-
1
-
-
0038523806
-
Identification of a novel coronavirus in patients with severe acute respiratory syndrome
-
Drosten, C., S. Günther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1967-1976.
-
(2003)
N. Engl. J. Med.
, vol.348
, pp. 1967-1976
-
-
Drosten, C.1
Günther, S.2
Preiser, W.3
Van Der-Werf, S.4
Brodt, H.R.5
Becker, S.6
Rabenau, H.7
Panning, M.8
Kolesnikova, L.9
Fouchier, R.A.10
-
2
-
-
0242717589
-
Coronavirus as a possible cause of severe acute respiratory syndrome
-
Peiris, J. S., S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, et al; SARS Study Group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319-1325.
-
(2003)
Lancet
, vol.361
, pp. 1319-1325
-
-
Peiris, J.S.1
Lai, S.T.2
Poon, L.L.3
Guan, Y.4
Yam, L.Y.5
Lim, W.6
Nicholls, J.7
Yee, W.K.8
Yan, W.W.9
Cheung, M.T.10
-
3
-
-
0038076030
-
A novel coronavirus associated with severe acute respiratory syndrome
-
Ksiazek, T. G., D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, et al; SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1953-1966.
-
(2003)
N. Engl. J. Med.
, vol.348
, pp. 1953-1966
-
-
Ksiazek, T.G.1
Erdman, D.2
Goldsmith, C.S.3
Zaki, S.R.4
Peret, T.5
Emery, S.6
Tong, S.7
Urbani, C.8
Comer, J.A.9
Lim, W.10
-
4
-
-
10944238037
-
Severe acute respiratory syndrome
-
Peiris, J. S., Y. Guan, and K. Y. Yuen. 2004. Severe acute respiratory syndrome. Nat. Med. 10: S88-S97.
-
(2004)
Nat. Med.
, vol.10
, pp. S88-S97
-
-
Peiris, J.S.1
Guan, Y.2
Yuen, K.Y.3
-
5
-
-
1642509113
-
SARS-beginning to understand a new virus
-
Stadler, K., V. Masignani, M. Eickmann, S. Becker, S. Abrignani, H. D. Klenk, and R. Rappuoli. 2003. SARS-beginning to understand a new virus. Nat. Rev. Microbiol. 1: 209-218.
-
(2003)
Nat. Rev. Microbiol.
, vol.1
, pp. 209-218
-
-
Stadler, K.1
Masignani, V.2
Eickmann, M.3
Becker, S.4
Abrignani, S.5
Klenk, H.D.6
Rappuoli, R.7
-
6
-
-
84884515347
-
From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses
-
Hilgenfeld, R., and M. Peiris. 2013. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res. 100: 286-295.
-
(2013)
Antiviral Res.
, vol.100
, pp. 286-295
-
-
Hilgenfeld, R.1
Peiris, M.2
-
7
-
-
84856840702
-
The SARS-like coronaviruses: The role of bats and evolutionary relationships with SARS coronavirus
-
Balboni, A., M. Battilani, and S. Prosperi. 2012. The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus. New Microbiol. 35: 1-16.
-
(2012)
New Microbiol.
, vol.35
, pp. 1-16
-
-
Balboni, A.1
Battilani, M.2
Prosperi, S.3
-
8
-
-
84868516062
-
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
-
Zaki, A. M., S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814-1820.
-
(2012)
N. Engl. J. Med.
, vol.367
, pp. 1814-1820
-
-
Zaki, A.M.1
Van Boheemen, S.2
Bestebroer, T.M.3
Osterhaus, A.D.4
Fouchier, R.A.5
-
9
-
-
84867010916
-
SARS veterans tackle coronavirus
-
Butler, D. 2012. SARS veterans tackle coronavirus. Nature 490: 20.
-
(2012)
Nature
, vol.490
, pp. 20
-
-
Butler, D.1
-
10
-
-
0037561920
-
Characterization of a novel coronavirus associated with severe acute respiratory syndrome
-
Rota, P. A., M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Peñaranda, B. Bankamp, K. Maher, M. H. Chen, et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399.
-
(2003)
Science
, vol.300
, pp. 1394-1399
-
-
Rota, P.A.1
Oberste, M.S.2
Monroe, S.S.3
Nix, W.A.4
Campagnoli, R.5
Icenogle, J.P.6
Peñaranda, S.7
Bankamp, B.8
Maher, K.9
Chen, M.H.10
-
11
-
-
0038823524
-
The genome sequence of the SARS-associated coronavirus
-
Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300: 1399-1404.
-
(2003)
Science
, vol.300
, pp. 1399-1404
-
-
Marra, M.A.1
Jones, S.J.2
Astell, C.R.3
Holt, R.A.4
Brooks-Wilson, A.5
Butterfield, Y.S.6
Khattra, J.7
Asano, J.K.8
Barber, S.A.9
Chan, S.Y.10
-
12
-
-
84870597541
-
The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis
-
McBride, R., and B. C. Fielding. 2012. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4: 2902-2923.
-
(2012)
Viruses
, vol.4
, pp. 2902-2923
-
-
McBride, R.1
Fielding, B.C.2
-
13
-
-
33745899357
-
The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus
-
Meier, C., A. R. Aricescu, R. Assenberg, R. T. Aplin, R. J. Gilbert, J. M. Grimes, and D. I. Stuart. 2006. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure 14: 1157-1165.
-
(2006)
Structure
, vol.14
, pp. 1157-1165
-
-
Meier, C.1
Aricescu, A.R.2
Assenberg, R.3
Aplin, R.T.4
Gilbert, R.J.5
Grimes, J.M.6
Stuart, D.I.7
-
14
-
-
20444503716
-
Antibody responses to individual proteins of SARS coronavirus and their neutralization activities
-
Qiu, M., Y. Shi, Z. Guo, Z. Chen, R. He, R. Chen, D. Zhou, E. Dai, X. Wang, B. Si, et al. 2005. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 7: 882-889.
-
(2005)
Microbes Infect
, vol.7
, pp. 882-889
-
-
Qiu, M.1
Shi, Y.2
Guo, Z.3
Chen, Z.4
He, R.5
Chen, R.6
Zhou, D.7
Dai, E.8
Wang, X.9
Si, B.10
-
15
-
-
27144482376
-
Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS)
-
Chan, W. S., C. Wu, S. C. Chow, T. Cheung, K. F. To, W. K. Leung, P. K. Chan, K. C. Lee, H. K. Ng, D. M. Au, and A. W. Lo. 2005. Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Mod. Pathol. 18: 1432-1439.
-
(2005)
Mod. Pathol.
, vol.18
, pp. 1432-1439
-
-
Chan, W.S.1
Wu, C.2
Chow, S.C.3
Cheung, T.4
To, K.F.5
Leung, W.K.6
Chan, P.K.7
Lee, K.C.8
Ng, H.K.9
Au, D.M.10
Lo, A.W.11
-
16
-
-
34249095867
-
Intracellular localization of the SARS coronavirus protein 9b: Evidence of active export from the nucleus
-
Moshynskyy, I., S. Viswanathan, N. Vasilenko, V. Lobanov, M. Petric, L. A. Babiuk, and A. N. Zakhartchouk. 2007. Intracellular localization of the SARS coronavirus protein 9b: evidence of active export from the nucleus. Virus Res. 127: 116-121.
-
(2007)
Virus Res.
, vol.127
, pp. 116-121
-
-
Moshynskyy, I.1
Viswanathan, S.2
Vasilenko, N.3
Lobanov, V.4
Petric, M.5
Babiuk, L.A.6
Zakhartchouk, A.N.7
-
17
-
-
79957611537
-
SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus
-
Sharma, K., S. Åkerström, A. K. Sharma, V. T. Chow, S. Teow, B. Abrenica, S. A. Booth, T. F. Booth, A. Mirazimi, and S. K. Lal. 2011. SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus. PLoS One 6: e19436.
-
(2011)
PLoS One
, vol.6
, pp. e19436
-
-
Sharma, K.1
Åkerström, S.2
Sharma, A.K.3
Chow, V.T.4
Teow, S.5
Abrenica, B.6
Booth, S.A.7
Booth, T.F.8
Mirazimi, A.9
Lal, S.K.10
-
18
-
-
13444260839
-
Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3
-
Spiegel, M., A. Pichlmair, L. Martínez-Sobrido, J. Cros, A. García-Sastre, O. Haller, and F. Weber. 2005. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79: 2079-2086.
-
(2005)
J. Virol.
, vol.79
, pp. 2079-2086
-
-
Spiegel, M.1
Pichlmair, A.2
Martínez-Sobrido, L.3
Cros, J.4
García-Sastre, A.5
Haller, O.6
Weber, F.7
-
19
-
-
3042634513
-
Role of interferons in the treatment of severe acute respiratory syndrome
-
Cinatl, J., Jr., M. Michaelis, M. Scholz, and H. W. Doerr. 2004. Role of interferons in the treatment of severe acute respiratory syndrome. Expert Opin. Biol. Ther. 4: 827-836.
-
(2004)
Expert Opin. Biol. Ther.
, vol.4
, pp. 827-836
-
-
Cinatl, J.1
Michaelis, M.2
Scholz, M.3
Doerr, H.W.4
-
20
-
-
34248672889
-
Antiviral signaling through pattern recognition receptors
-
Kawai, T., and S. Akira. 2007. Antiviral signaling through pattern recognition receptors. J. Biochem. 141: 137-145.
-
(2007)
J. Biochem.
, vol.141
, pp. 137-145
-
-
Kawai, T.1
Akira, S.2
-
21
-
-
84869223930
-
Human metapneumovirus M2-2 protein inhibits innate cellular signaling by targeting MAVS
-
Ren, J., Q. Wang, D. Kolli, D. J. Prusak, C. T. Tseng, Z. J. Chen, K. Li, T. G. Wood, and X. Bao. 2012. Human metapneumovirus M2-2 protein inhibits innate cellular signaling by targeting MAVS. J. Virol. 86: 13049-13061.
-
(2012)
J. Virol.
, vol.86
, pp. 13049-13061
-
-
Ren, J.1
Wang, Q.2
Kolli, D.3
Prusak, D.J.4
Tseng, C.T.5
Chen, Z.J.6
Li, K.7
Wood, T.G.8
Bao, X.9
-
22
-
-
84876002925
-
Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses
-
Wang, B., X. Xi, X. Lei, X. Zhang, S. Cui, J. Wang, Q. Jin, and Z. Zhao. 2013. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog. 9: e1003231.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003231
-
-
Wang, B.1
Xi, X.2
Lei, X.3
Zhang, X.4
Cui, S.5
Wang, J.6
Jin, Q.7
Zhao, Z.8
-
23
-
-
80052281413
-
Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
-
Horner, S. M., H. M. Liu, H. S. Park, J. Briley, and M. Gale, Jr. 2011. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. USA 108: 14590-14595.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14590-14595
-
-
Horner, S.M.1
Liu, H.M.2
Park, H.S.3
Briley, J.4
Gale, M.5
-
24
-
-
29144462494
-
Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity
-
Li, X. D., L. Sun, R. B. Seth, G. Pineda, and Z. J. Chen. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 102: 17717-17722.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 17717-17722
-
-
Li, X.D.1
Sun, L.2
Seth, R.B.3
Pineda, G.4
Chen, Z.J.5
-
25
-
-
77955496554
-
The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein
-
Wei, C., C. Ni, T. Song, Y. Liu, X. Yang, Z. Zheng, Y. Jia, Y. Yuan, K. Guan, Y. Xu, et al. 2010. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J. Immunol. 185: 1158-1168.
-
(2010)
J. Immunol.
, vol.185
, pp. 1158-1168
-
-
Wei, C.1
Ni, C.2
Song, T.3
Liu, Y.4
Yang, X.5
Zheng, Z.6
Jia, Y.7
Yuan, Y.8
Guan, K.9
Xu, Y.10
-
26
-
-
84881188408
-
Viral degradasome hijacks mitochondria to suppress innate immunity
-
Goswami, R., T. Majumdar, J. Dhar, S. Chattopadhyay, S. K. Bandyopadhyay, V. Verbovetskaya, G. C. Sen, and S. Barik. 2013. Viral degradasome hijacks mitochondria to suppress innate immunity. Cell Res. 23: 1025-1042.
-
(2013)
Cell Res.
, vol.23
, pp. 1025-1042
-
-
Goswami, R.1
Majumdar, T.2
Dhar, J.3
Chattopadhyay, S.4
Bandyopadhyay, S.K.5
Verbovetskaya, V.6
Sen, G.C.7
Barik, S.8
-
27
-
-
70449726455
-
PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
-
You, F., H. Sun, X. Zhou, W. Sun, S. Liang, Z. Zhai, and Z. Jiang. 2009. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 10: 1300-1308.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1300-1308
-
-
You, F.1
Sun, H.2
Zhou, X.3
Sun, W.4
Liang, S.5
Zhai, Z.6
Jiang, Z.7
-
28
-
-
77953858790
-
TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
-
Shi, C. S., and J. H. Kehrl. 2010. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3: ra42.
-
(2010)
Sci. Signal.
, vol.3
, pp. ra42
-
-
Shi, C.S.1
Kehrl, J.H.2
-
29
-
-
23744439116
-
Multiple organ infection and the pathogenesis of SARS
-
Gu, J., E. Gong, B. Zhang, J. Zheng, Z. Gao, Y. Zhong, W. Zou, J. Zhan, S. Wang, Z. Xie, et al. 2005. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202: 415-424.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 415-424
-
-
Gu, J.1
Gong, E.2
Zhang, B.3
Zheng, J.4
Gao, Z.5
Zhong, Y.6
Zou, W.7
Zhan, J.8
Wang, S.9
Xie, Z.10
-
30
-
-
19944428996
-
Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus
-
Farcas, G. A., S. M. Poutanen, T. Mazzulli, B. M. Willey, J. Butany, S. L. Asa, P. Faure, P. Akhavan, D. E. Low, and K. C. Kain. 2005. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J. Infect. Dis. 191: 193-197.
-
(2005)
J. Infect. Dis.
, vol.191
, pp. 193-197
-
-
Farcas, G.A.1
Poutanen, S.M.2
Mazzulli, T.3
Willey, B.M.4
Butany, J.5
Asa, S.L.6
Faure, P.7
Akhavan, P.8
Low, D.E.9
Kain, K.C.10
-
31
-
-
84875273810
-
New insights into the function and regulation of mitochondrial fission
-
Otera, H., N. Ishihara, and K. Mihara. 2013. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833: 1256-1268.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 1256-1268
-
-
Otera, H.1
Ishihara, N.2
Mihara, K.3
-
32
-
-
84887990870
-
Mechanisms of MAVS regulation at the mitochondrial membrane
-
Jacobs, J. L., and C. B. Coyne. 2013. Mechanisms of MAVS regulation at the mitochondrial membrane. J. Mol. Biol. 425: 5009-5019.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 5009-5019
-
-
Jacobs, J.L.1
Coyne, C.B.2
-
33
-
-
24144461689
-
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
-
Seth, R. B., L. Sun, C. K. Ea, and Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682.
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
Sun, L.2
Ea, C.K.3
Chen, Z.J.4
-
34
-
-
48249124967
-
Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane
-
Nakamura, N., and S. Hirose. 2008. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol. Biol. Cell 19: 1903-1911.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1903-1911
-
-
Nakamura, N.1
Hirose, S.2
-
35
-
-
84857195479
-
Activation of autophagy by inflammatory signals limits IL-1b production by targeting ubiquitinated inflammasomes for destruction
-
Shi, C. S., K. Shenderov, N. N. Huang, J. Kabat, M. Abu-Asab, K. A. Fitzgerald, A. Sher, and J. H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1b production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13: 255-263.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 255-263
-
-
Shi, C.S.1
Shenderov, K.2
Huang, N.N.3
Kabat, J.4
Abu-Asab, M.5
Fitzgerald, K.A.6
Sher, A.7
Kehrl, J.H.8
-
36
-
-
84871871991
-
Involvement of autophagy in coronavirus replication
-
Maier, H. J., and P. Britton. 2012. Involvement of autophagy in coronavirus replication. Viruses 4: 3440-3451.
-
(2012)
Viruses
, vol.4
, pp. 3440-3451
-
-
Maier, H.J.1
Britton, P.2
-
37
-
-
35348921764
-
The atg5 atg12 conjugate associates with innate antiviral immune responses
-
Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K. Q. Xin, K. J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104: 14050-14055.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 14050-14055
-
-
Jounai, N.1
Takeshita, F.2
Kobiyama, K.3
Sawano, A.4
Miyawaki, A.5
Xin, K.Q.6
Ishii, K.J.7
Kawai, T.8
Akira, S.9
Suzuki, K.10
Okuda, K.11
-
38
-
-
75949098312
-
Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway
-
Castanier, C., D. Garcin, A. Vazquez, and D. Arnoult. 2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11: 133-138.
-
(2010)
EMBO Rep.
, vol.11
, pp. 133-138
-
-
Castanier, C.1
Garcin, D.2
Vazquez, A.3
Arnoult, D.4
-
39
-
-
84875993938
-
Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy
-
Kim, S. J., G. H. Syed, and A. Siddiqui. 2013. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 9: e1003285.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003285
-
-
Kim, S.J.1
Syed, G.H.2
Siddiqui, A.3
-
40
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A. S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 108: 10190-10195.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
41
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes, L. C., G. Di Benedetto, and L. Scorrano. 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13: 589-598.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
42
-
-
79953231682
-
Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease
-
Wang, H., P. Song, L. Du, W. Tian, W. Yue, M. Liu, D. Li, B. Wang, Y. Zhu, C. Cao, et al. 2011. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem. 286: 11649-11658.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 11649-11658
-
-
Wang, H.1
Song, P.2
Du, L.3
Tian, W.4
Yue, W.5
Liu, M.6
Li, D.7
Wang, B.8
Zhu, Y.9
Cao, C.10
-
43
-
-
84881148000
-
Autophagy-mediated turnover of dynaminrelated protein 1
-
Purnell, P. R., and H. S. Fox. 2013. Autophagy-mediated turnover of dynaminrelated protein 1. BMC Neurosci. 14: 86.
-
(2013)
BMC Neurosci.
, vol.14
, pp. 86
-
-
Purnell, P.R.1
Fox, H.S.2
-
44
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle, R. J., and A. M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science 337: 1062-1065.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
Van Der-Bliek, A.M.2
-
45
-
-
73549097331
-
The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation
-
Nakhaei, P., T. Mesplede, M. Solis, Q. Sun, T. Zhao, L. Yang, T. H. Chuang, C. F. Ware, R. Lin, and J. Hiscott. 2009. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 5: e1000650.
-
(2009)
PLoS Pathog
, vol.5
, pp. e1000650
-
-
Nakhaei, P.1
Mesplede, T.2
Solis, M.3
Sun, Q.4
Zhao, T.5
Yang, L.6
Chuang, T.H.7
Ware, C.F.8
Lin, R.9
Hiscott, J.10
-
46
-
-
84895532348
-
Japanese encephalitis virus activates autophagy as a viral immune evasion strategy
-
Jin, R., W. Zhu, S. Cao, R. Chen, H. Jin, Y. Liu, S. Wang, W. Wang, and G. Xiao. 2013. Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One 8: e52909.
-
(2013)
PLoS One
, vol.8
, pp. e52909
-
-
Jin, R.1
Zhu, W.2
Cao, S.3
Chen, R.4
Jin, H.5
Liu, Y.6
Wang, S.7
Wang, W.8
Xiao, G.9
-
47
-
-
62449110463
-
Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
-
Tal, M. C., M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel, and A. Iwasaki. 2009. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. USA 106: 2770-2775.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 2770-2775
-
-
Tal, M.C.1
Sasai, M.2
Lee, H.K.3
Yordy, B.4
Shadel, G.S.5
Iwasaki, A.6
-
48
-
-
84876237736
-
The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
-
Subramanian, N., K. Natarajan, M. R. Clatworthy, Z. Wang, and R. N. Germain. 2013. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153: 348-361.
-
(2013)
Cell
, vol.153
, pp. 348-361
-
-
Subramanian, N.1
Natarajan, K.2
Clatworthy, M.R.3
Wang, Z.4
Germain, R.N.5
|