메뉴 건너뛰기




Volumn 38, Issue 1, 2017, Pages 39-52

Post-translational Control of Intracellular Pathogen Sensing Pathways

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTOR PROTEIN; CHEMOKINE; CYCLIC GMP AMP SYNTHASE; INTERFERON GAMMA INDUCIBLE PROTEIN 16; MITOCHONDRIAL ANTIVIRAL SIGNALING PROTEIN; MITOCHONDRIAL PROTEIN; PEPTIDES AND PROTEINS; POLYUBIQUITIN; RECEPTOR; RETINOIC ACID INDUCIBLE GENE I LIKE RECEPTOR; STIMULATOR OF INTERFERON GENE PROTEIN; SYNTHETASE; UBIQUITIN LIKE PROTEIN; UNCLASSIFIED DRUG; CYCLIC GUANOSINE MONOPHOSPHATE-ADENOSINE MONOPHOSPHATE; CYCLIC NUCLEOTIDE; IFI16 PROTEIN, HUMAN; NUCLEAR PROTEIN; PATTERN RECOGNITION RECEPTOR; PHOSPHOPROTEIN; RETINOIC ACID INDUCIBLE PROTEIN I;

EID: 85006778548     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2016.10.008     Document Type: Review
Times cited : (125)

References (92)
  • 1
    • 84878173821 scopus 로고    scopus 로고
    • Cytosolic sensing of viruses
    • 1 Goubau, D., et al. Cytosolic sensing of viruses. Immunity 38 (2013), 855–869.
    • (2013) Immunity , vol.38 , pp. 855-869
    • Goubau, D.1
  • 2
    • 84896958063 scopus 로고    scopus 로고
    • Innate immune sensing and signaling of cytosolic nucleic acids
    • 2 Wu, J., Chen, Z.J., Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32 (2014), 461–488.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 461-488
    • Wu, J.1    Chen, Z.J.2
  • 3
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • 3 Takeuchi, O., Akira, S., Pattern recognition receptors and inflammation. Cell 140 (2010), 805–820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 4
    • 84937763934 scopus 로고    scopus 로고
    • Innate immune recognition of DNA: a recent history
    • 4 Dempsey, A., Bowie, A.G., Innate immune recognition of DNA: a recent history. Virology 479-480 (2015), 146–152.
    • (2015) Virology , vol.479-480 , pp. 146-152
    • Dempsey, A.1    Bowie, A.G.2
  • 5
    • 84884157315 scopus 로고    scopus 로고
    • Master sensors of pathogenic RNA – RIG-I like receptors
    • 5 Schlee, M., Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology 218 (2013), 1322–1335.
    • (2013) Immunobiology , vol.218 , pp. 1322-1335
    • Schlee, M.1
  • 6
    • 84931091785 scopus 로고    scopus 로고
    • MAVS coordination of antiviral innate immunity
    • 6 Vazquez, C., Horner, S.M., MAVS coordination of antiviral innate immunity. J. Virol. 89 (2015), 6974–6977.
    • (2015) J. Virol. , vol.89 , pp. 6974-6977
    • Vazquez, C.1    Horner, S.M.2
  • 7
    • 84861181618 scopus 로고    scopus 로고
    • The mitochondrial targeting chaperone 14-3-3ɛ regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
    • 7 Liu, H.M., et al. The mitochondrial targeting chaperone 14-3-3ɛ regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11 (2012), 528–537.
    • (2012) Cell Host Microbe , vol.11 , pp. 528-537
    • Liu, H.M.1
  • 8
    • 53349178089 scopus 로고    scopus 로고
    • STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
    • 8 Ishikawa, H., Barber, G.N., STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455 (2008), 674–678.
    • (2008) Nature , vol.455 , pp. 674-678
    • Ishikawa, H.1    Barber, G.N.2
  • 9
    • 84873711885 scopus 로고    scopus 로고
    • Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
    • 9 Sun, L., et al. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339 (2013), 786–791.
    • (2013) Science , vol.339 , pp. 786-791
    • Sun, L.1
  • 10
    • 77958140656 scopus 로고    scopus 로고
    • IFI16 is an innate immune sensor for intracellular DNA
    • 10 Unterholzner, L., et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11 (2010), 997–1004.
    • (2010) Nat. Immunol. , vol.11 , pp. 997-1004
    • Unterholzner, L.1
  • 11
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • 11 Gack, M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446 (2007), 916–920.
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1
  • 12
    • 55949131282 scopus 로고    scopus 로고
    • Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction
    • 12 Gack, M.U., et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 16743–16748.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16743-16748
    • Gack, M.U.1
  • 13
    • 84899957213 scopus 로고    scopus 로고
    • Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
    • 13 Peisley, A., et al. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509 (2014), 110–114.
    • (2014) Nature , vol.509 , pp. 110-114
    • Peisley, A.1
  • 14
    • 84862994793 scopus 로고    scopus 로고
    • Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
    • 14 Jiang, X., et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36 (2012), 959–973.
    • (2012) Immunity , vol.36 , pp. 959-973
    • Jiang, X.1
  • 15
    • 84978807214 scopus 로고    scopus 로고
    • Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway
    • 15 Sanchez, J.G., et al. Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep. 16 (2016), 1315–1325.
    • (2016) Cell Rep. , vol.16 , pp. 1315-1325
    • Sanchez, J.G.1
  • 16
    • 84894322624 scopus 로고    scopus 로고
    • The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer
    • 16 Sanchez, J.G., et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 2494–2499.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 2494-2499
    • Sanchez, J.G.1
  • 17
    • 84872604349 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
    • 17 Wu, B., et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152 (2013), 276–289.
    • (2013) Cell , vol.152 , pp. 276-289
    • Wu, B.1
  • 18
    • 84922439623 scopus 로고    scopus 로고
    • MDA5-filament, dynamics and disease
    • 18 del Toro Duany, Y., et al. MDA5-filament, dynamics and disease. Curr. Opin. Virol. 12 (2015), 20–25.
    • (2015) Curr. Opin. Virol. , vol.12 , pp. 20-25
    • del Toro Duany, Y.1
  • 19
    • 77949422543 scopus 로고    scopus 로고
    • Phosphorylation-mediated negative regulation of RIG-I antiviral activity
    • 19 Gack, M.U., et al. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J. Virol. 84 (2010), 3220–3229.
    • (2010) J. Virol. , vol.84 , pp. 3220-3229
    • Gack, M.U.1
  • 20
    • 77953743809 scopus 로고    scopus 로고
    • Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production
    • 20 Nistal-Villan, E., et al. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J. Biol. Chem. 285 (2010), 20252–20261.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20252-20261
    • Nistal-Villan, E.1
  • 21
    • 84875542059 scopus 로고    scopus 로고
    • Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling
    • 21 Wies, E., et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38 (2013), 437–449.
    • (2013) Immunity , vol.38 , pp. 437-449
    • Wies, E.1
  • 22
    • 84857073450 scopus 로고    scopus 로고
    • Conventional protein kinase C-alpha (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction
    • 22 Maharaj, N.P., et al. Conventional protein kinase C-alpha (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction. J. Virol. 86 (2012), 1358–1371.
    • (2012) J. Virol. , vol.86 , pp. 1358-1371
    • Maharaj, N.P.1
  • 23
    • 78650665171 scopus 로고    scopus 로고
    • Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response
    • 23 Sun, Z., et al. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J. Virol. 85 (2011), 1036–1047.
    • (2011) J. Virol. , vol.85 , pp. 1036-1047
    • Sun, Z.1
  • 24
    • 84929273566 scopus 로고    scopus 로고
    • RIOK3-mediated phosphorylation of MDA5 interferes with its assembly and attenuates the innate immune response
    • 24 Takashima, K., et al. RIOK3-mediated phosphorylation of MDA5 interferes with its assembly and attenuates the innate immune response. Cell Rep. 11 (2015), 192–200.
    • (2015) Cell Rep. , vol.11 , pp. 192-200
    • Takashima, K.1
  • 25
    • 34250632829 scopus 로고    scopus 로고
    • Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125
    • 25 Arimoto, K-I., et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 7500–7505.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7500-7505
    • Arimoto, K.-I.1
  • 26
    • 84956572894 scopus 로고    scopus 로고
    • A non-canonical role of the p97 complex in RIG-I antiviral signaling
    • 26 Hao, Q., et al. A non-canonical role of the p97 complex in RIG-I antiviral signaling. EMBO J. 34 (2015), 2903–2920.
    • (2015) EMBO J. , vol.34 , pp. 2903-2920
    • Hao, Q.1
  • 27
    • 84983604685 scopus 로고    scopus 로고
    • RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation
    • 27 Wang, W., et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 9581–9586.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. 9581-9586
    • Wang, W.1
  • 28
    • 84875789033 scopus 로고    scopus 로고
    • USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I
    • 28 Wang, L., et al. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J. Virol. 87 (2013), 4507–4515.
    • (2013) J. Virol. , vol.87 , pp. 4507-4515
    • Wang, L.1
  • 29
    • 84892428607 scopus 로고    scopus 로고
    • The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25
    • 29 Pauli, E-K., et al. The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25. Sci. Signal., 7, 2014, ra3.
    • (2014) Sci. Signal. , vol.7 , pp. ra3
    • Pauli, E.-K.1
  • 30
    • 38349189787 scopus 로고    scopus 로고
    • Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation
    • 30 Kim, M.J., et al. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82 (2008), 1474–1483.
    • (2008) J. Virol. , vol.82 , pp. 1474-1483
    • Kim, M.J.1
  • 31
    • 79953162495 scopus 로고    scopus 로고
    • SUMOylation of RIG-I positively regulates the type I interferon signaling
    • 31 Mi, Z., et al. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 1 (2010), 275–283.
    • (2010) Protein Cell , vol.1 , pp. 275-283
    • Mi, Z.1
  • 32
    • 78650609675 scopus 로고    scopus 로고
    • MDA5 is SUMOylated by PIAS2β in the upregulation of type I interferon signaling
    • 32 Fu, J., et al. MDA5 is SUMOylated by PIAS2β in the upregulation of type I interferon signaling. Mol. Immunol. 48 (2011), 415–422.
    • (2011) Mol. Immunol. , vol.48 , pp. 415-422
    • Fu, J.1
  • 33
    • 84961784072 scopus 로고    scopus 로고
    • Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform
    • 33 Nguyen, N.T., et al. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci. Rep., 6, 2016, 23377.
    • (2016) Sci. Rep. , vol.6 , pp. 23377
    • Nguyen, N.T.1
  • 34
    • 84958662906 scopus 로고    scopus 로고
    • HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I
    • 34 Choi, S.J., et al. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J. 35 (2016), 429–442.
    • (2016) EMBO J. , vol.35 , pp. 429-442
    • Choi, S.J.1
  • 35
    • 84977620968 scopus 로고    scopus 로고
    • Regulation of retinoic acid inducible gene-I (RIG-I) activation by the histone deacetylase 6
    • 35 Liu, H.M., et al. Regulation of retinoic acid inducible gene-I (RIG-I) activation by the histone deacetylase 6. EBioMedicine 9 (2016), 195–206.
    • (2016) EBioMedicine , vol.9 , pp. 195-206
    • Liu, H.M.1
  • 36
    • 84961287871 scopus 로고    scopus 로고
    • Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production
    • 36 He, S., et al. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production. Mol. Cell 58 (2015), 134–146.
    • (2015) Mol. Cell , vol.58 , pp. 134-146
    • He, S.1
  • 37
    • 67649214539 scopus 로고    scopus 로고
    • Ubiquitin-regulated recruitment of IκB kinase epsilon to the MAVS interferon signaling adapter
    • 37 Paz, S., et al. Ubiquitin-regulated recruitment of IκB kinase epsilon to the MAVS interferon signaling adapter. Mol. Cell. Biol. 29 (2009), 3401–3412.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 3401-3412
    • Paz, S.1
  • 38
    • 84938809934 scopus 로고    scopus 로고
    • The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling
    • 38 Yoo, Y.S., et al. The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nat. Commun., 6, 2015, 7910.
    • (2015) Nat. Commun. , vol.6 , pp. 7910
    • Yoo, Y.S.1
  • 39
    • 84875468205 scopus 로고    scopus 로고
    • Novel function of Trim44 promotes an antiviral response by stabilizing VISA
    • 39 Yang, B., et al. Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J. Immunol. 190 (2013), 3613–3619.
    • (2013) J. Immunol. , vol.190 , pp. 3613-3619
    • Yang, B.1
  • 40
    • 84924778328 scopus 로고    scopus 로고
    • Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
    • 40 Liu, S., et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347, 2015, aaa2630.
    • (2015) Science , vol.347 , pp. aaa2630
    • Liu, S.1
  • 41
    • 71649084624 scopus 로고    scopus 로고
    • c-Abl tyrosine kinase interacts with MAVS and regulates innate immune response
    • 41 Song, T., et al. c-Abl tyrosine kinase interacts with MAVS and regulates innate immune response. FEBS Lett. 584 (2010), 33–38.
    • (2010) FEBS Lett. , vol.584 , pp. 33-38
    • Song, T.1
  • 42
    • 84864829089 scopus 로고    scopus 로고
    • Identification of tyrosine-9 of MAVS as critical target for inducible phosphorylation that determines activation
    • 42 Wen, C., et al. Identification of tyrosine-9 of MAVS as critical target for inducible phosphorylation that determines activation. PLoS One, 7, 2012, e41687.
    • (2012) PLoS One , vol.7 , pp. e41687
    • Wen, C.1
  • 43
    • 84944067911 scopus 로고    scopus 로고
    • Akt kinase-mediated checkpoint of cGAS DNA sensing pathway
    • 43 Seo, G.J., et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13 (2015), 440–449.
    • (2015) Cell Rep. , vol.13 , pp. 440-449
    • Seo, G.J.1
  • 44
    • 84961938118 scopus 로고    scopus 로고
    • Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity
    • 44 Xia, P., et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17 (2016), 369–378.
    • (2016) Nat. Immunol. , vol.17 , pp. 369-378
    • Xia, P.1
  • 45
    • 84862976171 scopus 로고    scopus 로고
    • Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16
    • 45 Li, T., et al. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 10558–10563.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10558-10563
    • Li, T.1
  • 46
    • 84938805575 scopus 로고    scopus 로고
    • Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-β responses
    • 46 Ansari, M.A., et al. Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-β responses. PLoS Pathog., 11, 2015, e1005019.
    • (2015) PLoS Pathog. , vol.11 , pp. e1005019
    • Ansari, M.A.1
  • 47
    • 78650214109 scopus 로고    scopus 로고
    • The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA
    • 47 Tsuchida, T., et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33 (2010), 765–776.
    • (2010) Immunity , vol.33 , pp. 765-776
    • Tsuchida, T.1
  • 48
    • 84865270570 scopus 로고    scopus 로고
    • TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination
    • 48 Zhang, J., et al. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287 (2012), 28646–28655.
    • (2012) J. Biol. Chem. , vol.287 , pp. 28646-28655
    • Zhang, J.1
  • 49
    • 84918565372 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING
    • 49 Wang, Q., et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41 (2014), 919–933.
    • (2014) Immunity , vol.41 , pp. 919-933
    • Wang, Q.1
  • 50
    • 62049084519 scopus 로고    scopus 로고
    • The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
    • 50 Zhong, B., et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30 (2009), 397–407.
    • (2009) Immunity , vol.30 , pp. 397-407
    • Zhong, B.1
  • 51
    • 84907587749 scopus 로고    scopus 로고
    • RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms
    • 51 Qin, Y., et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog., 10, 2014, e1004358.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004358
    • Qin, Y.1
  • 52
    • 84978699224 scopus 로고    scopus 로고
    • iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING
    • 52 Luo, W.W., et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat. Immunol. 17 (2016), 1057–1066.
    • (2016) Nat. Immunol. , vol.17 , pp. 1057-1066
    • Luo, W.W.1
  • 53
    • 84857937262 scopus 로고    scopus 로고
    • STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
    • 53 Tanaka, Y., Chen, Z.J., STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 5, 2012, ra20.
    • (2012) Sci. Signal. , vol.5 , pp. ra20
    • Tanaka, Y.1    Chen, Z.J.2
  • 54
    • 84886789626 scopus 로고    scopus 로고
    • Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling
    • 54 Konno, H., et al. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155 (2013), 688–698.
    • (2013) Cell , vol.155 , pp. 688-698
    • Konno, H.1
  • 55
    • 84926450646 scopus 로고    scopus 로고
    • PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation
    • 55 Li, Z., et al. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLoS Pathog., 11, 2015, e1004783.
    • (2015) PLoS Pathog. , vol.11 , pp. e1004783
    • Li, Z.1
  • 56
    • 84962110317 scopus 로고    scopus 로고
    • S6K–STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3
    • 56 Wang, F., et al. S6K–STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat. Immunol. 17 (2016), 514–522.
    • (2016) Nat. Immunol. , vol.17 , pp. 514-522
    • Wang, F.1
  • 57
    • 84954501960 scopus 로고    scopus 로고
    • Importance of nucleic acid recognition in inflammation and autoimmunity
    • 57 Barrat, F.J., et al. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67 (2016), 323–336.
    • (2016) Annu. Rev. Med. , vol.67 , pp. 323-336
    • Barrat, F.J.1
  • 58
    • 59449091450 scopus 로고    scopus 로고
    • Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection
    • 58 Oshiumi, H., et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J. Biol. Chem. 284 (2009), 807–817.
    • (2009) J. Biol. Chem. , vol.284 , pp. 807-817
    • Oshiumi, H.1
  • 59
    • 84883324602 scopus 로고    scopus 로고
    • A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses
    • 59 Oshiumi, H., et al. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog., 9, 2013, e1003533.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003533
    • Oshiumi, H.1
  • 60
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • 60 Oshiumi, H., et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8 (2010), 496–509.
    • (2010) Cell Host Microbe , vol.8 , pp. 496-509
    • Oshiumi, H.1
  • 61
    • 84899698672 scopus 로고    scopus 로고
    • TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination
    • 61 Yan, J., et al. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J. Mol. Cell Biol. 6 (2014), 154–163.
    • (2014) J. Mol. Cell Biol. , vol.6 , pp. 154-163
    • Yan, J.1
  • 62
    • 84898776236 scopus 로고    scopus 로고
    • Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
    • 62 Kuniyoshi, K., et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 5646–5651.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5646-5651
    • Kuniyoshi, K.1
  • 63
    • 79251550124 scopus 로고    scopus 로고
    • Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction
    • 63 Inn, K-S., et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 41 (2011), 354–365.
    • (2011) Mol. Cell , vol.41 , pp. 354-365
    • Inn, K.-S.1
  • 64
    • 84869748782 scopus 로고    scopus 로고
    • Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation
    • 64 Wang, Y., et al. Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. J. Immunol. 189 (2012), 5304–5313.
    • (2012) J. Immunol. , vol.189 , pp. 5304-5313
    • Wang, Y.1
  • 65
    • 84901260895 scopus 로고    scopus 로고
    • Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation
    • 65 Pan, Y., et al. Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation. J. Immunol. 192 (2014), 4758–4764.
    • (2014) J. Immunol. , vol.192 , pp. 4758-4764
    • Pan, Y.1
  • 66
    • 77953445772 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation
    • 66 Zhong, B., et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J. Immunol. 184 (2010), 6249–6255.
    • (2010) J. Immunol. , vol.184 , pp. 6249-6255
    • Zhong, B.1
  • 67
    • 70449726455 scopus 로고    scopus 로고
    • PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
    • 67 You, F., et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 10 (2009), 1300–1308.
    • (2009) Nat. Immunol. , vol.10 , pp. 1300-1308
    • You, F.1
  • 68
    • 84898040489 scopus 로고    scopus 로고
    • USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors
    • 68 Cui, J., et al. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res. 24 (2014), 400–416.
    • (2014) Cell Res. , vol.24 , pp. 400-416
    • Cui, J.1
  • 69
    • 51049106824 scopus 로고    scopus 로고
    • The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response
    • 69 Friedman, C.S., et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9 (2008), 930–936.
    • (2008) EMBO Rep. , vol.9 , pp. 930-936
    • Friedman, C.S.1
  • 70
    • 84973661450 scopus 로고    scopus 로고
    • Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD
    • 70 Lin, W., et al. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD. Nat. Commun., 7, 2016, 11848.
    • (2016) Nat. Commun. , vol.7 , pp. 11848
    • Lin, W.1
  • 71
    • 84893721948 scopus 로고    scopus 로고
    • USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase
    • 71 Fan, Y., et al. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J. Exp. Med. 211 (2014), 313–328.
    • (2014) J. Exp. Med. , vol.211 , pp. 313-328
    • Fan, Y.1
  • 72
    • 84961743030 scopus 로고    scopus 로고
    • Ubiquitin modifications
    • 72 Swatek, K.N., Komander, D., Ubiquitin modifications. Cell Res. 26 (2016), 399–422.
    • (2016) Cell Res. , vol.26 , pp. 399-422
    • Swatek, K.N.1    Komander, D.2
  • 73
    • 84971236561 scopus 로고    scopus 로고
    • The increasing complexity of the ubiquitin code
    • 73 Yau, R., Rape, M., The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18 (2016), 579–586.
    • (2016) Nat. Cell Biol. , vol.18 , pp. 579-586
    • Yau, R.1    Rape, M.2
  • 74
    • 84905036773 scopus 로고    scopus 로고
    • Linear ubiquitin chains: NF-κB signalling, cell death and beyond
    • 74 Iwai, K., et al. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15 (2014), 503–508.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 503-508
    • Iwai, K.1
  • 75
    • 84858124845 scopus 로고    scopus 로고
    • Generation and physiological roles of linear ubiquitin chains
    • 75 Walczak, H., et al. Generation and physiological roles of linear ubiquitin chains. BMC Biol., 10, 2012, 23.
    • (2012) BMC Biol. , vol.10 , pp. 23
    • Walczak, H.1
  • 76
    • 54949126675 scopus 로고    scopus 로고
    • TRIM family proteins and their emerging roles in innate immunity
    • 76 Ozato, K., et al. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8 (2008), 849–860.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 849-860
    • Ozato, K.1
  • 77
    • 84894515095 scopus 로고    scopus 로고
    • TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity
    • 77 Rajsbaum, R., et al. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J. Mol. Biol. 426 (2014), 1265–1284.
    • (2014) J. Mol. Biol. , vol.426 , pp. 1265-1284
    • Rajsbaum, R.1
  • 78
    • 84874256730 scopus 로고    scopus 로고
    • The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors
    • 78 Versteeg, G.A., et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38 (2013), 384–398.
    • (2013) Immunity , vol.38 , pp. 384-398
    • Versteeg, G.A.1
  • 80
    • 78650542340 scopus 로고    scopus 로고
    • Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)
    • 80 Mallery, D.L., et al. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 19985–19990.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 19985-19990
    • Mallery, D.L.1
  • 81
    • 84875458616 scopus 로고    scopus 로고
    • Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21
    • 81 McEwan, W.A., et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 14 (2013), 327–336.
    • (2013) Nat. Immunol. , vol.14 , pp. 327-336
    • McEwan, W.A.1
  • 82
    • 80054848955 scopus 로고    scopus 로고
    • TRIM proteins and cancer
    • 82 Hatakeyama, S., TRIM proteins and cancer. Nature Rev. Cancer 11 (2011), 792–804.
    • (2011) Nature Rev. Cancer , vol.11 , pp. 792-804
    • Hatakeyama, S.1
  • 83
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • 83 Kimura, T., et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210 (2015), 973–989.
    • (2015) J. Cell Biol. , vol.210 , pp. 973-989
    • Kimura, T.1
  • 84
    • 84967215091 scopus 로고    scopus 로고
    • Viral evasion of intracellular DNA and RNA sensing
    • 84 Chan, Y.K., Gack, M.U., Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14 (2016), 360–373.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 360-373
    • Chan, Y.K.1    Gack, M.U.2
  • 85
    • 65549164536 scopus 로고    scopus 로고
    • Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
    • 85 Gack, M.U., et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5 (2009), 439–449.
    • (2009) Cell Host Microbe , vol.5 , pp. 439-449
    • Gack, M.U.1
  • 86
    • 84870820660 scopus 로고    scopus 로고
    • Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein
    • 86 Rajsbaum, R., et al. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog, 8, 2012, e1003059.
    • (2012) PLoS Pathog , vol.8 , pp. e1003059
    • Rajsbaum, R.1
  • 87
    • 84943577112 scopus 로고    scopus 로고
    • Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness
    • 87 Manokaran, G., et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350 (2015), 217–221.
    • (2015) Science , vol.350 , pp. 217-221
    • Manokaran, G.1
  • 88
    • 84904213086 scopus 로고    scopus 로고
    • Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate immune escape of MDA5
    • 88 Davis, M.E., et al. Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate immune escape of MDA5. Cell Host Microbe 16 (2014), 19–30.
    • (2014) Cell Host Microbe , vol.16 , pp. 19-30
    • Davis, M.E.1
  • 89
    • 84904182245 scopus 로고    scopus 로고
    • Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases
    • 89 Mesman, A.W., et al. Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases. Cell Host Microbe 16 (2014), 31–42.
    • (2014) Cell Host Microbe , vol.16 , pp. 31-42
    • Mesman, A.W.1
  • 90
    • 84873320976 scopus 로고    scopus 로고
    • Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation
    • 90 Chen, W., et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 152 (2013), 467–478.
    • (2013) Cell , vol.152 , pp. 467-478
    • Chen, W.1
  • 91
    • 84921664520 scopus 로고    scopus 로고
    • SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome
    • 91 Shi, C.S., et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol. 193 (2014), 3080–3089.
    • (2014) J. Immunol. , vol.193 , pp. 3080-3089
    • Shi, C.S.1
  • 92
    • 84901355951 scopus 로고    scopus 로고
    • Innate nuclear sensor IFI16 translocates into the cytoplasm during the early stage of in vitro human cytomegalovirus infection and is entrapped in the egressing virions during the late stage
    • 92 Dell'Oste, V., et al. Innate nuclear sensor IFI16 translocates into the cytoplasm during the early stage of in vitro human cytomegalovirus infection and is entrapped in the egressing virions during the late stage. J. Virol. 88 (2014), 6970–6982.
    • (2014) J. Virol. , vol.88 , pp. 6970-6982
    • Dell'Oste, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.