메뉴 건너뛰기




Volumn 37, Issue 10, 2016, Pages 668-679

Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation

Author keywords

Alzheimer's disease; choroid plexus; CNS immune surveillance; interferon; multiple sclerosis; neurodegenerative disease

Indexed keywords

BIODIVERSITY; BRAIN TISSUE; CENTRAL NERVOUS SYSTEM; CLINICAL FEATURE; HEALTH STATUS; HUMAN; IMMUNE RESPONSE; IMMUNOCOMPETENT CELL; IMMUNOTHERAPY; NERVOUS SYSTEM INFLAMMATION; NEUROIMMUNOLOGY; NEUROLOGIC DISEASE; NONHUMAN; PHENOTYPIC VARIATION; REVIEW; ALZHEIMER DISEASE; ANIMAL; BRAIN; DISEASE MODEL; EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS; IMMUNE SYSTEM; IMMUNOLOGY; IMMUNOMODULATION; METABOLISM; MOUSE; MULTIPLE SCLEROSIS; NEUROGENIC INFLAMMATION;

EID: 84994875763     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2016.08.001     Document Type: Review
Times cited : (188)

References (116)
  • 1
    • 84871509601 scopus 로고    scopus 로고
    • The resolution of inflammation
    • 1 Buckley, C.D., et al. The resolution of inflammation. Nat. Rev. Immunol. 13 (2013), 59–66.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 59-66
    • Buckley, C.D.1
  • 2
    • 77953483260 scopus 로고    scopus 로고
    • Age-related neuroinflammatory changes negatively impact on neuronal function
    • 2 Lynch, M.A., Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci., 1, 2010, 6.
    • (2010) Front. Aging Neurosci. , vol.1 , pp. 6
    • Lynch, M.A.1
  • 3
    • 84929921146 scopus 로고    scopus 로고
    • Immune attack: the role of inflammation in Alzheimer disease
    • 3 Heppner, F.L., et al. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16 (2015), 358–372.
    • (2015) Nat. Rev. Neurosci. , vol.16 , pp. 358-372
    • Heppner, F.L.1
  • 4
    • 33847613885 scopus 로고    scopus 로고
    • Inflammatory processes in Alzheimer's disease
    • 4 Heneka, M.T., O'Banion, M.K., Inflammatory processes in Alzheimer's disease. J. Neuroimmunol. 184 (2007), 69–91.
    • (2007) J. Neuroimmunol. , vol.184 , pp. 69-91
    • Heneka, M.T.1    O'Banion, M.K.2
  • 5
    • 72449204160 scopus 로고    scopus 로고
    • Does neuroinflammation fan the flame in neurodegenerative diseases?
    • 5 Frank-Cannon, T.C., et al. Does neuroinflammation fan the flame in neurodegenerative diseases?. Mol. Neurodegen. 4 (2009), 1–13.
    • (2009) Mol. Neurodegen. , vol.4 , pp. 1-13
    • Frank-Cannon, T.C.1
  • 6
    • 84940453103 scopus 로고    scopus 로고
    • Immunopathology of multiple sclerosis
    • 6 Dendrou, C.A., et al. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15 (2015), 545–558.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 545-558
    • Dendrou, C.A.1
  • 7
    • 77954865635 scopus 로고    scopus 로고
    • Systemic inflammatory cells fight off neurodegenerative disease
    • 7 Schwartz, M., Shechter, R., Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol. 6 (2010), 405–410.
    • (2010) Nat. Rev. Neurol. , vol.6 , pp. 405-410
    • Schwartz, M.1    Shechter, R.2
  • 8
    • 0031849511 scopus 로고    scopus 로고
    • Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats
    • 8 Rapalino, O., et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4 (1998), 814–821.
    • (1998) Nat. Med. , vol.4 , pp. 814-821
    • Rapalino, O.1
  • 9
    • 0033049143 scopus 로고    scopus 로고
    • Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy
    • 9 Moalem, G., et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5 (1999), 49–55.
    • (1999) Nat. Med. , vol.5 , pp. 49-55
    • Moalem, G.1
  • 10
    • 0035370214 scopus 로고    scopus 로고
    • Protective autoimmunity is a physiological response to CNS trauma
    • 10 Yoles, E., et al. Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21 (2001), 3740–3748.
    • (2001) J. Neurosci. , vol.21 , pp. 3740-3748
    • Yoles, E.1
  • 11
    • 33845628839 scopus 로고    scopus 로고
    • What is immune privilege (not)?
    • 11 Galea, I., et al. What is immune privilege (not)?. Trends Immunol. 28 (2007), 12–18.
    • (2007) Trends Immunol. , vol.28 , pp. 12-18
    • Galea, I.1
  • 12
    • 84942518278 scopus 로고    scopus 로고
    • Revisiting the mechanisms of CNS immune privilege
    • 12 Louveau, A., et al. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36 (2015), 569–577.
    • (2015) Trends Immunol. , vol.36 , pp. 569-577
    • Louveau, A.1
  • 13
    • 77950013567 scopus 로고    scopus 로고
    • Protective autoimmunity functions by intracranial immunosurveillance to support the mind: the missing link between health and disease
    • 13 Schwartz, M., Shechter, R., Protective autoimmunity functions by intracranial immunosurveillance to support the mind: the missing link between health and disease. Mol. Psychiatry 15 (2010), 342–354.
    • (2010) Mol. Psychiatry , vol.15 , pp. 342-354
    • Schwartz, M.1    Shechter, R.2
  • 14
    • 84866391516 scopus 로고    scopus 로고
    • Pro-cognitive properties of T cells
    • 14 Kipnis, J., et al. Pro-cognitive properties of T cells. Nat. Rev. Immunol. 12 (2012), 663–669.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 663-669
    • Kipnis, J.1
  • 15
    • 84894646177 scopus 로고    scopus 로고
    • The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus
    • 15 Schwartz, M., Baruch, K., The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 33 (2014), 7–22.
    • (2014) EMBO J. , vol.33 , pp. 7-22
    • Schwartz, M.1    Baruch, K.2
  • 16
    • 77956536780 scopus 로고    scopus 로고
    • T cells in multiple sclerosis and experimental autoimmune encephalomyelitis
    • 16 Fletcher, J.M., et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162 (2010), 1–11.
    • (2010) Clin. Exp. Immunol. , vol.162 , pp. 1-11
    • Fletcher, J.M.1
  • 17
    • 1842732224 scopus 로고    scopus 로고
    • Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis
    • 17 Viglietta, V., et al. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199 (2004), 971–979.
    • (2004) J. Exp. Med. , vol.199 , pp. 971-979
    • Viglietta, V.1
  • 18
    • 84862746826 scopus 로고    scopus 로고
    • Immune checkpoints in central nervous system autoimmunity
    • 18 Joller, N., et al. Immune checkpoints in central nervous system autoimmunity. Immunol. Rev. 248 (2012), 122–139.
    • (2012) Immunol. Rev. , vol.248 , pp. 122-139
    • Joller, N.1
  • 19
    • 84899418705 scopus 로고    scopus 로고
    • Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease
    • 19 Prinz, M., Priller, J., Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15 (2014), 300–312.
    • (2014) Nat. Rev. Neurosci. , vol.15 , pp. 300-312
    • Prinz, M.1    Priller, J.2
  • 20
    • 84874506801 scopus 로고    scopus 로고
    • Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis
    • 20 Pierrot-Deseilligny, C., Souberbielle, J.C., Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Ther. Adv. Neurol. Disord. 6 (2013), 81–116.
    • (2013) Ther. Adv. Neurol. Disord. , vol.6 , pp. 81-116
    • Pierrot-Deseilligny, C.1    Souberbielle, J.C.2
  • 21
    • 85014215234 scopus 로고    scopus 로고
    • Crosstalk between vitamin B and immunity
    • 21 Spinas, E., et al. Crosstalk between vitamin B and immunity. J. Biol. Regul. Homeost. Agents 29 (2015), 283–288.
    • (2015) J. Biol. Regul. Homeost. Agents , vol.29 , pp. 283-288
    • Spinas, E.1
  • 22
    • 58849143335 scopus 로고    scopus 로고
    • Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease
    • 22 Huang, H-C., Jiang, Z-F., Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease. J. Alzheimers Dis. 16 (2009), 15–27.
    • (2009) J. Alzheimers Dis. , vol.16 , pp. 15-27
    • Huang, H.-C.1    Jiang, Z.-F.2
  • 23
    • 84939000054 scopus 로고    scopus 로고
    • Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin
    • 23 Zenaro, E., et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21 (2015), 880–886.
    • (2015) Nat. Med. , vol.21 , pp. 880-886
    • Zenaro, E.1
  • 24
    • 84924673435 scopus 로고    scopus 로고
    • Migration of blood cells to β-amyloid plaques in Alzheimer's disease
    • 24 Hohsfield, L.A., Humpel, C., Migration of blood cells to β-amyloid plaques in Alzheimer's disease. Exp. Gerontol. 65 (2015), 8–15.
    • (2015) Exp. Gerontol. , vol.65 , pp. 8-15
    • Hohsfield, L.A.1    Humpel, C.2
  • 25
    • 84939490054 scopus 로고    scopus 로고
    • Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology
    • 25 Baruch, K., et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat. Commun., 6, 2015, 7967.
    • (2015) Nat. Commun. , vol.6 , pp. 7967
    • Baruch, K.1
  • 26
    • 84957431867 scopus 로고    scopus 로고
    • PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease
    • 26 Baruch, K., et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nat. Med. 22 (2016), 135–137.
    • (2016) Nat. Med. , vol.22 , pp. 135-137
    • Baruch, K.1
  • 27
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • 27 Ginhoux, F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330 (2010), 841–845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1
  • 28
    • 84976883162 scopus 로고    scopus 로고
    • Microglia development follows a stepwise program to regulate brain homeostasis
    • 28 Matcovitch-Natan, O., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 23.
    • (2016) Science , pp. 23
    • Matcovitch-Natan, O.1
  • 29
    • 84960388165 scopus 로고    scopus 로고
    • Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling
    • 29 Crotti, A., Ransohoff, R.M., Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44 (2016), 505–515.
    • (2016) Immunity , vol.44 , pp. 505-515
    • Crotti, A.1    Ransohoff, R.M.2
  • 30
    • 84893745524 scopus 로고    scopus 로고
    • Identification of a unique TGF-[beta]-dependent molecular and functional signature in microglia
    • 30 Butovsky, O., et al. Identification of a unique TGF-[beta]-dependent molecular and functional signature in microglia. Nat. Neurosci. 17 (2014), 131–143.
    • (2014) Nat. Neurosci. , vol.17 , pp. 131-143
    • Butovsky, O.1
  • 31
    • 84955557892 scopus 로고    scopus 로고
    • Safflower yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells
    • 31 Yang, X.W., et al. Safflower yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells. Int. J. Immunopathol. Pharmacol. 29 (2016), 54–64.
    • (2016) Int. J. Immunopathol. Pharmacol. , vol.29 , pp. 54-64
    • Yang, X.W.1
  • 32
    • 84994809320 scopus 로고    scopus 로고
    • Role of TNF in mast cell neuroinflammation and pain.
    • BIOLIFE SAS VIA S STEFANO 39 BIS, 64029 SILVA MARINA (TE) ITALY
    • 32 Gu, Y., et al. Role of TNF in mast cell neuroinflammation and pain. 2015, BIOLIFE SAS VIA S STEFANO 39 BIS, 64029 SILVA MARINA (TE), ITALY.
    • (2015)
    • Gu, Y.1
  • 33
    • 77951879282 scopus 로고    scopus 로고
    • Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis
    • 33 Murphy, Á.C., et al. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24 (2010), 641–651.
    • (2010) Brain Behav. Immun. , vol.24 , pp. 641-651
    • Murphy, Á.C.1
  • 34
    • 84902537095 scopus 로고    scopus 로고
    • Phagocytosis of microglia in the central nervous system diseases
    • 34 Fu, R., et al. Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol. 49 (2014), 1422–1434.
    • (2014) Mol. Neurobiol. , vol.49 , pp. 1422-1434
    • Fu, R.1
  • 35
    • 84923253406 scopus 로고    scopus 로고
    • Microglia in action: how aging and injury can change the brain's guardians
    • 35 Lourbopoulos, A., et al. Microglia in action: how aging and injury can change the brain's guardians. Front. Cell. Neurosci., 9, 2015, 54.
    • (2015) Front. Cell. Neurosci. , vol.9 , pp. 54
    • Lourbopoulos, A.1
  • 36
    • 84886953273 scopus 로고    scopus 로고
    • A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation
    • 36 Goldmann, T., et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16 (2013), 1618–1626.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1618-1626
    • Goldmann, T.1
  • 37
    • 84905116959 scopus 로고    scopus 로고
    • Differential roles of microglia and monocytes in the inflamed central nervous system
    • 37 Yamasaki, R., et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211 (2014), 1533–1549.
    • (2014) J. Exp. Med. , vol.211 , pp. 1533-1549
    • Yamasaki, R.1
  • 38
    • 43049177588 scopus 로고    scopus 로고
    • Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system
    • 38 Prinz, M., et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28 (2008), 675–686.
    • (2008) Immunity , vol.28 , pp. 675-686
    • Prinz, M.1
  • 39
    • 68049143269 scopus 로고    scopus 로고
    • Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice
    • 39 Shechter, R., et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med., 6, 2009, e1000113.
    • (2009) PLoS Med. , vol.6 , pp. e1000113
    • Shechter, R.1
  • 40
    • 84858259145 scopus 로고    scopus 로고
    • Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where
    • 40 Lai, A.Y., McLaurin, J., Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 7 (2012), 165–176.
    • (2012) Future Neurol. , vol.7 , pp. 165-176
    • Lai, A.Y.1    McLaurin, J.2
  • 41
    • 84906313533 scopus 로고    scopus 로고
    • In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed
    • 41 Vainchtein, I.D., et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia 62 (2014), 1724–1735.
    • (2014) Glia , vol.62 , pp. 1724-1735
    • Vainchtein, I.D.1
  • 42
    • 84946564936 scopus 로고    scopus 로고
    • Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis
    • 42 Arellano, G., et al. Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front. Immunol., 6, 2015, 492.
    • (2015) Front. Immunol. , vol.6 , pp. 492
    • Arellano, G.1
  • 43
    • 84918825145 scopus 로고    scopus 로고
    • Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7 - dependent manner
    • 43 Cohen, M., et al. Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7 - dependent manner. EMBO J. 33 (2014), 2906–2921.
    • (2014) EMBO J. , vol.33 , pp. 2906-2921
    • Cohen, M.1
  • 44
    • 84924737031 scopus 로고    scopus 로고
    • TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models
    • 44 Jay, T.R., et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212 (2015), 287–295.
    • (2015) J. Exp. Med. , vol.212 , pp. 287-295
    • Jay, T.R.1
  • 45
    • 84925464993 scopus 로고    scopus 로고
    • TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
    • 45 Wang, Y., et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160 (2015), 1061–1071.
    • (2015) Cell , vol.160 , pp. 1061-1071
    • Wang, Y.1
  • 46
    • 84959118543 scopus 로고    scopus 로고
    • TREM2 variants: new keys to decipher Alzheimer disease pathogenesis
    • 46 Colonna, M., Wang, Y., TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 17 (2016), 201–207.
    • (2016) Nat. Rev. Neurosci. , vol.17 , pp. 201-207
    • Colonna, M.1    Wang, Y.2
  • 47
    • 79961234274 scopus 로고    scopus 로고
    • Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease
    • 47 Mildner, A., et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31 (2011), 11159–11171.
    • (2011) J. Neurosci. , vol.31 , pp. 11159-11171
    • Mildner, A.1
  • 48
    • 84968764145 scopus 로고    scopus 로고
    • TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy
    • 48 Yuan, P., et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90 (2016), 724–739.
    • (2016) Neuron , vol.90 , pp. 724-739
    • Yuan, P.1
  • 49
    • 84969286765 scopus 로고    scopus 로고
    • TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques
    • 49 Wang, Y., et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213 (2016), 667–675.
    • (2016) J. Exp. Med. , vol.213 , pp. 667-675
    • Wang, Y.1
  • 50
    • 84885356418 scopus 로고    scopus 로고
    • A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease
    • 50 Naert, G., Rivest, S., A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease. J. Mol. Cell Biol. 5 (2013), 284–293.
    • (2013) J. Mol. Cell Biol. , vol.5 , pp. 284-293
    • Naert, G.1    Rivest, S.2
  • 51
    • 44949173099 scopus 로고    scopus 로고
    • Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology
    • 51 Town, T., et al. Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14 (2008), 681–687.
    • (2008) Nat. Med. , vol.14 , pp. 681-687
    • Town, T.1
  • 52
    • 59049104731 scopus 로고    scopus 로고
    • Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy
    • 52 Hawkes, C.A., McLaurin, J., Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. 106 (2009), 1261–1266.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 1261-1266
    • Hawkes, C.A.1    McLaurin, J.2
  • 53
    • 34147115541 scopus 로고    scopus 로고
    • Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease
    • 53 El Khoury, J., et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13 (2007), 432–438.
    • (2007) Nat. Med. , vol.13 , pp. 432-438
    • El Khoury, J.1
  • 54
    • 84939525561 scopus 로고    scopus 로고
    • Therapeutic effects of glatiramer acetate and grafted CD115(+) monocytes in a mouse model of Alzheimer's disease
    • 54 Koronyo, Y., et al. Therapeutic effects of glatiramer acetate and grafted CD115(+) monocytes in a mouse model of Alzheimer's disease. Brain 138:Pt 8 (2015), 2399–2422.
    • (2015) Brain , vol.138 , pp. 2399-2422
    • Koronyo, Y.1
  • 55
    • 70450215332 scopus 로고    scopus 로고
    • Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9
    • 55 Koronyo-Hamaoui, M., et al. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J. Neurochem. 111 (2009), 1409–1424.
    • (2009) J. Neurochem. , vol.111 , pp. 1409-1424
    • Koronyo-Hamaoui, M.1
  • 56
    • 32344440522 scopus 로고    scopus 로고
    • Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease
    • 56 Simard, A.R., et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49 (2006), 489–502.
    • (2006) Neuron , vol.49 , pp. 489-502
    • Simard, A.R.1
  • 57
    • 84896692474 scopus 로고    scopus 로고
    • Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior
    • 57 Zhan, Y., et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17 (2014), 400–406.
    • (2014) Nat. Neurosci. , vol.17 , pp. 400-406
    • Zhan, Y.1
  • 58
    • 80053390173 scopus 로고    scopus 로고
    • Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice a role for toll-like receptor activation
    • 58 Costello, D.A., et al. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice a role for toll-like receptor activation. J. Biol. Chem. 286 (2011), 34722–34732.
    • (2011) J. Biol. Chem. , vol.286 , pp. 34722-34732
    • Costello, D.A.1
  • 59
    • 84922064574 scopus 로고    scopus 로고
    • IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior
    • 59 Chakrabarty, P., et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85 (2015), 519–533.
    • (2015) Neuron , vol.85 , pp. 519-533
    • Chakrabarty, P.1
  • 60
    • 84922026428 scopus 로고    scopus 로고
    • Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology
    • 60 Guillot-Sestier, M-V., et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85 (2015), 534–548.
    • (2015) Neuron , vol.85 , pp. 534-548
    • Guillot-Sestier, M.-V.1
  • 61
    • 78651473243 scopus 로고    scopus 로고
    • Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages
    • 61 London, A., et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208 (2011), 23–39.
    • (2011) J. Exp. Med. , vol.208 , pp. 23-39
    • London, A.1
  • 62
    • 84904994770 scopus 로고    scopus 로고
    • CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles
    • 62 Raposo, C., et al. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J. Neurosci. 34 (2014), 10141–10155.
    • (2014) J. Neurosci. , vol.34 , pp. 10141-10155
    • Raposo, C.1
  • 63
    • 84928586698 scopus 로고    scopus 로고
    • Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells
    • 63 Endo, F., et al. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep. 11 (2015), 592–604.
    • (2015) Cell Rep. , vol.11 , pp. 592-604
    • Endo, F.1
  • 64
    • 84929340491 scopus 로고    scopus 로고
    • Immunization with a myelin-derived antigen activates the brain's choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS
    • 64 Kunis, G., et al. Immunization with a myelin-derived antigen activates the brain's choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. J. Neurosci. 35 (2015), 6381–6393.
    • (2015) J. Neurosci. , vol.35 , pp. 6381-6393
    • Kunis, G.1
  • 65
    • 84868535759 scopus 로고    scopus 로고
    • Progressive multiple sclerosis: pathology and pathogenesis
    • 65 Lassmann, H., et al. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8 (2012), 647–656.
    • (2012) Nat. Rev. Neurol. , vol.8 , pp. 647-656
    • Lassmann, H.1
  • 66
    • 79952126441 scopus 로고    scopus 로고
    • Tissue-based class control: the other side of tolerance
    • 66 Matzinger, P., Kamala, T., Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11 (2011), 221–230.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 221-230
    • Matzinger, P.1    Kamala, T.2
  • 67
    • 84887057618 scopus 로고    scopus 로고
    • IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair
    • 67 Kunis, G., et al. IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 136:Pt 11 (2013), 3427–3440.
    • (2013) Brain , vol.136 , pp. 3427-3440
    • Kunis, G.1
  • 68
    • 84933674972 scopus 로고    scopus 로고
    • Cerebral nitric oxide represses choroid plexus NFκB - dependent gateway activity for leukocyte trafficking
    • 68 Baruch, K., et al. Cerebral nitric oxide represses choroid plexus NFκB - dependent gateway activity for leukocyte trafficking. EMBO J., 2015, e201591468.
    • (2015) EMBO J. , pp. e201591468
    • Baruch, K.1
  • 69
    • 84875414225 scopus 로고    scopus 로고
    • Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates
    • 69 Shechter, R., et al. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13 (2013), 206–218.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 206-218
    • Shechter, R.1
  • 70
    • 84963841577 scopus 로고    scopus 로고
    • Origin, fate and dynamics of macrophages at central nervous system interfaces
    • 70 Goldmann, T., et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17 (2016), 797–805.
    • (2016) Nat. Immunol. , vol.17 , pp. 797-805
    • Goldmann, T.1
  • 71
    • 77952311924 scopus 로고    scopus 로고
    • Regulation of learning and memory by meningeal immunity: a key role for IL-4
    • 71 Derecki, N.C., et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207 (2010), 1067–1080.
    • (2010) J. Exp. Med. , vol.207 , pp. 1067-1080
    • Derecki, N.C.1
  • 72
    • 84899488296 scopus 로고    scopus 로고
    • Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice
    • 72 Radjavi, A., et al. Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol. Psychiatry 19 (2014), 531–533.
    • (2014) Mol. Psychiatry , vol.19 , pp. 531-533
    • Radjavi, A.1
  • 73
    • 84888880129 scopus 로고    scopus 로고
    • Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire
    • 73 Radjavi, A., et al. Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35 (2014), 58–63.
    • (2014) Brain Behav. Immun. , vol.35 , pp. 58-63
    • Radjavi, A.1
  • 74
    • 65549167413 scopus 로고    scopus 로고
    • Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation
    • 74 Marques, F., et al. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J. Cereb. Blood Flow Metab. 29 (2009), 921–932.
    • (2009) J. Cereb. Blood Flow Metab. , vol.29 , pp. 921-932
    • Marques, F.1
  • 75
    • 71549130733 scopus 로고    scopus 로고
    • The choroid plexus response to a repeated peripheral inflammatory stimulus
    • 75 Marques, F., et al. The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci., 10, 2009, 135.
    • (2009) BMC Neurosci. , vol.10 , pp. 135
    • Marques, F.1
  • 76
    • 84876804888 scopus 로고    scopus 로고
    • The path from the choroid plexus to the subventricular zone: go with the flow!
    • 76 Falcao, A.M., et al. The path from the choroid plexus to the subventricular zone: go with the flow!. Front. Cell. Neurosci., 6, 2012, 34.
    • (2012) Front. Cell. Neurosci. , vol.6 , pp. 34
    • Falcao, A.M.1
  • 77
    • 15944418259 scopus 로고    scopus 로고
    • The choroid plexus in the rise, fall and repair of the brain
    • 77 Emerich, D.F., et al. The choroid plexus in the rise, fall and repair of the brain. Bioessays 27 (2005), 262–274.
    • (2005) Bioessays , vol.27 , pp. 262-274
    • Emerich, D.F.1
  • 78
    • 79951682931 scopus 로고    scopus 로고
    • The blood-cerebrospinal fluid barrier: structure and functional significance
    • 78 Johanson, C.E., et al. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol. Biol. 686 (2011), 101–131.
    • (2011) Methods Mol. Biol. , vol.686 , pp. 101-131
    • Johanson, C.E.1
  • 79
    • 84868088436 scopus 로고    scopus 로고
    • Cell trafficking through the choroid plexus
    • 79 Meeker, R.B., et al. Cell trafficking through the choroid plexus. Cell Adh. Migr. 6 (2012), 390–396.
    • (2012) Cell Adh. Migr. , vol.6 , pp. 390-396
    • Meeker, R.B.1
  • 80
    • 0029952623 scopus 로고    scopus 로고
    • ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro
    • 80 Steffen, B.J., et al. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am. J. Pathol., 148, 1996, 1819.
    • (1996) Am. J. Pathol. , vol.148 , pp. 1819
    • Steffen, B.J.1
  • 81
    • 84959315169 scopus 로고    scopus 로고
    • Type I/II interferon balance in the regulation of brain physiology and pathology
    • 81 Deczkowska, A., et al. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol. 37 (2016), 181–192.
    • (2016) Trends Immunol. , vol.37 , pp. 181-192
    • Deczkowska, A.1
  • 82
    • 84873475219 scopus 로고    scopus 로고
    • CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging
    • 82 Baruch, K., et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 2264–2269.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 2264-2269
    • Baruch, K.1
  • 83
    • 79551554496 scopus 로고    scopus 로고
    • Resident memory T cells (T RM) are abundant in human lung: diversity, function, and antigen specificity
    • 83 Purwar, R., et al. Resident memory T cells (T RM) are abundant in human lung: diversity, function, and antigen specificity. PloS ONE, 6, 2011, e16245.
    • (2011) PloS ONE , vol.6 , pp. e16245
    • Purwar, R.1
  • 84
    • 65249175159 scopus 로고    scopus 로고
    • CC chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE
    • 84 Reboldi, A., et al. CC chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10 (2009), 514–523.
    • (2009) Nat. Immunol. , vol.10 , pp. 514-523
    • Reboldi, A.1
  • 85
    • 84940599385 scopus 로고    scopus 로고
    • The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease
    • 85 Mesquita, S.D., et al. The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. Brain Behav. Immun. 49 (2015), 280–292.
    • (2015) Brain Behav. Immun. , vol.49 , pp. 280-292
    • Mesquita, S.D.1
  • 86
    • 84901430100 scopus 로고    scopus 로고
    • Aging is associated with increased regulatory T - cell function
    • 86 Garg, S.K., et al. Aging is associated with increased regulatory T - cell function. Aging Cell 13 (2014), 441–448.
    • (2014) Aging Cell , vol.13 , pp. 441-448
    • Garg, S.K.1
  • 87
    • 0030925868 scopus 로고    scopus 로고
    • Th1/Th2 changes in aging
    • 87 Shearer, G.M., Th1/Th2 changes in aging. Mech. Ageing Dev. 94 (1997), 1–5.
    • (1997) Mech. Ageing Dev. , vol.94 , pp. 1-5
    • Shearer, G.M.1
  • 88
    • 84907659600 scopus 로고    scopus 로고
    • Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function
    • 88 Baruch, K., et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346 (2014), 89–93.
    • (2014) Science , vol.346 , pp. 89-93
    • Baruch, K.1
  • 89
    • 34447644067 scopus 로고    scopus 로고
    • Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model
    • 89 Butovsky, O., et al. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur. J. Neurosci. 26 (2007), 413–416.
    • (2007) Eur. J. Neurosci. , vol.26 , pp. 413-416
    • Butovsky, O.1
  • 90
    • 58549098084 scopus 로고    scopus 로고
    • Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis
    • 90 Farrall, A.J., Wardlaw, J.M., Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol. Aging 30 (2009), 337–352.
    • (2009) Neurobiol. Aging , vol.30 , pp. 337-352
    • Farrall, A.J.1    Wardlaw, J.M.2
  • 91
    • 84875553508 scopus 로고    scopus 로고
    • Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus
    • 91 Shechter, R., et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38 (2013), 555–569.
    • (2013) Immunity , vol.38 , pp. 555-569
    • Shechter, R.1
  • 92
    • 0037097215 scopus 로고    scopus 로고
    • Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion
    • 92 Ma, M., et al. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J. Neurosci. Res. 68 (2002), 691–702.
    • (2002) J. Neurosci. Res. , vol.68 , pp. 691-702
    • Ma, M.1
  • 93
    • 0032146758 scopus 로고    scopus 로고
    • Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury
    • 93 McTigue, D.M., et al. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J. Neurosci. Res. 53 (1998), 368–376.
    • (1998) J. Neurosci. Res. , vol.53 , pp. 368-376
    • McTigue, D.M.1
  • 94
    • 84896752215 scopus 로고    scopus 로고
    • Immune cell trafficking from the brain maintains CNS immune tolerance
    • 94 Mohammad, M.G., et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J. Clin. Invest. 124 (2014), 1228–1241.
    • (2014) J. Clin. Invest. , vol.124 , pp. 1228-1241
    • Mohammad, M.G.1
  • 95
    • 84942469639 scopus 로고    scopus 로고
    • A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
    • 95 Aspelund, A., et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212 (2015), 991–999.
    • (2015) J. Exp. Med. , vol.212 , pp. 991-999
    • Aspelund, A.1
  • 96
    • 84936871460 scopus 로고    scopus 로고
    • Structural and functional features of central nervous system lymphatic vessels
    • 96 Louveau, A., et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523 (2015), 337–341.
    • (2015) Nature , vol.523 , pp. 337-341
    • Louveau, A.1
  • 97
    • 84983130412 scopus 로고    scopus 로고
    • Understanding the role of T cells in CNS homeostasis
    • 97 Ellwardt, E., et al. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 37 (2016), 154–165.
    • (2016) Trends Immunol. , vol.37 , pp. 154-165
    • Ellwardt, E.1
  • 98
    • 57049154546 scopus 로고    scopus 로고
    • Lymphatic drainage of the brain and the pathophysiology of neurological disease
    • 98 Weller, R.O., et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 117 (2009), 1–14.
    • (2009) Acta Neuropathol. , vol.117 , pp. 1-14
    • Weller, R.O.1
  • 99
    • 84882273124 scopus 로고    scopus 로고
    • Drainage of cells and soluble antigen from the CNS to regional lymph nodes
    • 99 Laman, J.D., Weller, R.O., Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8 (2013), 840–856.
    • (2013) J. Neuroimmune Pharmacol. , vol.8 , pp. 840-856
    • Laman, J.D.1    Weller, R.O.2
  • 100
    • 84924716458 scopus 로고    scopus 로고
    • Multiple sclerosis — a quiet revolution
    • 100 Ransohoff, R.M., et al. Multiple sclerosis — a quiet revolution. Nat. Rev. Neurol. 11 (2015), 134–142.
    • (2015) Nat. Rev. Neurol. , vol.11 , pp. 134-142
    • Ransohoff, R.M.1
  • 101
    • 85010046415 scopus 로고    scopus 로고
    • A real world experience with fingolimod in active RRMS patients naïve to second-line agents: a 2 years, intention-to-treat, observational, single center study
    • 101 Baroncini, D., et al. A real world experience with fingolimod in active RRMS patients naïve to second-line agents: a 2 years, intention-to-treat, observational, single center study. Multiple Sclerosis and Demyelinating Disorders, 1, 2016, 1.
    • (2016) Multiple Sclerosis and Demyelinating Disorders , vol.1 , pp. 1
    • Baroncini, D.1
  • 102
    • 0033536163 scopus 로고    scopus 로고
    • Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse
    • 102 Schenk, D., et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400 (1999), 173–177.
    • (1999) Nature , vol.400 , pp. 173-177
    • Schenk, D.1
  • 103
    • 0034700471 scopus 로고    scopus 로고
    • Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease
    • 103 Janus, C., et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408 (2000), 979–982.
    • (2000) Nature , vol.408 , pp. 979-982
    • Janus, C.1
  • 104
    • 34848885871 scopus 로고    scopus 로고
    • Mechanism of action of glatiramer acetate in treatment of multiple sclerosis
    • 104 Weber, M.S., et al. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 4 (2007), 647–653.
    • (2007) Neurotherapeutics , vol.4 , pp. 647-653
    • Weber, M.S.1
  • 105
    • 0842331842 scopus 로고    scopus 로고
    • Immunomodulation by the copolymer glatiramer acetate
    • 105 Arnon, R., Sela, M., Immunomodulation by the copolymer glatiramer acetate. J. Mol. Recogn. 16 (2003), 412–421.
    • (2003) J. Mol. Recogn. , vol.16 , pp. 412-421
    • Arnon, R.1    Sela, M.2
  • 106
    • 70449697216 scopus 로고    scopus 로고
    • Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double-blind, randomized, multicentre, placebo-controlled trial
    • 106 Meininger, V., et al. Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double-blind, randomized, multicentre, placebo-controlled trial. Amyotroph. Lateral Scler. 10 (2009), 378–383.
    • (2009) Amyotroph. Lateral Scler. , vol.10 , pp. 378-383
    • Meininger, V.1
  • 107
    • 84922423174 scopus 로고    scopus 로고
    • Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis
    • 107 Schwab, N., et al. Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int. Immunol. 27 (2015), 47–53.
    • (2015) Int. Immunol. , vol.27 , pp. 47-53
    • Schwab, N.1
  • 108
    • 0026506799 scopus 로고
    • Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin
    • 108 Yednock, T.A., et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356 (1992), 63–66.
    • (1992) Nature , vol.356 , pp. 63-66
    • Yednock, T.A.1
  • 109
    • 84861955413 scopus 로고    scopus 로고
    • Progressive multiple sclerosis: The treatment gap
    • S10-S10
    • 109 Humphries, C., Progressive multiple sclerosis: The treatment gap. Nature, 484, 2012 S10-S10.
    • (2012) Nature , vol.484
    • Humphries, C.1
  • 110
    • 40449089827 scopus 로고    scopus 로고
    • Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells
    • 110 Stromnes, I.M., et al. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14 (2008), 337–342.
    • (2008) Nat. Med. , vol.14 , pp. 337-342
    • Stromnes, I.M.1
  • 111
    • 0037135111 scopus 로고    scopus 로고
    • The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics
    • 111 Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297 (2002), 353–356.
    • (2002) Science , vol.297 , pp. 353-356
    • Hardy, J.1    Selkoe, D.J.2
  • 112
    • 33645470003 scopus 로고    scopus 로고
    • Neuropathologic changes in Alzheimer's disease: potential targets for treatment
    • quiz 23
    • 112 Wenk, G.L., Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J. Clin. Psychiatry 67:Suppl. 3 (2006), 3–7 quiz 23.
    • (2006) J. Clin. Psychiatry , vol.67 , pp. 3-7
    • Wenk, G.L.1
  • 113
    • 51149120624 scopus 로고    scopus 로고
    • Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice
    • 113 Hickman, S.E., et al. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28 (2008), 8354–8360.
    • (2008) J. Neurosci. , vol.28 , pp. 8354-8360
    • Hickman, S.E.1
  • 114
    • 34248355132 scopus 로고    scopus 로고
    • Loss of blood–brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models
    • 114 Fabis, M.J., et al. Loss of blood–brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 5656–5661.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 5656-5661
    • Fabis, M.J.1
  • 115
    • 0035153262 scopus 로고    scopus 로고
    • Involvement of the choroid plexus in central nervous system inflammation
    • 115 Engelhardt, B., et al. Involvement of the choroid plexus in central nervous system inflammation. Microsc. Res. Tech. 52 (2001), 112–129.
    • (2001) Microsc. Res. Tech. , vol.52 , pp. 112-129
    • Engelhardt, B.1
  • 116
    • 72949119691 scopus 로고    scopus 로고
    • Management of acute exacerbations in multiple sclerosis
    • 116 Ontaneda, D., Rae-Grant, A.D., Management of acute exacerbations in multiple sclerosis. Ann. Indian Acad. Neurol. 12 (2009), 264–272.
    • (2009) Ann. Indian Acad. Neurol. , vol.12 , pp. 264-272
    • Ontaneda, D.1    Rae-Grant, A.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.