메뉴 건너뛰기




Volumn 47, Issue , 2016, Pages 136-149

Key principal components with recursive local outlier factor for multimode chemical process monitoring

Author keywords

Cumulative percent expression; Key principal components; Multimode process monitoring; Principal component analysis; Recursive local outlier factor

Indexed keywords

BENCHMARKING; FAULT DETECTION; PROCESS CONTROL; PROCESS MONITORING; STATISTICS;

EID: 84988527643     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2016.09.006     Document Type: Article
Times cited : (52)

References (49)
  • 1
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • [1] Ge, Z.Q., Song, Z.H., Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 56 (2010), 2838–2849.
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 2
    • 52649127925 scopus 로고    scopus 로고
    • Adaptive actuator/component fault compensation for nonlinear systems
    • [2] Zhang, Y.W., Qin, S.J., Adaptive actuator/component fault compensation for nonlinear systems. AIChE J. 54 (2008), 2404–2412.
    • (2008) AIChE J. , vol.54 , pp. 2404-2412
    • Zhang, Y.W.1    Qin, S.J.2
  • 3
    • 84903269346 scopus 로고    scopus 로고
    • Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring
    • [3] Zhao, C.H., Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring. J. Process Control 24 (2014), 856–870.
    • (2014) J. Process Control , vol.24 , pp. 856-870
    • Zhao, C.H.1
  • 4
    • 84880905980 scopus 로고    scopus 로고
    • Bagging support vector data description model for batch process monitoring
    • [4] Ge, Z.Q., Song, Z.H., Bagging support vector data description model for batch process monitoring. J. Process Control 23 (2013), 1090–1096.
    • (2013) J. Process Control , vol.23 , pp. 1090-1096
    • Ge, Z.Q.1    Song, Z.H.2
  • 5
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimentional dynamic PCA for batch process monitoring
    • [5] Lu, N.Y., Yao, Y., Gao, F.R., Wang, F.L., Two-dimentional dynamic PCA for batch process monitoring. AIChE J. 51 (2005), 3300–3304.
    • (2005) AIChE J. , vol.51 , pp. 3300-3304
    • Lu, N.Y.1    Yao, Y.2    Gao, F.R.3    Wang, F.L.4
  • 6
    • 78149285529 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
    • [6] Yao, Y., Chen, T., Gao, F.R., Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information. J. Process Control 20 (2010), 1188–1197.
    • (2010) J. Process Control , vol.20 , pp. 1188-1197
    • Yao, Y.1    Chen, T.2    Gao, F.R.3
  • 7
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
    • [7] Ma, H.H., Hu, Y., Shi, H.B., A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemom. Intell. Lab. Syst. 118 (2012), 287–300.
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 8
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • [8] Ge, Z.Q., Song, Z.H., Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng. Pract. 16 (2008), 1427–1437.
    • (2008) Control Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 9
    • 84898795506 scopus 로고    scopus 로고
    • Multimode process monitoring using improved dynamic neighborhood preserving embedding
    • [9] Song, B., Ma, Y.X., Shi, H.B., Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemom. Intell. Lab. Syst. 135 (2014), 17–30.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 17-30
    • Song, B.1    Ma, Y.X.2    Shi, H.B.3
  • 10
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • [10] Yu, J., A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci. 68 (2011), 506–519.
    • (2011) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 11
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • [11] Xie, X., Shi, H.B., Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 51 (2012), 5497–5505.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 12
    • 84908591078 scopus 로고    scopus 로고
    • Neighborhood based global coordination for multimode process monitoring
    • [12] Ma, Y.X., Song, B., Shi, H.B., Yang, Y.W., Neighborhood based global coordination for multimode process monitoring. Chemom. Intell. Lab. Syst. 139 (2014), 84–96.
    • (2014) Chemom. Intell. Lab. Syst. , vol.139 , pp. 84-96
    • Ma, Y.X.1    Song, B.2    Shi, H.B.3    Yang, Y.W.4
  • 13
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • [13] Rashid, M.M., Yu, J., Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection. Ind. Eng. Chem. Res. 51 (2012), 5506–5514.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 14
    • 84880292457 scopus 로고    scopus 로고
    • Dynamic process monitoring using adaptive local outlier factor
    • [14] Ma, Y.X., Shi, H.B., Ma, H.H., Wang, M.L., Dynamic process monitoring using adaptive local outlier factor. Chemom. Intell. Lab. Syst. 127 (2013), 89–101.
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 89-101
    • Ma, Y.X.1    Shi, H.B.2    Ma, H.H.3    Wang, M.L.4
  • 15
    • 84910026328 scopus 로고    scopus 로고
    • Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
    • [15] Zhu, J.L., Ge, Z.Q., Song, Z.H., Robust supervised probabilistic principal component analysis model for soft sensing of key process variables. Chem. Eng. Sci. 122 (2015), 573–584.
    • (2015) Chem. Eng. Sci. , vol.122 , pp. 573-584
    • Zhu, J.L.1    Ge, Z.Q.2    Song, Z.H.3
  • 16
    • 56349129392 scopus 로고    scopus 로고
    • A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
    • [16] Chen, W.C., Wang, M.S., A fuzzy c-means clustering-based fragile watermarking scheme for image authentication. Expert Syst. Appl. 36 (2009), 1300–1307.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1300-1307
    • Chen, W.C.1    Wang, M.S.2
  • 17
    • 0035493957 scopus 로고    scopus 로고
    • Knowledge discovery from process operational data using PCA and fuzzy clustering
    • [17] Sebzalli, Y.M., Wang, X.Z., Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 14 (2001), 607–616.
    • (2001) Eng. Appl. Artif. Intell. , vol.14 , pp. 607-616
    • Sebzalli, Y.M.1    Wang, X.Z.2
  • 18
    • 84887285137 scopus 로고    scopus 로고
    • An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding
    • [18] Tong, C.D., Palazoglu, A., Yan, X.F., An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding. J. Process Control 23 (2013), 1497–1503.
    • (2013) J. Process Control , vol.23 , pp. 1497-1503
    • Tong, C.D.1    Palazoglu, A.2    Yan, X.F.3
  • 19
    • 83655196007 scopus 로고    scopus 로고
    • Process pattern construction and multi-mode monitoring
    • [19] Zhu, Z.B., Song, Z.H., Palazoglu, A., Process pattern construction and multi-mode monitoring. J. Process Control 22 (2012), 247–262.
    • (2012) J. Process Control , vol.22 , pp. 247-262
    • Zhu, Z.B.1    Song, Z.H.2    Palazoglu, A.3
  • 20
    • 84903793852 scopus 로고    scopus 로고
    • Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology
    • [20] Tong, C.D., Farra, N.H.E., Palazoglu, A., Yan, X.F., Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology. AIChE J. 60 (2014), 2805–2814.
    • (2014) AIChE J. , vol.60 , pp. 2805-2814
    • Tong, C.D.1    Farra, N.H.E.2    Palazoglu, A.3    Yan, X.F.4
  • 21
    • 84948679730 scopus 로고    scopus 로고
    • Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes
    • [21] Zhang, S.M., Wang, F.L., Tan, S., Wang, S., Chang, Y.Q., Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes. Ind. Eng. Chem. Res. 541 (2015), 11866–11880.
    • (2015) Ind. Eng. Chem. Res. , vol.541 , pp. 11866-11880
    • Zhang, S.M.1    Wang, F.L.2    Tan, S.3    Wang, S.4    Chang, Y.Q.5
  • 22
    • 84908210209 scopus 로고    scopus 로고
    • Multi-subspace principal component analysis with local outlier factor for multimode process monitoring
    • [22] Song, B., Shi, H.B., Ma, Y.X., Wang, J.P., Multi-subspace principal component analysis with local outlier factor for multimode process monitoring. Ind. Eng. Chem. Res. 53 (2014), 16453–16464.
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 16453-16464
    • Song, B.1    Shi, H.B.2    Ma, Y.X.3    Wang, J.P.4
  • 23
    • 83655201159 scopus 로고    scopus 로고
    • Process monitoring based on mode identification for multi-mode process with transitions
    • [23] Wang, F.L., Tan, S., Peng, J., Chang, Y.Q., Process monitoring based on mode identification for multi-mode process with transitions. Chemom. Intell. Lab. Syst. 110 (2012), 144–155.
    • (2012) Chemom. Intell. Lab. Syst. , vol.110 , pp. 144-155
    • Wang, F.L.1    Tan, S.2    Peng, J.3    Chang, Y.Q.4
  • 24
    • 84862956465 scopus 로고    scopus 로고
    • Multimode process monitoring based on mode identification
    • [24] Tan, S., Wang, F.L., Peng, J., Chang, Y.Q., Wang, S., Multimode process monitoring based on mode identification. Ind. Eng. Chem. Res. 51 (2012), 374–388.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 374-388
    • Tan, S.1    Wang, F.L.2    Peng, J.3    Chang, Y.Q.4    Wang, S.5
  • 25
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • [25] Zhao, S.J., Zhang, J., Xu, Y.M., Monitoring of processes with multiple operation modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 43 (2004), 7025–7035.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 26
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • [26] Ge, Z.Q., Song, Z.H., Multimode process monitoring based on Bayesian method. J. Chemom. 23 (2009), 636–650.
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 27
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • [27] Ge, Z.Q., Gao, F.R., Song, Z.H., Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chem. Eng. Sci. 66 (2011), 5173–5183.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5173-5183
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 28
    • 84926306551 scopus 로고    scopus 로고
    • Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin
    • [28] Zhao, C.H., Wang, W., Qin, Y., Gao, F.R., Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin. Ind. Eng. Chem. Res. 54 (2015), 3154–3166.
    • (2015) Ind. Eng. Chem. Res. , vol.54 , pp. 3154-3166
    • Zhao, C.H.1    Wang, W.2    Qin, Y.3    Gao, F.R.4
  • 29
    • 84892436192 scopus 로고    scopus 로고
    • Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
    • [29] Zhao, C.H., Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AIChE J. 60 (2014), 559–573.
    • (2014) AIChE J. , vol.60 , pp. 559-573
    • Zhao, C.H.1
  • 30
    • 84860524308 scopus 로고    scopus 로고
    • Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation
    • [30] Dobos, L., Abonyi, J., Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation. Chem. Eng. Sci. 75 (2012), 96–105.
    • (2012) Chem. Eng. Sci. , vol.75 , pp. 96-105
    • Dobos, L.1    Abonyi, J.2
  • 32
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • [32] Lee, J.M., Yoo, C.K., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59 (2004), 223–234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 33
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • [33] Bakshi, B.R., Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44 (1998), 1596–1610.
    • (1998) AIChE J. , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 34
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • [34] Kim, D.S., Lee, I.B., Process monitoring based on probabilistic PCA. Chemom. Intell. Lab. Syst. 67 (2003), 109–123.
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 35
    • 0033903077 scopus 로고    scopus 로고
    • Determining the number of principal components for best reconstruction
    • [35] Qin, S.J., Dunia, R., Determining the number of principal components for best reconstruction. J. Process Control 10 (2000), 245–250.
    • (2000) J. Process Control , vol.10 , pp. 245-250
    • Qin, S.J.1    Dunia, R.2
  • 36
    • 84891960044 scopus 로고    scopus 로고
    • Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects
    • [36] Camacho, J., Ferrer, A., Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects. Chemom. Intell. Lab. Syst. 131 (2014), 37–50.
    • (2014) Chemom. Intell. Lab. Syst. , vol.131 , pp. 37-50
    • Camacho, J.1    Ferrer, A.2
  • 37
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • [37] Tamura, M., Tsujita, S., A study on the number of principal components and sensitivity of fault detection using PCA. Comput. Chem. Eng. 31 (2007), 1035–1046.
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 38
    • 0035139041 scopus 로고    scopus 로고
    • Experimental design and inferential modeling in pharmaceutical crystallization
    • [38] Togkalidou, T., Braatz, R.D., Johnson, B.K., Davidson, O., Andrews, A., Experimental design and inferential modeling in pharmaceutical crystallization. AIChE J. 47 (2001), 160–168.
    • (2001) AIChE J. , vol.47 , pp. 160-168
    • Togkalidou, T.1    Braatz, R.D.2    Johnson, B.K.3    Davidson, O.4    Andrews, A.5
  • 39
    • 84894068408 scopus 로고    scopus 로고
    • Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
    • [39] Jiang, Q.C., Yan, X.F., Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring. AIChE J. 60 (2014), 949–965.
    • (2014) AIChE J. , vol.60 , pp. 949-965
    • Jiang, Q.C.1    Yan, X.F.2
  • 40
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • [40] Chiang, L.H., Russell, E.L., Braatz, R.D., Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom. Intell. Lab. Syst. 50 (2000), 243–252.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 41
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • [41] Lee, J., Kang, B., Kang, S.H., Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J. Process Control 21 (2011), 1011–1021.
    • (2011) J. Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.H.3
  • 42
    • 84953877886 scopus 로고    scopus 로고
    • Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation
    • [42] Zhao, C.H., Wang, W., Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation. J. Process Control 38 (2016), 31–41.
    • (2016) J. Process Control , vol.38 , pp. 31-41
    • Zhao, C.H.1    Wang, W.2
  • 43
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • [43] Zhang, Y.W., Qin, S.J., Improved nonlinear fault detection technique and statistical analysis. AIChE J. 54 (2008), 3204–3220.
    • (2008) AIChE J. , vol.54 , pp. 3204-3220
    • Zhang, Y.W.1    Qin, S.J.2
  • 44
    • 84894088611 scopus 로고    scopus 로고
    • Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
    • [44] Zhao, C.H., Gao, F.R., Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring. Chemom. Intell. Lab. Syst. 133 (2014), 1–16.
    • (2014) Chemom. Intell. Lab. Syst. , vol.133 , pp. 1-16
    • Zhao, C.H.1    Gao, F.R.2
  • 45
    • 1642313098 scopus 로고    scopus 로고
    • Multirate dynamic inferential modeling for multivariable processes
    • [45] Lu, N.Y., Yang, Y., Gao, F.R., Wang, F.L., Multirate dynamic inferential modeling for multivariable processes. Chem. Eng. Sci. 59 (2004), 855–864.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 855-864
    • Lu, N.Y.1    Yang, Y.2    Gao, F.R.3    Wang, F.L.4
  • 46
    • 84887356740 scopus 로고    scopus 로고
    • Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
    • [46] Zhao, C.H., Sun, Y.X., Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis. J. Process Control 23 (2013), 1515–1527.
    • (2013) J. Process Control , vol.23 , pp. 1515-1527
    • Zhao, C.H.1    Sun, Y.X.2
  • 47
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • [47] Ricker, N.L., Optimal steady-state operation of the Tennessee Eastman challenge process. Comput. Chem. Eng. 19 (1995), 949–959.
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 48
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • [48] Downs, J.J., Vogel, E.F., A plant-wide industrial process control problem. Comput. Chem. Eng. 17 (1993), 245–255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 49
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • [49] Yoon, S., MacGregor, J.F., Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process Control 11 (2001), 387–400.
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.