84959374845
-
The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure
-
Briasoulis, A., et al. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail. Rev. 21:2 (2016), 169–176.
-
(2016)
Heart Fail. Rev.
, vol.21
, Issue.2
, pp. 169-176
-
-
Briasoulis, A.1
-
128
-
-
84939986310
-
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
-
Galluzzi, L., et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22:1 (2015), 58–73.
-
(2015)
Cell Death Differ.
, vol.22
, Issue.1
, pp. 58-73
-
-
Galluzzi, L.1
-
129
-
-
34250308322
-
Apoptosis: a review of programmed cell death
-
Elmore, S., Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:4 (2007), 495–516.
-
(2007)
Toxicol. Pathol.
, vol.35
, Issue.4
, pp. 495-516
-
-
Elmore, S.1
-
130
-
-
84907497918
-
beta-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression
-
Xu, C., et al. beta-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J. Mol. Cell. Cardiol. 75 (2014), 111–121.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.75
, pp. 111-121
-
-
Xu, C.1
-
131
-
-
84908542709
-
MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1
-
Volk, N., et al. MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J. Neurosci. 34:45 (2014), 15070–15082.
-
(2014)
J. Neurosci.
, vol.34
, Issue.45
, pp. 15070-15082
-
-
Volk, N.1
-
132
-
-
79952612217
-
Role of miR-1 and miR-133a in myocardial ischemic postconditioning
-
He, B., et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J. Biomed. Sci., 18, 2011, 22.
-
(2011)
J. Biomed. Sci.
, vol.18
, pp. 22
-
-
He, B.1
-
133
-
-
84893560910
-
NF-kappaB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress
-
Wei, C., et al. NF-kappaB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic. Res. 48:3 (2014), 282–291.
-
(2014)
Free Radic. Res.
, vol.48
, Issue.3
, pp. 282-291
-
-
Wei, C.1
-
134
-
-
67349106068
-
MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4
-
Cheng, Y., et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. 47:1 (2009), 5–14.
-
(2009)
J. Mol. Cell. Cardiol.
, vol.47
, Issue.1
, pp. 5-14
-
-
Cheng, Y.1
-
135
-
-
84899698561
-
MicroRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism
-
Yang, Q., Yang, K., Li, A., MicroRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol. Med. Rep. 9:6 (2014), 2213–2220.
-
(2014)
Mol. Med. Rep.
, vol.9
, Issue.6
, pp. 2213-2220
-
-
Yang, Q.1
Yang, K.2
Li, A.3
-
136
-
-
62349141343
-
MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
-
Roy, S., et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82:1 (2009), 21–29.
-
(2009)
Cardiovasc. Res.
, vol.82
, Issue.1
, pp. 21-29
-
-
Roy, S.1
-
137
-
-
59749095843
-
Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione
-
Viappiani, S., et al. Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem. Pharmacol. 77:5 (2009), 826–834.
-
(2009)
Biochem. Pharmacol.
, vol.77
, Issue.5
, pp. 826-834
-
-
Viappiani, S.1
-
138
-
-
85017659667
-
MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway
-
Huang, Z., et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J. Cell. Mol. Med., 2016.
-
(2016)
J. Cell. Mol. Med.
-
-
Huang, Z.1
-
139
-
-
85015666348
-
Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice
-
Huang, W., et al. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol. Ther. Nucleic Acids, 5, 2016, e296.
-
(2016)
Mol. Ther. Nucleic Acids
, vol.5
, pp. e296
-
-
Huang, W.1
-
140
-
-
84894084047
-
MicroRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2
-
Dong, S., et al. MicroRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 7:2 (2014), 565–574.
-
(2014)
Int. J. Clin. Exp. Pathol.
, vol.7
, Issue.2
, pp. 565-574
-
-
Dong, S.1
-
141
-
-
76749157966
-
miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway
-
Li, J., et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet., 6(1), 2010, e1000795.
-
(2010)
PLoS Genet.
, vol.6
, Issue.1
, pp. e1000795
-
-
Li, J.1
-
142
-
-
84957309633
-
Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis
-
Roca-Alonso, L., et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis., 6, 2015, e1754.
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1754
-
-
Roca-Alonso, L.1
-
143
-
-
84954305581
-
Up-regulation of miR-138 inhibits hypoxia-induced cardiomyocyte apoptosis via down-regulating lipocalin-2 expression
-
Xiong, H., et al. Up-regulation of miR-138 inhibits hypoxia-induced cardiomyocyte apoptosis via down-regulating lipocalin-2 expression. Exp. Biol. Med. (Maywood) 241:1 (2016), 25–30.
-
(2016)
Exp. Biol. Med. (Maywood)
, vol.241
, Issue.1
, pp. 25-30
-
-
Xiong, H.1
-
144
-
-
17644373073
-
Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades
-
Brancho, D., et al. Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol. Cell. Biol. 25:9 (2005), 3670–3681.
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.9
, pp. 3670-3681
-
-
Brancho, D.1
-
145
-
-
0036731701
-
Mixed-lineage kinase control of JNK and p38 MAPK pathways
-
Gallo, K.A., Johnson, G.L., Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat. Rev. Mol. Cell Biol. 3:9 (2002), 663–672.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, Issue.9
, pp. 663-672
-
-
Gallo, K.A.1
Johnson, G.L.2
-
146
-
-
84888827430
-
miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway
-
He, S., et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem. Biophys. Res. Commun. 441:4 (2013), 763–769.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.441
, Issue.4
, pp. 763-769
-
-
He, S.1
-
147
-
-
84959421788
-
Mechanical stretch inhibits microRNA499 via p53 to regulate calcineurin-A expression in rat cardiomyocytes
-
Chua, S.K., et al. Mechanical stretch inhibits microRNA499 via p53 to regulate calcineurin-A expression in rat cardiomyocytes. PLoS One, 11(2), 2016, e0148683.
-
(2016)
PLoS One
, vol.11
, Issue.2
, pp. e0148683
-
-
Chua, S.K.1
-
148
-
-
84940788564
-
MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
-
Wang, H., et al. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J. Cell. Mol. Med. 19:9 (2015), 2084–2097.
-
(2015)
J. Cell. Mol. Med.
, vol.19
, Issue.9
, pp. 2084-2097
-
-
Wang, H.1
-
149
-
-
84976271979
-
MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling
-
Zhu, R.Y., et al. MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling. In Vitro Cell. Dev. Biol. Anim., 2016.
-
(2016)
In Vitro Cell. Dev. Biol. Anim.
-
-
Zhu, R.Y.1
-
150
-
-
71249147300
-
Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?
-
Budas, G.R., Disatnik, M.H., Mochly-Rosen, D., Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?. Trends Cardiovasc. Med. 19:5 (2009), 158–164.
-
(2009)
Trends Cardiovasc. Med.
, vol.19
, Issue.5
, pp. 158-164
-
-
Budas, G.R.1
Disatnik, M.H.2
Mochly-Rosen, D.3
-
151
-
-
51749104191
-
Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart
-
Chen, C.H., et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:5895 (2008), 1493–1495.
-
(2008)
Science
, vol.321
, Issue.5895
, pp. 1493-1495
-
-
Chen, C.H.1
-
152
-
-
79954488111
-
Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde
-
Ma, H., et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32:8 (2011), 1025–1038.
-
(2011)
Eur. Heart J.
, vol.32
, Issue.8
, pp. 1025-1038
-
-
Ma, H.1
-
153
-
-
84942094054
-
miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes
-
Li, S.P., et al. miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes. Eur. Rev. Med. Pharmacol. Sci. 19:5 (2015), 752–758.
-
(2015)
Eur. Rev. Med. Pharmacol. Sci.
, vol.19
, Issue.5
, pp. 752-758
-
-
Li, S.P.1
-
154
-
-
79251590758
-
Assessment of plasma miRNAs in congestive heart failure
-
Fukushima, Y., et al. Assessment of plasma miRNAs in congestive heart failure. Circ. J. 75:2 (2011), 336–340.
-
(2011)
Circ. J.
, vol.75
, Issue.2
, pp. 336-340
-
-
Fukushima, Y.1
-
155
-
-
77950973372
-
MiR423-5p as a circulating biomarker for heart failure
-
Tijsen, A.J., et al. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 106:6 (2010), 1035–1039.
-
(2010)
Circ. Res.
, vol.106
, Issue.6
, pp. 1035-1039
-
-
Tijsen, A.J.1
-
156
-
-
84884862516
-
Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients
-
Ellis, K.L., et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail. 15:10 (2013), 1138–1147.
-
(2013)
Eur. J. Heart Fail.
, vol.15
, Issue.10
, pp. 1138-1147
-
-
Ellis, K.L.1
-
157
-
-
84873661316
-
Functions of microRNAs in cardiovascular biology and disease
-
Hata, A., Functions of microRNAs in cardiovascular biology and disease. Annu. Rev. Physiol. 75 (2013), 69–93.
-
(2013)
Annu. Rev. Physiol.
, vol.75
, pp. 69-93
-
-
Hata, A.1
-
158
-
-
63649117394
-
Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy
-
Suckau, L., et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119:9 (2009), 1241–1252.
-
(2009)
Circulation
, vol.119
, Issue.9
, pp. 1241-1252
-
-
Suckau, L.1
|