메뉴 건너뛰기




Volumn 14, Issue 11, 2016, Pages 692-706

Harnessing the power of microbial autotrophy

Author keywords

[No Author keywords available]

Indexed keywords

AUTOTROPH; AUTOTROPHY; CARBON FIXATION; GENETIC ENGINEERING; HETEROTROPH; HOST SELECTION; METABOLIC ENGINEERING; MICROBIAL METABOLISM; MIXOTROPH; PHOTOSYNTHESIS; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; QUANTITATIVE STUDY; REVIEW; SYNTHETIC BIOLOGY; BACTERIUM; BIOMASS; CARBON CYCLE; CYANOBACTERIUM; GENETICS; HETEROTROPHY; LIGHT; METABOLISM; PROCEDURES; SOLAR ENERGY;

EID: 84988699189     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro.2016.130     Document Type: Review
Times cited : (191)

References (137)
  • 2
    • 84878655703 scopus 로고    scopus 로고
    • Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals
    • Hawkins, A. S., McTernan, P. M., Lian, H., Kelly, R. M. & Adams, M. W. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr. Opin. Biotechnol. 24, 376-384 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 376-384
    • Hawkins, A.S.1    McTernan, P.M.2    Lian, H.3    Kelly, R.M.4    Adams, M.W.5
  • 3
    • 84898079137 scopus 로고    scopus 로고
    • Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium
    • This paper describes the first attempt to introduce a photorespiratory bypass into a cyanobacterium
    • Shih, P. M., Zarzycki, J., Niyogi, K. K. & Kerfeld, C. A. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J. Biol. Chem. 289, 9493-9500 (2014). This paper describes the first attempt to introduce a photorespiratory bypass into a cyanobacterium.
    • (2014) J. Biol. Chem. , vol.289 , pp. 9493-9500
    • Shih, P.M.1    Zarzycki, J.2    Niyogi, K.K.3    Kerfeld, C.A.4
  • 4
    • 67349200011 scopus 로고    scopus 로고
    • Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii
    • Beckmann, J. et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J. Biotechnol. 142, 70-77 (2009).
    • (2009) J. Biotechnol. , vol.142 , pp. 70-77
    • Beckmann, J.1
  • 5
    • 84897081611 scopus 로고    scopus 로고
    • Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii
    • Straub, M., Demler, M., Weuster-Botz, D. & Durre, P. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J. Biotechnol. 178, 67-72 (2014).
    • (2014) J. Biotechnol. , vol.178 , pp. 67-72
    • Straub, M.1    Demler, M.2    Weuster-Botz, D.3    Durre, P.4
  • 6
    • 84929504676 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for the synthesis of commodity products
    • Angermayr, S. A., Gorchs Rovira, A. & Hellingwerf, K. J. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361 (2015).
    • (2015) Trends Biotechnol. , vol.33 , pp. 352-361
    • Angermayr, S.A.1    Gorchs Rovira, A.2    Hellingwerf, K.J.3
  • 7
    • 84954174060 scopus 로고    scopus 로고
    • In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity
    • Gimpel, J. A., Henríquez, V. & Mayfield, S. P. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front. Microbiol. 6, 1376 (2015).
    • (2015) Front. Microbiol. , vol.6 , pp. 1376
    • Gimpel, J.A.1
  • 8
    • 85010457611 scopus 로고    scopus 로고
    • Sugar synthesis from CO2 in Escherichia coli
    • This study shows, for the first time, the introduction of a fully functional Calvin cycle into a heterotroph by combining heterologous expression and a smart laboratory evolution approach
    • Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 1-11 (2016). This study shows, for the first time, the introduction of a fully functional Calvin cycle into a heterotroph by combining heterologous expression and a smart laboratory evolution approach.
    • (2016) Cell , vol.166 , pp. 1-11
    • Antonovsky, N.1
  • 9
    • 84874798401 scopus 로고    scopus 로고
    • Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. Coli: Toward horizontal transfer of autotrophic growth
    • This work shows the extensive, only partially successful, modular attempt to express the 3-hydroxypriopionate CO2 fixation cycle in E. coli
    • Mattozzi, M. D., Ziesack, M., Voges, M. J., Silver, P. A. & Way, J. C. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab. Eng. 16, 130-139 (2013). This work shows the extensive, only partially successful, modular attempt to express the 3-hydroxypriopionate CO2 fixation cycle in E. coli.
    • (2013) Metab. Eng. , vol.16 , pp. 130-139
    • Mattozzi, M.D.1    Ziesack, M.2    Voges, M.J.3    Silver, P.A.4    Way, J.C.5
  • 10
    • 84883105931 scopus 로고    scopus 로고
    • Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast
    • This study shows additional CO2 fixation, which results in improved ethanol fermentation in an S. cerevisiae strain engineered to produce Calvin cycle enzymes
    • Guadalupe-Medina, V. et al. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast. Biotechnol. Biofuels 6, 125 (2013). This study shows additional CO2 fixation, which results in improved ethanol fermentation in an S. cerevisiae strain engineered to produce Calvin cycle enzymes.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 125
    • Guadalupe-Medina, V.1
  • 11
    • 84855991265 scopus 로고    scopus 로고
    • Modularity of a carbon-fixing protein organelle
    • This work shows the successful heterologous expression of a carbon-concentrating carboxysome with RuBisCO in E. coli
    • Bonacci, W. et al. Modularity of a carbon-fixing protein organelle. Proc. Natl Acad. Sci. USA 109, 478-483 (2012). This work shows the successful heterologous expression of a carbon-concentrating carboxysome with RuBisCO in E. coli.
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 478-483
    • Bonacci, W.1
  • 12
    • 34248151050 scopus 로고    scopus 로고
    • Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host
    • This paper demonstrates the transplantation of a proteorhodopsin photosystem into E. coli, which results in light-driven ATP synthesis
    • Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E. & DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl Acad. Sci. USA 104, 5590-5595 (2007). This paper demonstrates the transplantation of a proteorhodopsin photosystem into E. coli, which results in light-driven ATP synthesis.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 5590-5595
    • Martinez, A.1    Bradley, A.S.2    Waldbauer, J.R.3    Summons, R.E.4    DeLong, E.F.5
  • 13
    • 85028211141 scopus 로고    scopus 로고
    • Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation
    • This article demonstrates a high CO2 fixation flux in an E. coli strain that is engineered to express Calvin cycle enzymes and carbonic anhydrase for the concentration of CO2
    • Gong, F. et al. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol. Biofuels 8, 86 (2015). This article demonstrates a high CO2 fixation flux in an E. coli strain that is engineered to express Calvin cycle enzymes and carbonic anhydrase for the concentration of CO2.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 86
    • Gong, F.1
  • 14
    • 77952533806 scopus 로고    scopus 로고
    • Improving photosynthetic efficiency for greater yield
    • Zhu, X. G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261 (2010).
    • (2010) Annu. Rev. Plant Biol. , vol.61 , pp. 235-261
    • Zhu, X.G.1    Long, S.P.2    Ort, D.R.3
  • 15
    • 73249149305 scopus 로고    scopus 로고
    • The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050?
    • ftp://ftp.fao.org/docrep/fao/012/ ak971e/ak971e00.pdf
    • Bruinsma, J. The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? Food and Agriculture Organization of the United Nations ftp://ftp.fao.org/docrep/fao/012/ ak971e/ak971e00.pdf (2009).
    • (2009) Food and Agriculture Organization of the United Nations
    • Bruinsma, J.1
  • 16
    • 84874116531 scopus 로고    scopus 로고
    • Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
    • Fast, A. G. & Papoutsakis, E. T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1, 380-395 (2012).
    • (2012) Curr. Opin. Chem. Eng. , vol.1 , pp. 380-395
    • Fast, A.G.1    Papoutsakis, E.T.2
  • 17
    • 77955619699 scopus 로고    scopus 로고
    • An outlook on microalgal biofuels
    • Wijffels, R. H. & Barbosa, M. J. An outlook on microalgal biofuels. Science 329, 796-799 (2010).
    • (2010) Science , vol.329 , pp. 796-799
    • Wijffels, R.H.1    Barbosa, M.J.2
  • 18
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805-809 (2011).
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1
  • 19
    • 84937127897 scopus 로고    scopus 로고
    • Redesigning photosynthesis to sustainably meet global food and bioenergy demand
    • Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529-8536 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 8529-8536
    • Ort, D.R.1
  • 20
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - Revisiting the electrical route for microbial production
    • Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706-716 (2010).
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 21
    • 84974678646 scopus 로고    scopus 로고
    • Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis
    • This study achieves an impressive solar-to-biomass efficiency of almost 10% by a bio-inorganic hybrid of biocompatible H2-generating electrodes and the chemolithoautotroph C. necator
    • Liu, C., Colon, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210-1213 (2016). This study achieves an impressive solar-to-biomass efficiency of almost 10% by a bio-inorganic hybrid of biocompatible H2-generating electrodes and the chemolithoautotroph C. necator.
    • (2016) Science , vol.352 , pp. 1210-1213
    • Liu, C.1    Colon, B.C.2    Ziesack, M.3    Silver, P.A.4    Nocera, D.G.5
  • 22
    • 84930945149 scopus 로고    scopus 로고
    • Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals
    • Nybo, S. E., Khan, N. E., Woolston, B. M. & Curtis, W. R. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab. Eng. 30, 105-120 (2015).
    • (2015) Metab. Eng. , vol.30 , pp. 105-120
    • Nybo, S.E.1    Khan, N.E.2    Woolston, B.M.3    Curtis, W.R.4
  • 23
    • 84964689328 scopus 로고    scopus 로고
    • Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering
    • Lu, Q. & Jiao, F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy http://dx.doi.org/10.1016/ j.nanoen.2016.04.009 (2016).
    • (2016) Nano Energy
    • Lu, Q.1    Jiao, F.2
  • 24
    • 84916613479 scopus 로고    scopus 로고
    • Acetogenic mixotrophy: Novel options for yield improvement in biofuels and biochemicals production
    • Fast, A. G., Schmidt, E. D., Jones, S. W. & Tracy, B. P. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr. Opin. Biotechnol. 33, 60-72 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 60-72
    • Fast, A.G.1    Schmidt, E.D.2    Jones, S.W.3    Tracy, B.P.4
  • 25
    • 84943665423 scopus 로고    scopus 로고
    • Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis
    • Wan, N., Abernathy, M., Tang, J. K.-H., Tang, Y. J. & You, L. Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis. Front. Chem. Sci. Eng. 9, 308-316 (2015).
    • (2015) Front. Chem. Sci. Eng. , vol.9 , pp. 308-316
    • Wan, N.1    Abernathy, M.2    Tang, J.K.-H.3    Tang, Y.J.4    You, L.5
  • 26
    • 84961173840 scopus 로고    scopus 로고
    • 2,3-Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption
    • McEwen, J. T., Kanno, M. & Atsumi, S. 2,3-Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab. Eng. 36, 28-36 (2016).
    • (2016) Metab. Eng. , vol.36 , pp. 28-36
    • McEwen, J.T.1    Kanno, M.2    Atsumi, S.3
  • 27
    • 84884227283 scopus 로고    scopus 로고
    • Synthetic biology of cyanobacteria: Unique challenges and opportunities
    • Berla, B. M. et al. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4, 246 (2013).
    • (2013) Front. Microbiol. , vol.4 , pp. 246
    • Berla, B.M.1
  • 28
    • 84947983632 scopus 로고    scopus 로고
    • Genome engineering in cyanobacteria: Where we are and where we need to go
    • Ramey, C. J., Baron-Sola, A., Aucoin, H. R. & Boyle, N. R. Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth. Biol. 4, 1186-1196 (2015).
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1186-1196
    • Ramey, C.J.1    Baron-Sola, A.2    Aucoin, H.R.3    Boyle, N.R.4
  • 29
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi, S. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180 (2009).
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Liao, J.C.2
  • 30
    • 84902946445 scopus 로고    scopus 로고
    • Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803
    • Angermayr, S. A. et al. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 7, 99 (2014).
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 99
    • Angermayr, S.A.1
  • 32
    • 84958779762 scopus 로고    scopus 로고
    • Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals
    • Gao, X., Sun, T., Pei, G., Chen, L. & Zhang, W. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl. Microbiol. Biotechnol. 100, 3401-3413 (2016).
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 3401-3413
    • Gao, X.1    Sun, T.2    Pei, G.3    Chen, L.4    Zhang, W.5
  • 33
    • 84878651410 scopus 로고    scopus 로고
    • Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae
    • Wijffels, R. H., Kruse, O. & Hellingwerf, K. J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405-413 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 405-413
    • Wijffels, R.H.1    Kruse, O.2    Hellingwerf, K.J.3
  • 34
    • 79957440851 scopus 로고    scopus 로고
    • Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons
    • Jaschke, P. R., Saer, R. G., Noll, S. & Beatty, J. T. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol. 497, 519-538 (2011).
    • (2011) Methods Enzymol. , vol.497 , pp. 519-538
    • Jaschke, P.R.1    Saer, R.G.2    Noll, S.3    Beatty, J.T.4
  • 35
    • 84898919229 scopus 로고    scopus 로고
    • BioBrick(TM) compatible vector system for protein expression in Rhodobacter sphaeroides
    • Tikh, I. B., Held, M. & Schmidt-Dannert, C. BioBrick(TM) compatible vector system for protein expression in Rhodobacter sphaeroides. Appl. Microbiol. Biotechnol. 98, 3111-3119 (2014).
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 3111-3119
    • Tikh, I.B.1    Held, M.2    Schmidt-Dannert, C.3
  • 36
    • 77952717854 scopus 로고    scopus 로고
    • Design and analysis of synthetic carbon fixation pathways
    • This study identifies and extensively analyses many synthetic CO2 fixation pathways in silico
    • Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. USA 107, 8889-8894 (2010). This study identifies and extensively analyses many synthetic CO2 fixation pathways in silico.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 8889-8894
    • Bar-Even, A.1    Noor, E.2    Lewis, N.E.3    Milo, R.4
  • 37
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
    • Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337-2342 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 2337-2342
    • Torella, J.P.1
  • 38
    • 84859111827 scopus 로고    scopus 로고
    • Integrated electromicrobial conversion of CO2 to higher alcohols
    • Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596-1596 (2012).
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1
  • 39
    • 84866037643 scopus 로고    scopus 로고
    • Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
    • Lu, J., Brigham, C. J., Gai, C. S. & Sinskey, A. J. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96, 283-297 (2012).
    • (2012) Appl. Microbiol. Biotechnol. , vol.96 , pp. 283-297
    • Lu, J.1    Brigham, C.J.2    Gai, C.S.3    Sinskey, A.J.4
  • 40
    • 84887388915 scopus 로고    scopus 로고
    • Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production
    • Bi, C. et al. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb. Cell Fact. 12, 107 (2013).
    • (2013) Microb. Cell Fact. , vol.12 , pp. 107
    • Bi, C.1
  • 42
    • 84947983395 scopus 로고    scopus 로고
    • Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production
    • Kernan, T. et al. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol. Bioeng. 113, 189-197 (2016).
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 189-197
    • Kernan, T.1
  • 43
    • 84863630261 scopus 로고    scopus 로고
    • Pathway engineering and synthetic biology using acetogens
    • Schiel-Bengelsdorf, B. & Durre, P. Pathway engineering and synthetic biology using acetogens. FEBS Lett. 586, 2191-2198 (2012).
    • (2012) FEBS Lett. , vol.586 , pp. 2191-2198
    • Schiel-Bengelsdorf, B.1    Durre, P.2
  • 44
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
    • Schuchmann, K. & Muller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809-821 (2014).
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 809-821
    • Schuchmann, K.1    Muller, V.2
  • 45
    • 84976274590 scopus 로고    scopus 로고
    • Acetone production with metabolically engineered strains of Acetobacterium woodii
    • Hoffmeister, S. et al. Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab. Eng. 36, 37-47 (2016).
    • (2016) Metab. Eng. , vol.36 , pp. 37-47
    • Hoffmeister, S.1
  • 46
    • 77955610491 scopus 로고    scopus 로고
    • Clostridium ljungdahlii represents a microbial production platform based on syngas
    • Kopke, M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl Acad. Sci. USA 107, 13087-13092 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 13087-13092
    • Kopke, M.1
  • 47
    • 84926020090 scopus 로고    scopus 로고
    • C1-carbon sources for chemical and fuel production by microbial gas fermentation
    • Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63-72 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 63-72
    • Durre, P.1    Eikmanns, B.J.2
  • 48
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • Ueki, T., Nevin, K. P., Woodard, T. L. & Lovley, D. R. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636-14 (2014).
    • (2014) MBio , vol.5 , pp. e01636-e01714
    • Ueki, T.1    Nevin, K.P.2    Woodard, T.L.3    Lovley, D.R.4
  • 49
    • 84929190956 scopus 로고    scopus 로고
    • Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
    • This study demonstrates the production of various chemicals from CO2 and light by bio-inorganic hybrids of a light-harvesting nano-array integrated with S. ovata that was coupled to E. coli production strains
    • Liu, C. et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634-3639 (2015). This study demonstrates the production of various chemicals from CO2 and light by bio-inorganic hybrids of a light-harvesting nano-array integrated with S. ovata that was coupled to E. coli production strains.
    • (2015) Nano Lett. , vol.15 , pp. 3634-3639
    • Liu, C.1
  • 50
    • 84962427368 scopus 로고    scopus 로고
    • Integrated bioprocess for conversion of gaseous substrates to liquids
    • Hu, P. et al. Integrated bioprocess for conversion of gaseous substrates to liquids. Proc. Natl Acad. Sci. USA 113, 14-19 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 14-19
    • Hu, P.1
  • 51
    • 80053385099 scopus 로고    scopus 로고
    • Application of hyperthermophiles and their enzymes
    • Atomi, H., Sato, T. & Kanai, T. Application of hyperthermophiles and their enzymes. Curr. Opin. Biotechnol. 22, 618-626 (2011).
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 618-626
    • Atomi, H.1    Sato, T.2    Kanai, T.3
  • 52
    • 84876029446 scopus 로고    scopus 로고
    • Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
    • In this study, part of the 3-hydroxypriopionate CO2 fixation cycle was introduced into P. furiosus, which enabled the partial autotrophic production of 3-hydroxypriopionate
    • Keller, M. W. et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl Acad. Sci. USA 110, 5840-5845 (2013). In this study, part of the 3-hydroxypriopionate CO2 fixation cycle was introduced into P. furiosus, which enabled the partial autotrophic production of 3-hydroxypriopionate.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 5840-5845
    • Keller, M.W.1
  • 53
    • 80052470228 scopus 로고    scopus 로고
    • Extremely thermophilic routes to microbial electrofuels
    • Hawkins, A. S. et al. Extremely thermophilic routes to microbial electrofuels. ACS Catal. 1, 1043-1050 (2011).
    • (2011) ACS Catal. , vol.1 , pp. 1043-1050
    • Hawkins, A.S.1
  • 54
    • 84861163916 scopus 로고    scopus 로고
    • Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae
    • Ortiz-Marquez, J. C., Do Nascimento, M., Dublan Mde, L. & Curatti, L. Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl. Environ. Microbiol. 78, 2345-2352 (2012).
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 2345-2352
    • Ortiz-Marquez, J.C.1    Do Nascimento, M.2    Dublan Mde, L.3    Curatti, L.4
  • 55
    • 84987904249 scopus 로고    scopus 로고
    • A designed A. Vinelandii-S. Elongatus coculture for chemical photoproduction from air, water, phosphate and trace metals
    • Smith, M. J. & Francis, M. B. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate and trace metals. ACS Synth. Biol. http://dx.doi.org/10.1021/ acssynbio.6b00107 (2016).
    • (2016) ACS Synth. Biol.
    • Smith, M.J.1    Francis, M.B.2
  • 57
    • 77952888917 scopus 로고    scopus 로고
    • Autotrophic carbon fixation in archaea
    • Berg, I. A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447-460 (2010).
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 447-460
    • Berg, I.A.1
  • 58
    • 79953201555 scopus 로고    scopus 로고
    • Ecological aspects of the distribution of different autotrophic CO2 fixation pathways
    • Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925-1936 (2011).
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1925-1936
    • Berg, I.A.1
  • 59
    • 80053227684 scopus 로고    scopus 로고
    • Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life?
    • Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631-658 (2011).
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 631-658
    • Fuchs, G.1
  • 60
    • 84901842685 scopus 로고    scopus 로고
    • Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation
    • Konneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. USA 111, 8239-8244 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 8239-8244
    • Konneke, M.1
  • 61
  • 62
    • 84883554005 scopus 로고    scopus 로고
    • A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli
    • Mainguet, S. E., Gronenberg, L. S., Wong, S. S. & Liao, J. C. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 16, 116-127 (2013).
    • (2013) Metab. Eng. , vol.16 , pp. 116-127
    • Mainguet, S.E.1    Gronenberg, L.S.2    Wong, S.S.3    Liao, J.C.4
  • 63
    • 33644980943 scopus 로고    scopus 로고
    • Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli
    • Parikh, M. R., Greene, D. N., Woods, K. K. & Matsumura, I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Protein Eng. Des. Sel. 19, 113-119 (2006).
    • (2006) Protein Eng. Des. Sel. , vol.19 , pp. 113-119
    • Parikh, M.R.1    Greene, D.N.2    Woods, K.K.3    Matsumura, I.4
  • 64
    • 50949090470 scopus 로고    scopus 로고
    • Evolving improved Synechococcus Rubisco functional expression in Escherichia coli
    • Mueller-Cajar, O. & Whitney, S. M. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem. J. 414, 205-214 (2008).
    • (2008) Biochem. J. , vol.414 , pp. 205-214
    • Mueller-Cajar, O.1    Whitney, S.M.2
  • 65
    • 33747888768 scopus 로고    scopus 로고
    • Expression of foreign type i ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC7942 cells
    • Iwaki, T. et al. Expression of foreign type I ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC7942 cells. Photosynth. Res. 88, 287-297 (2006).
    • (2006) Photosynth. Res. , vol.88 , pp. 287-297
    • Iwaki, T.1
  • 66
    • 84976449618 scopus 로고    scopus 로고
    • Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803
    • Liang, F. & Lindblad, P. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. Metab. Eng. 38, 56-64 (2016).
    • (2016) Metab. Eng. , vol.38 , pp. 56-64
    • Liang, F.1    Lindblad, P.2
  • 67
    • 34249664967 scopus 로고    scopus 로고
    • Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana
    • Kebeish, R. et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol. 25, 593-599 (2007).
    • (2007) Nat. Biotechnol. , vol.25 , pp. 593-599
    • Kebeish, R.1
  • 68
    • 84943791509 scopus 로고    scopus 로고
    • Streamlined construction of the cyanobacterial CO2-fixing organelle via protein domain fusions for use in plant synthetic biology
    • Gonzalez-Esquer, C. R., Shubitowski, T. B. & Kerfeld, C. A. Streamlined construction of the cyanobacterial CO2-fixing organelle via protein domain fusions for use in plant synthetic biology. Plant Cell 27, 2637-2644 (2015).
    • (2015) Plant Cell , vol.27 , pp. 2637-2644
    • Gonzalez-Esquer, C.R.1    Shubitowski, T.B.2    Kerfeld, C.A.3
  • 69
    • 84941265153 scopus 로고    scopus 로고
    • Synthetic scaffolds for pathway enhancement
    • Siu, K. et al. Synthetic scaffolds for pathway enhancement. Curr. Opin. Biotechnol. 36, 98-106 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 98-106
    • Siu, K.1
  • 70
    • 84925372658 scopus 로고    scopus 로고
    • Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production
    • Kamennaya, N. A. et al. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production. Metab. Eng. 29, 76-85 (2015).
    • (2015) Metab. Eng. , vol.29 , pp. 76-85
    • Kamennaya, N.A.1
  • 74
    • 84925595450 scopus 로고    scopus 로고
    • Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition
    • Wang, Y., Li, Y., Xu, T., Shi, Z. & Wu, Q. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition. Biotechnol. Bioeng. 112, 947-956 (2015).
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 947-956
    • Wang, Y.1    Li, Y.2    Xu, T.3    Shi, Z.4    Wu, Q.5
  • 75
    • 77954273729 scopus 로고    scopus 로고
    • Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping
    • Johnson, E. T. et al. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl. Environ. Microbiol. 76, 4123-4129 (2010).
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4123-4129
    • Johnson, E.T.1
  • 76
    • 84958549923 scopus 로고    scopus 로고
    • Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803
    • Chen, Q. et al. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab. Eng. 35, 83-94 (2016).
    • (2016) Metab. Eng. , vol.35 , pp. 83-94
    • Chen, Q.1
  • 77
    • 84855268547 scopus 로고    scopus 로고
    • Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase
    • Kim, J., Jo, B. H., Jo, Y. & Cha, H. J. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase. Microb. Cell Fact. 11, 2 (2012).
    • (2012) Microb. Cell Fact. , vol.11 , pp. 2
    • Kim, J.1    Jo, B.H.2    Jo, Y.3    Cha, H.J.4
  • 78
    • 84874712032 scopus 로고    scopus 로고
    • Bioenergetics of photoheterotrophic bacteria in the oceans. Environ
    • Kirchman, D. L. & Hanson, T. E. Bioenergetics of photoheterotrophic bacteria in the oceans. Environ. Microbiol. Rep. 5, 188-199 (2013).
    • (2013) Microbiol. Rep. , vol.5 , pp. 188-199
    • Kirchman, D.L.1    Hanson, T.E.2
  • 80
    • 84864383168 scopus 로고    scopus 로고
    • Pathway engineering strategies for production of beneficial carotenoids in microbial hosts
    • Ye, V. M. & Bhatia, S. K. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol. Lett. 34, 1405-1414 (2012).
    • (2012) Biotechnol. Lett. , vol.34 , pp. 1405-1414
    • Ye, V.M.1    Bhatia, S.K.2
  • 81
    • 84899761922 scopus 로고    scopus 로고
    • A tale of two reductases: Extending the bacteriochlorophyll biosynthetic pathway in E. Coli
    • Tikh, I. B., Quin, M. B. & Schmidt-Dannert, C. A tale of two reductases: extending the bacteriochlorophyll biosynthetic pathway in E. coli. PLoS ONE 9, e89734 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e89734
    • Tikh, I.B.1    Quin, M.B.2    Schmidt-Dannert, C.3
  • 83
    • 84956824740 scopus 로고    scopus 로고
    • Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes
    • Liu, L.-N. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochim. Biophys. Acta 1857, 256-265 (2016).
    • (2016) Biochim. Biophys. Acta , vol.1857 , pp. 256-265
    • Liu, L.-N.1
  • 84
    • 84861970601 scopus 로고    scopus 로고
    • Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels
    • Work, V. H., D'Adamo, S., Radakovits, R., Jinkerson, R. E. & Posewitz, M. C. Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr. Opin. Biotechnol. 23, 290-297 (2012).
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 290-297
    • Work, V.H.1    D'Adamo, S.2    Radakovits, R.3    Jinkerson, R.E.4    Posewitz, M.C.5
  • 85
    • 84905784748 scopus 로고    scopus 로고
    • Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size
    • Kirst, H., Formighieri, C. & Melis, A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim. Biophys. Acta 1837, 1653-1664 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 1653-1664
    • Kirst, H.1    Formighieri, C.2    Melis, A.3
  • 86
    • 79960557764 scopus 로고    scopus 로고
    • Expanding the solar spectrum used by photosynthesis
    • Chen, M. & Blankenship, R. E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16, 427-431 (2011).
    • (2011) Trends Plant Sci. , vol.16 , pp. 427-431
    • Chen, M.1    Blankenship, R.E.2
  • 87
    • 84987860722 scopus 로고    scopus 로고
    • Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex
    • Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex. ACS Synth. Biol. http:// dx.doi.org/10.1021/acssynbio.6b00069 (2016).
    • (2016) ACS Synth. Biol.
    • Hitchcock, A.1
  • 88
    • 84952939707 scopus 로고    scopus 로고
    • Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
    • Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74-77 (2016).
    • (2016) Science , vol.351 , pp. 74-77
    • Sakimoto, K.K.1    Wong, A.B.2    Yang, P.3
  • 89
    • 35748974830 scopus 로고    scopus 로고
    • Occurrence, classification, and biological function of hydrogenases: An overview
    • Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206-4272 (2007).
    • (2007) Chem. Rev. , vol.107 , pp. 4206-4272
    • Vignais, P.M.1    Billoud, B.2
  • 91
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
    • Buckel, W. & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827, 94-113 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 92
    • 84884171479 scopus 로고    scopus 로고
    • Clostridium acidurici electron-bifurcating formate dehydrogenase
    • Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. Clostridium acidurici electron-bifurcating formate dehydrogenase. Appl. Environ. Microbiol. 79, 6176-6179 (2013).
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 6176-6179
    • Wang, S.1    Huang, H.2    Kahnt, J.3    Thauer, R.K.4
  • 93
    • 77957326597 scopus 로고    scopus 로고
    • NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri
    • Wang, S., Huang, H., Moll, J. & Thauer, R. K. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol. 192, 5115-5123 (2010).
    • (2010) J. Bacteriol. , vol.192 , pp. 5115-5123
    • Wang, S.1    Huang, H.2    Moll, J.3    Thauer, R.K.4
  • 94
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley, D. R. & Nevin, K. P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385-390 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 95
    • 84891471544 scopus 로고    scopus 로고
    • Microbial nanowires for bioenergy applications
    • Malvankar, N. S. & Lovley, D. R. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27, 88-95 (2014).
    • (2014) Curr. Opin. Biotechnol. , vol.27 , pp. 88-95
    • Malvankar, N.S.1    Lovley, D.R.2
  • 96
    • 84875189517 scopus 로고    scopus 로고
    • Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli
    • Goldbeck, C. P. et al. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2, 150-159 (2013).
    • (2013) ACS Synth. Biol. , vol.2 , pp. 150-159
    • Goldbeck, C.P.1
  • 97
    • 78650594171 scopus 로고    scopus 로고
    • Engineering of a synthetic electron conduit in living cells
    • Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213-19218 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 19213-19218
    • Jensen, H.M.1
  • 98
    • 84923885794 scopus 로고    scopus 로고
    • The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli
    • TerAvest, M. A., Zajdel, T. J. & Ajo-Franklin, C. M. The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1, 1874-1879 (2014).
    • (2014) ChemElectroChem , vol.1 , pp. 1874-1879
    • TerAvest, M.A.1    Zajdel, T.J.2    Ajo-Franklin, C.M.3
  • 99
    • 84897491978 scopus 로고    scopus 로고
    • Engineering microbial electrocatalysis for chemical and fuel production
    • Rosenbaum, M. A. & Henrich, A. W. Engineering microbial electrocatalysis for chemical and fuel production. Curr. Opin. Biotechnol. 29, 93-98 (2014).
    • (2014) Curr. Opin. Biotechnol. , vol.29 , pp. 93-98
    • Rosenbaum, M.A.1    Henrich, A.W.2
  • 100
    • 84897149238 scopus 로고    scopus 로고
    • Integrating biological redesign: Where synthetic biology came from and where it needs to go
    • Way, J. C., Collins, J. J., Keasling, J. D. & Silver, P. A. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157, 151-161 (2014).
    • (2014) Cell , vol.157 , pp. 151-161
    • Way, J.C.1    Collins, J.J.2    Keasling, J.D.3    Silver, P.A.4
  • 101
    • 79952705331 scopus 로고    scopus 로고
    • Microbial production of bulk chemicals: Development of anaerobic processes
    • Weusthuis, R. A., Lamot, I., van der Oost, J. & Sanders, J. P. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 29, 153-158 (2011).
    • (2011) Trends Biotechnol. , vol.29 , pp. 153-158
    • Weusthuis, R.A.1    Lamot, I.2    Van Der Oost, J.3    Sanders, J.P.4
  • 102
    • 84884301231 scopus 로고    scopus 로고
    • Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes
    • Bar-Even, A., Noor, E., Flamholz, A. & Milo, R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta 1827, 1039-1047 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1039-1047
    • Bar-Even, A.1    Noor, E.2    Flamholz, A.3    Milo, R.4
  • 103
    • 79952103573 scopus 로고    scopus 로고
    • Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation
    • Boyle, N. R. & Morgan, J. A. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab. Eng. 13, 150-158 (2011).
    • (2011) Metab. Eng. , vol.13 , pp. 150-158
    • Boyle, N.R.1    Morgan, J.A.2
  • 104
    • 80053445630 scopus 로고    scopus 로고
    • Silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals
    • Pandit, A. V. & Mahadevan, R. In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb. Cell Fact. 10, 76 (2011).
    • (2011) Microb. Cell Fact. , vol.10 , pp. 76
    • Pandit, A.V.1    Mahadevan, R.2
  • 106
    • 84976604958 scopus 로고    scopus 로고
    • Integrated in silico analysis of pathway designs supporting synthetic photo-electro-autotrophy
    • Volpers, M. et al. Integrated in silico analysis of pathway designs supporting synthetic photo-electro-autotrophy. PLoS ONE 11, e0157851 (2016).
    • (2016) PLoS ONE , vol.11 , pp. e0157851
    • Volpers, M.1
  • 107
    • 84859369657 scopus 로고    scopus 로고
    • A survey of carbon fixation pathways through a quantitative lens
    • Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325-2342 (2012).
    • (2012) J. Exp. Bot. , vol.63 , pp. 2325-2342
    • Bar-Even, A.1    Noor, E.2    Milo, R.3
  • 108
    • 84861429699 scopus 로고    scopus 로고
    • EQuilibrator - The biochemical thermodynamics calculator
    • Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator - the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770-D775 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. D770-D775
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Milo, R.4
  • 109
    • 84895727036 scopus 로고    scopus 로고
    • Pathway thermodynamics highlights kinetic obstacles in central metabolism
    • Noor, E. et al. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol. 10, e1003483 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003483
    • Noor, E.1
  • 110
    • 84862260215 scopus 로고    scopus 로고
    • Thermodynamic constraints shape the structure of carbon fixation pathways
    • Bar-Even, A., Flamholz, A., Noor, E. & Milo, R. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim. Biophys. Acta 1817, 1646-1659 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 1646-1659
    • Bar-Even, A.1    Flamholz, A.2    Noor, E.3    Milo, R.4
  • 111
    • 84962212496 scopus 로고    scopus 로고
    • Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements
    • Davidi, D. et al. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc. Natl Acad. Sci. USA 113, 3401-3406 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 3401-3406
    • Davidi, D.1
  • 112
    • 84859768457 scopus 로고    scopus 로고
    • Parts plus pipes: Synthetic biology approaches to metabolic engineering
    • Boyle, P. M. & Silver, P. A. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab. Eng. 14, 223-232 (2012).
    • (2012) Metab. Eng. , vol.14 , pp. 223-232
    • Boyle, P.M.1    Silver, P.A.2
  • 113
    • 84958247886 scopus 로고    scopus 로고
    • Synthetic biology to access and expand nature's chemical diversity
    • Smanski, M. J. et al. Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14, 135-149 (2016).
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 135-149
    • Smanski, M.J.1
  • 114
    • 84943574477 scopus 로고    scopus 로고
    • Screening and modular design for metabolic pathway optimization
    • Boock, J. T., Gupta, A. & Prather, K. L. Screening and modular design for metabolic pathway optimization. Curr. Opin. Biotechnol. 36, 189-198 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 189-198
    • Boock, J.T.1    Gupta, A.2    Prather, K.L.3
  • 115
    • 84978542836 scopus 로고    scopus 로고
    • Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii
    • Gimpel, J. A., Nour-Eldin, H. H., Scranton, M. A., Li, D. & Mayfield, S. P. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii. ACS Synth. Biol. 5, 589-596 (2016).
    • (2016) ACS Synth. Biol. , vol.5 , pp. 589-596
    • Gimpel, J.A.1    Nour-Eldin, H.H.2    Scranton, M.A.3    Li, D.4    Mayfield, S.P.5
  • 116
    • 79960958091 scopus 로고    scopus 로고
    • Adaptive laboratory evolution - Harnessing the power of biology for metabolic engineering
    • Portnoy, V. A., Bezdan, D. & Zengler, K. Adaptive laboratory evolution - harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590-594 (2011).
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 590-594
    • Portnoy, V.A.1    Bezdan, D.2    Zengler, K.3
  • 117
    • 84907569561 scopus 로고    scopus 로고
    • A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms
    • Khan, N. E., Myers, J. A., Tuerk, A. L. & Curtis, W. R. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour. Technol. 172, 201-211 (2014).
    • (2014) Bioresour. Technol. , vol.172 , pp. 201-211
    • Khan, N.E.1    Myers, J.A.2    Tuerk, A.L.3    Curtis, W.R.4
  • 118
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: Microbial engineering for the production of sustainable biofuels
    • Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288-304 (2016).
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 288-304
    • Liao, J.C.1    Mi, L.2    Pontrelli, S.3    Luo, S.4
  • 119
    • 84891366912 scopus 로고    scopus 로고
    • Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms
    • Latif, H., Zeidan, A. A., Nielsen, A. T. & Zengler, K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr. Opin. Biotechnol. 27, 79-87 (2014).
    • (2014) Curr. Opin. Biotechnol. , vol.27 , pp. 79-87
    • Latif, H.1    Zeidan, A.A.2    Nielsen, A.T.3    Zengler, K.4
  • 120
    • 84963676465 scopus 로고    scopus 로고
    • Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries
    • Molitor, B. et al. Carbon recovery by fermentation of CO-rich off gases - turning steel mills into biorefineries. Bioresour. Technol. 215, 386-396 (2016).
    • (2016) Bioresour. Technol. , vol.215 , pp. 386-396
    • Molitor, B.1
  • 121
    • 84924958721 scopus 로고    scopus 로고
    • Synthetic methylotrophy: Engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization
    • Whitaker, W. B., Sandoval, N. R., Bennett, R. K., Fast, A. G. & Papoutsakis, E. T. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr. Opin. Biotechnol. 33, 165-175 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 165-175
    • Whitaker, W.B.1    Sandoval, N.R.2    Bennett, R.K.3    Fast, A.G.4    Papoutsakis, E.T.5
  • 123
    • 84949816056 scopus 로고    scopus 로고
    • Pathways and bioenergetics of anaerobic carbon monoxide fermentation
    • Diender, M., Stams, A. J. M. & Sousa, D. Z. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front. Microbiol. 6, 1-18 (2015).
    • (2015) Front. Microbiol. , vol.6 , pp. 1-18
    • Diender, M.1    Stams, A.J.M.2    Sousa, D.Z.3
  • 125
    • 84926364931 scopus 로고    scopus 로고
    • Metabolic engineering in methanotrophic bacteria
    • Kalyuzhnaya, M. G., Puri, A. W. & Lidstrom, M. E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015).
    • (2015) Metab. Eng. , vol.29 , pp. 142-152
    • Kalyuzhnaya, M.G.1    Puri, A.W.2    Lidstrom, M.E.3
  • 126
    • 84922433192 scopus 로고    scopus 로고
    • Engineering Escherichia coli for methanol conversion
    • Muller, J. E. et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190-201 (2015).
    • (2015) Metab. Eng. , vol.28 , pp. 190-201
    • Muller, J.E.1
  • 127
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
    • Bogorad, I. W. et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl Acad. Sci. USA 111, 15928-15933 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 15928-15933
    • Bogorad, I.W.1
  • 128
    • 84979503665 scopus 로고    scopus 로고
    • Formate assimilation: The metabolic architecture of natural and synthetic pathways
    • Bar-Even, A. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55, 3851-3863 (2016).
    • (2016) Biochemistry , vol.55 , pp. 3851-3863
    • Bar-Even, A.1
  • 129
    • 84925426233 scopus 로고    scopus 로고
    • Computational protein design enables a novel one-carbon assimilation pathway
    • Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704-3709 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 3704-3709
    • Siegel, J.B.1
  • 130
    • 83155188303 scopus 로고    scopus 로고
    • Carboxylases in natural and synthetic microbial pathways
    • Erb, T. J. Carboxylases in natural and synthetic microbial pathways. Appl. Environ. Microbiol. 77, 8466-8477 (2011).
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 8466-8477
    • Erb, T.J.1
  • 131
    • 34547542453 scopus 로고    scopus 로고
    • Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/ reductase: The ethylmalonyl-CoA pathway
    • Erb, T. J. et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/ reductase: the ethylmalonyl-CoA pathway. Proc. Natl Acad. Sci. USA 104, 10631-10636 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 10631-10636
    • Erb, T.J.1
  • 132
    • 67049132524 scopus 로고    scopus 로고
    • Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/ reductase, a carboxylating enoyl-thioester reductase
    • Erb, T. J., Brecht, V., Fuchs, G., Muller, M. & Alber, B. E. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/ reductase, a carboxylating enoyl-thioester reductase. Proc. Natl Acad. Sci. USA 106, 8871-8876 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 8871-8876
    • Erb, T.J.1    Brecht, V.2    Fuchs, G.3    Muller, M.4    Alber, B.E.5
  • 133
    • 84955513187 scopus 로고    scopus 로고
    • Functional metagenomic selection of RuBisCO from uncultivated bacteria
    • Varaljay, V. A. et al. Functional metagenomic selection of RuBisCO from uncultivated bacteria. Environ. Microbiol. 18, 1187-1199 (2015).
    • (2015) Environ. Microbiol. , vol.18 , pp. 1187-1199
    • Varaljay, V.A.1
  • 134
    • 84904190583 scopus 로고    scopus 로고
    • Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco
    • Cai, Z., Liu, G., Zhang, J. & Li, Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 5, 552-562 (2014).
    • (2014) Protein Cell , vol.5 , pp. 552-562
    • Cai, Z.1    Liu, G.2    Zhang, J.3    Li, Y.4
  • 135
    • 84928069254 scopus 로고    scopus 로고
    • Opposing effects of folding and assembly chaperones on evolvability of Rubisco
    • Durão, P. et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat. Chem. Biol. 11, 148-155 (2015).
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 148-155
    • Durão, P.1
  • 136
    • 84945464672 scopus 로고    scopus 로고
    • Screening and engineering the synthetic potential of carboxylating reductases from central metabolism and polyketide biosynthesis
    • Peter, D. M. et al. Screening and engineering the synthetic potential of carboxylating reductases from central metabolism and polyketide biosynthesis. Angew. Chem. Int. Ed. Engl. 54, 13457-13461 (2015).
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 13457-13461
    • Peter, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.