메뉴 건너뛰기




Volumn 20, Issue 10, 2010, Pages 1188-1197

Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information

Author keywords

2D dynamics; Batch processes; Mixture model; Multivariate statistical process monitoring; Non Gaussian; Principal component analysis

Indexed keywords

DYNAMICS; FERMENTATION; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); IMAGE SEGMENTATION; MULTIVARIANT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY DENSITY FUNCTION; PROCESS MONITORING; STATISTICAL PROCESS CONTROL;

EID: 78149285529     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2010.07.002     Document Type: Article
Times cited : (40)

References (25)
  • 3
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, and J. MacGregor Monitoring batch processes using multiway principal component analysis AIChE J. 40 1994 1361 1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.2
  • 4
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • P. Nomikos, and J. MacGregor Multivariate SPC charts for monitoring batch processes Technometrics 1995 41 59
    • (1995) Technometrics , pp. 41-59
    • Nomikos, P.1    MacGregor, J.2
  • 5
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimensional dynamic PCA for batch process monitoring
    • N. Lu, Y. Yao, F. Gao, and F. Wang Two-dimensional dynamic PCA for batch process monitoring AIChE J. 51 2005 3300 3304
    • (2005) AIChE J. , vol.51 , pp. 3300-3304
    • Lu, N.1    Yao, Y.2    Gao, F.3    Wang, F.4
  • 6
    • 36749028738 scopus 로고    scopus 로고
    • Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
    • Y. Yao, and F. Gao Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) Ind. Eng. Chem. Res. 46 2007 8033 8043
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 8033-8043
    • Yao, Y.1    Gao, F.2
  • 7
    • 71849093181 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes
    • Y. Yao, and F. Gao Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes J. Process Control 19 2009 1716 1724
    • (2009) J. Process Control , vol.19 , pp. 1716-1724
    • Yao, Y.1    Gao, F.2
  • 8
    • 70449094646 scopus 로고    scopus 로고
    • A survey on multistage/multiphase statistical modeling methods for batch processes
    • Y. Yao, and F. Gao A survey on multistage/multiphase statistical modeling methods for batch processes Annu. Rev. Control. 33 2009 172 183
    • (2009) Annu. Rev. Control. , vol.33 , pp. 172-183
    • Yao, Y.1    Gao, F.2
  • 10
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley, and A. Raftery Model-based clustering, discriminant analysis, and density estimation J. Am. Stat. Assoc. 97 2002 611 632
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-632
    • Fraley, C.1    Raftery, A.2
  • 11
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • S. Choi, J. Park, and I. Lee Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis Comput. Chem. Eng. 28 2004 1377 1387
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.1    Park, J.2    Lee, I.3
  • 13
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
    • T. Chen, J. Morris, and E. Martin Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring J. R. Stat. Soc. Ser. C: Appl. Stat. 55 2006 699 716
    • (2006) J. R. Stat. Soc. Ser. C: Appl. Stat. , vol.55 , pp. 699-716
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 14
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • J. Yu, and S. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 2008 1811 1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.2
  • 15
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
    • T. Chen, and Y. Sun Probabilistic contribution analysis for statistical process monitoring: a missing variable approach Control Eng. Pract. 17 2009 469 477
    • (2009) Control Eng. Pract. , vol.17 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 16
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.2
  • 17
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    • T. Chen, and J. Zhang On-line multivariate statistical monitoring of batch processes using Gaussian mixture model Comput. Chem. Eng. 34 2009 500 507
    • (2009) Comput. Chem. Eng. , vol.34 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 18
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • G. Birol, C. Ündey, and A. Cinar A modular simulation package for fed-batch fermentation: penicillin production Comput. Chem. Eng. 26 2002 1553 1565
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Cinar, A.3
  • 19
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • S. Wold Cross-validatory estimation of the number of components in factor and principal components models Technometrics 1978 397 405
    • (1978) Technometrics , pp. 397-405
    • Wold, S.1
  • 20
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • J. Westerhuis, S. Gurden, and A. Smilde Generalized contribution plots in multivariate statistical process monitoring Chemom. Intell. Lab. Syst. 51 2000 95 114
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.1    Gurden, S.2    Smilde, A.3
  • 21
    • 61649107911 scopus 로고    scopus 로고
    • Two-dimensional dynamic principal component analysis with autodetermined support region
    • Y. Yao, Y. Diao, N. Lu, J. Lu, and F. Gao Two-dimensional dynamic principal component analysis with autodetermined support region Ind. Eng. Chem. Res. 48 2009 837 843
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 837-843
    • Yao, Y.1    Diao, Y.2    Lu, N.3    Lu, J.4    Gao, F.5
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Stat. 6 1978 461 464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.