-
1
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
[1] Ge, Z.Q., Song, Z.H., Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 56 (2010), 2838–2849.
-
(2010)
AIChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
2
-
-
52649127925
-
Adaptive actuator/component fault compensation for nonlinear systems
-
[2] Zhang, Y.W., Qin, S.J., Adaptive actuator/component fault compensation for nonlinear systems. AIChE J. 54 (2008), 2404–2412.
-
(2008)
AIChE J.
, vol.54
, pp. 2404-2412
-
-
Zhang, Y.W.1
Qin, S.J.2
-
3
-
-
84903269346
-
Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring
-
[3] Zhao, C.H., Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring. J. Process Control 24 (2014), 856–870.
-
(2014)
J. Process Control
, vol.24
, pp. 856-870
-
-
Zhao, C.H.1
-
4
-
-
84880905980
-
Bagging support vector data description model for batch process monitoring
-
[4] Ge, Z.Q., Song, Z.H., Bagging support vector data description model for batch process monitoring. J. Process Control 23 (2013), 1090–1096.
-
(2013)
J. Process Control
, vol.23
, pp. 1090-1096
-
-
Ge, Z.Q.1
Song, Z.H.2
-
5
-
-
30544445406
-
Two-dimentional dynamic PCA for batch process monitoring
-
[5] Lu, N.Y., Yao, Y., Gao, F.R., Wang, F.L., Two-dimentional dynamic PCA for batch process monitoring. AIChE J. 51 (2005), 3300–3304.
-
(2005)
AIChE J.
, vol.51
, pp. 3300-3304
-
-
Lu, N.Y.1
Yao, Y.2
Gao, F.R.3
Wang, F.L.4
-
6
-
-
78149285529
-
Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
-
[6] Yao, Y., Chen, T., Gao, F.R., Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information. J. Process Control 20 (2010), 1188–1197.
-
(2010)
J. Process Control
, vol.20
, pp. 1188-1197
-
-
Yao, Y.1
Chen, T.2
Gao, F.R.3
-
7
-
-
84868210616
-
A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
-
[7] Ma, H.H., Hu, Y., Shi, H.B., A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemom. Intell. Lab. Syst. 118 (2012), 287–300.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.118
, pp. 287-300
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
8
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
[8] Ge, Z.Q., Song, Z.H., Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng. Pract. 16 (2008), 1427–1437.
-
(2008)
Control Eng. Pract.
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
9
-
-
84898795506
-
Multimode process monitoring using improved dynamic neighborhood preserving embedding
-
[9] Song, B., Ma, Y.X., Shi, H.B., Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemom. Intell. Lab. Syst. 135 (2014), 17–30.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 17-30
-
-
Song, B.1
Ma, Y.X.2
Shi, H.B.3
-
10
-
-
81055156706
-
A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
-
[10] Yu, J., A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci. 68 (2011), 506–519.
-
(2011)
Chem. Eng. Sci.
, vol.68
, pp. 506-519
-
-
Yu, J.1
-
11
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
[11] Xie, X., Shi, H.B., Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 51 (2012), 5497–5505.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
12
-
-
84908591078
-
Neighborhood based global coordination for multimode process monitoring
-
[12] Ma, Y.X., Song, B., Shi, H.B., Yang, Y.W., Neighborhood based global coordination for multimode process monitoring. Chemom. Intell. Lab. Syst. 139 (2014), 84–96.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.139
, pp. 84-96
-
-
Ma, Y.X.1
Song, B.2
Shi, H.B.3
Yang, Y.W.4
-
13
-
-
84859903438
-
Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
-
[13] Rashid, M.M., Yu, J., Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection. Ind. Eng. Chem. Res. 51 (2012), 5506–5514.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5506-5514
-
-
Rashid, M.M.1
Yu, J.2
-
14
-
-
84880292457
-
Dynamic process monitoring using adaptive local outlier factor
-
[14] Ma, Y.X., Shi, H.B., Ma, H.H., Wang, M.L., Dynamic process monitoring using adaptive local outlier factor. Chemom. Intell. Lab. Syst. 127 (2013), 89–101.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.127
, pp. 89-101
-
-
Ma, Y.X.1
Shi, H.B.2
Ma, H.H.3
Wang, M.L.4
-
15
-
-
84910026328
-
Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
-
[15] Zhu, J.L., Ge, Z.Q., Song, Z.H., Robust supervised probabilistic principal component analysis model for soft sensing of key process variables. Chem. Eng. Sci. 122 (2015), 573–584.
-
(2015)
Chem. Eng. Sci.
, vol.122
, pp. 573-584
-
-
Zhu, J.L.1
Ge, Z.Q.2
Song, Z.H.3
-
16
-
-
56349129392
-
A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
-
[16] Chen, W.C., Wang, M.S., A fuzzy c-means clustering-based fragile watermarking scheme for image authentication. Expert Syst. Appl. 36 (2009), 1300–1307.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 1300-1307
-
-
Chen, W.C.1
Wang, M.S.2
-
17
-
-
0035493957
-
Knowledge discovery from process operational data using PCA and fuzzy clustering
-
[17] Sebzalli, Y.M., Wang, X.Z., Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 14 (2001), 607–616.
-
(2001)
Eng. Appl. Artif. Intell.
, vol.14
, pp. 607-616
-
-
Sebzalli, Y.M.1
Wang, X.Z.2
-
18
-
-
84887285137
-
An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding
-
[18] Tong, C.D., Palazoglu, A., Yan, X.F., An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding. J. Process Control 23 (2013), 1497–1503.
-
(2013)
J. Process Control
, vol.23
, pp. 1497-1503
-
-
Tong, C.D.1
Palazoglu, A.2
Yan, X.F.3
-
19
-
-
83655196007
-
Process pattern construction and multi-mode monitoring
-
[19] Zhu, Z.B., Song, Z.H., Palazoglu, A., Process pattern construction and multi-mode monitoring. J. Process Control 22 (2012), 247–262.
-
(2012)
J. Process Control
, vol.22
, pp. 247-262
-
-
Zhu, Z.B.1
Song, Z.H.2
Palazoglu, A.3
-
20
-
-
84903793852
-
Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology
-
[20] Tong, C.D., Farra, N.H.E., Palazoglu, A., Yan, X.F., Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology. AIChE J. 60 (2014), 2805–2814.
-
(2014)
AIChE J.
, vol.60
, pp. 2805-2814
-
-
Tong, C.D.1
Farra, N.H.E.2
Palazoglu, A.3
Yan, X.F.4
-
21
-
-
84948679730
-
Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes
-
[21] Zhang, S.M., Wang, F.L., Tan, S., Wang, S., Chang, Y.Q., Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes. Ind. Eng. Chem. Res. 541 (2015), 11866–11880.
-
(2015)
Ind. Eng. Chem. Res.
, vol.541
, pp. 11866-11880
-
-
Zhang, S.M.1
Wang, F.L.2
Tan, S.3
Wang, S.4
Chang, Y.Q.5
-
22
-
-
84908210209
-
Multi-subspace principal component analysis with local outlier factor for multimode process monitoring
-
[22] Song, B., Shi, H.B., Ma, Y.X., Wang, J.P., Multi-subspace principal component analysis with local outlier factor for multimode process monitoring. Ind. Eng. Chem. Res. 53 (2014), 16453–16464.
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 16453-16464
-
-
Song, B.1
Shi, H.B.2
Ma, Y.X.3
Wang, J.P.4
-
23
-
-
83655201159
-
Process monitoring based on mode identification for multi-mode process with transitions
-
[23] Wang, F.L., Tan, S., Peng, J., Chang, Y.Q., Process monitoring based on mode identification for multi-mode process with transitions. Chemom. Intell. Lab. Syst. 110 (2012), 144–155.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.110
, pp. 144-155
-
-
Wang, F.L.1
Tan, S.2
Peng, J.3
Chang, Y.Q.4
-
24
-
-
84862956465
-
Multimode process monitoring based on mode identification
-
[24] Tan, S., Wang, F.L., Peng, J., Chang, Y.Q., Wang, S., Multimode process monitoring based on mode identification. Ind. Eng. Chem. Res. 51 (2012), 374–388.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 374-388
-
-
Tan, S.1
Wang, F.L.2
Peng, J.3
Chang, Y.Q.4
Wang, S.5
-
25
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principle component analysis models
-
[25] Zhao, S.J., Zhang, J., Xu, Y.M., Monitoring of processes with multiple operation modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 43 (2004), 7025–7035.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
26
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
[26] Ge, Z.Q., Song, Z.H., Multimode process monitoring based on Bayesian method. J. Chemom. 23 (2009), 636–650.
-
(2009)
J. Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
27
-
-
80051914224
-
Two-dimensional Bayesian monitoring method for nonlinear multimode processes
-
[27] Ge, Z.Q., Gao, F.R., Song, Z.H., Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chem. Eng. Sci. 66 (2011), 5173–5183.
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 5173-5183
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
28
-
-
84926306551
-
Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin
-
[28] Zhao, C.H., Wang, W., Qin, Y., Gao, F.R., Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin. Ind. Eng. Chem. Res. 54 (2015), 3154–3166.
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, pp. 3154-3166
-
-
Zhao, C.H.1
Wang, W.2
Qin, Y.3
Gao, F.R.4
-
29
-
-
84892436192
-
Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
-
[29] Zhao, C.H., Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AIChE J. 60 (2014), 559–573.
-
(2014)
AIChE J.
, vol.60
, pp. 559-573
-
-
Zhao, C.H.1
-
30
-
-
84860524308
-
Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation
-
[30] Dobos, L., Abonyi, J., Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation. Chem. Eng. Sci. 75 (2012), 96–105.
-
(2012)
Chem. Eng. Sci.
, vol.75
, pp. 96-105
-
-
Dobos, L.1
Abonyi, J.2
-
31
-
-
79953041929
-
Aluminium process fault detection by multiway principal component analysis
-
[31] Majid, N.A.A., Taylor, M.P., Chen, J.J., Stam, M.A., Mulder, A., Young, B.R., Aluminium process fault detection by multiway principal component analysis. Control Eng. Pract. 19 (2011), 367–379.
-
(2011)
Control Eng. Pract.
, vol.19
, pp. 367-379
-
-
Majid, N.A.A.1
Taylor, M.P.2
Chen, J.J.3
Stam, M.A.4
Mulder, A.5
Young, B.R.6
-
32
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
[32] Lee, J.M., Yoo, C.K., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59 (2004), 223–234.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
33
-
-
0032118892
-
Multiscale PCA with application to multivariate statistical process monitoring
-
[33] Bakshi, B.R., Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44 (1998), 1596–1610.
-
(1998)
AIChE J.
, vol.44
, pp. 1596-1610
-
-
Bakshi, B.R.1
-
34
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
[34] Kim, D.S., Lee, I.B., Process monitoring based on probabilistic PCA. Chemom. Intell. Lab. Syst. 67 (2003), 109–123.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.S.1
Lee, I.B.2
-
35
-
-
0033903077
-
Determining the number of principal components for best reconstruction
-
[35] Qin, S.J., Dunia, R., Determining the number of principal components for best reconstruction. J. Process Control 10 (2000), 245–250.
-
(2000)
J. Process Control
, vol.10
, pp. 245-250
-
-
Qin, S.J.1
Dunia, R.2
-
36
-
-
84891960044
-
Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects
-
[36] Camacho, J., Ferrer, A., Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects. Chemom. Intell. Lab. Syst. 131 (2014), 37–50.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.131
, pp. 37-50
-
-
Camacho, J.1
Ferrer, A.2
-
37
-
-
34249106480
-
A study on the number of principal components and sensitivity of fault detection using PCA
-
[37] Tamura, M., Tsujita, S., A study on the number of principal components and sensitivity of fault detection using PCA. Comput. Chem. Eng. 31 (2007), 1035–1046.
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 1035-1046
-
-
Tamura, M.1
Tsujita, S.2
-
38
-
-
0035139041
-
Experimental design and inferential modeling in pharmaceutical crystallization
-
[38] Togkalidou, T., Braatz, R.D., Johnson, B.K., Davidson, O., Andrews, A., Experimental design and inferential modeling in pharmaceutical crystallization. AIChE J. 47 (2001), 160–168.
-
(2001)
AIChE J.
, vol.47
, pp. 160-168
-
-
Togkalidou, T.1
Braatz, R.D.2
Johnson, B.K.3
Davidson, O.4
Andrews, A.5
-
39
-
-
84894068408
-
Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
-
[39] Jiang, Q.C., Yan, X.F., Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring. AIChE J. 60 (2014), 949–965.
-
(2014)
AIChE J.
, vol.60
, pp. 949-965
-
-
Jiang, Q.C.1
Yan, X.F.2
-
40
-
-
0034643075
-
Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
-
[40] Chiang, L.H., Russell, E.L., Braatz, R.D., Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom. Intell. Lab. Syst. 50 (2000), 243–252.
-
(2000)
Chemom. Intell. Lab. Syst.
, vol.50
, pp. 243-252
-
-
Chiang, L.H.1
Russell, E.L.2
Braatz, R.D.3
-
41
-
-
79960836522
-
Integrating independent component analysis and local outlier factor for plant-wide process monitoring
-
[41] Lee, J., Kang, B., Kang, S.H., Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J. Process Control 21 (2011), 1011–1021.
-
(2011)
J. Process Control
, vol.21
, pp. 1011-1021
-
-
Lee, J.1
Kang, B.2
Kang, S.H.3
-
42
-
-
84953877886
-
Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation
-
[42] Zhao, C.H., Wang, W., Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation. J. Process Control 38 (2016), 31–41.
-
(2016)
J. Process Control
, vol.38
, pp. 31-41
-
-
Zhao, C.H.1
Wang, W.2
-
43
-
-
57049177632
-
Improved nonlinear fault detection technique and statistical analysis
-
[43] Zhang, Y.W., Qin, S.J., Improved nonlinear fault detection technique and statistical analysis. AIChE J. 54 (2008), 3204–3220.
-
(2008)
AIChE J.
, vol.54
, pp. 3204-3220
-
-
Zhang, Y.W.1
Qin, S.J.2
-
44
-
-
84894088611
-
Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
-
[44] Zhao, C.H., Gao, F.R., Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring. Chemom. Intell. Lab. Syst. 133 (2014), 1–16.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.133
, pp. 1-16
-
-
Zhao, C.H.1
Gao, F.R.2
-
45
-
-
1642313098
-
Multirate dynamic inferential modeling for multivariable processes
-
[45] Lu, N.Y., Yang, Y., Gao, F.R., Wang, F.L., Multirate dynamic inferential modeling for multivariable processes. Chem. Eng. Sci. 59 (2004), 855–864.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 855-864
-
-
Lu, N.Y.1
Yang, Y.2
Gao, F.R.3
Wang, F.L.4
-
46
-
-
84887356740
-
Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
-
[46] Zhao, C.H., Sun, Y.X., Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis. J. Process Control 23 (2013), 1515–1527.
-
(2013)
J. Process Control
, vol.23
, pp. 1515-1527
-
-
Zhao, C.H.1
Sun, Y.X.2
-
47
-
-
0029379330
-
Optimal steady-state operation of the Tennessee Eastman challenge process
-
[47] Ricker, N.L., Optimal steady-state operation of the Tennessee Eastman challenge process. Comput. Chem. Eng. 19 (1995), 949–959.
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 949-959
-
-
Ricker, N.L.1
-
48
-
-
0027561446
-
A plant-wide industrial process control problem
-
[48] Downs, J.J., Vogel, E.F., A plant-wide industrial process control problem. Comput. Chem. Eng. 17 (1993), 245–255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
49
-
-
0035427805
-
Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
-
[49] Yoon, S., MacGregor, J.F., Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process Control 11 (2001), 387–400.
-
(2001)
J. Process Control
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.F.2
|