메뉴 건너뛰기




Volumn 75, Issue , 2012, Pages 96-105

On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation

Author keywords

Data mining; Dynamic principlal component analysis; Process monitoring; Tennessee Eastman process; Time series segmentation; Variable forgetting factor

Indexed keywords

CHEMICAL PROCESS; COMPONENT ANALYSIS; DYNAMIC BEHAVIORS; DYNAMIC PCA (DPCA); DYNAMIC PRINCIPAL COMPONENT ANALYSIS; LINEAR PROCESS; MULTIVARIATE SEGMENTATIONS; ON-LINE DETECTION; OPERATION RANGE; OPERATION REGIME; PCA MODEL; PROCESS DATA; PROCESS MONITORING AND CONTROL; TENNESSEE EASTMAN PROCESS; TIME-SERIES SEGMENTATION; TRANSIENT STATE; VARIABLE FORGETTING FACTORS;

EID: 84860524308     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2012.02.022     Document Type: Article
Times cited : (33)

References (36)
  • 1
    • 13444259335 scopus 로고    scopus 로고
    • Improved branch and bound method for control structure screening
    • Cao Y., Saha P. Improved branch and bound method for control structure screening. Chem. Eng. Sci. 2005, 60:1555-1564.
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 1555-1564
    • Cao, Y.1    Saha, P.2
  • 2
    • 21344454882 scopus 로고    scopus 로고
    • Applying wavelet-based hidden Markov tree to enhancing performance of process monitoring
    • Chen J., Chang W.J. Applying wavelet-based hidden Markov tree to enhancing performance of process monitoring. Chem. Eng. Sci. 2005, 60:5129-5143.
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 5129-5143
    • Chen, J.1    Chang, W.J.2
  • 3
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., Lee I.B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 2004, 59:5897-5908.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 4
    • 79954556438 scopus 로고    scopus 로고
    • Fault diagnosis of batch chemical processes using dynamic time warping (DTW)-based artificial immune system
    • Dai Y., Zhao J. Fault diagnosis of batch chemical processes using dynamic time warping (DTW)-based artificial immune system. Ind. Eng. Chem. Res. 2011, 50:4534-4544.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 4534-4544
    • Dai, Y.1    Zhao, J.2
  • 5
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J., Vogel E. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.1    Vogel, E.2
  • 6
    • 0019632891 scopus 로고
    • Implementation of self-tuning regulators with variable forgetting factors
    • Fortescue T., Kershenbaum L., Ydstie B. Implementation of self-tuning regulators with variable forgetting factors. Automatica 1981, 17:831-835.
    • (1981) Automatica , vol.17 , pp. 831-835
    • Fortescue, T.1    Kershenbaum, L.2    Ydstie, B.3
  • 7
    • 67650518081 scopus 로고    scopus 로고
    • Total PLS based contribution plots for fault diagnosis
    • Gang L., Si-Zhao Q., Yin-Dong J., Dong-Hua Z. Total PLS based contribution plots for fault diagnosis. Acta Automat. Sin. 2009, 35(6):1103-1113.
    • (2009) Acta Automat. Sin. , vol.35 , Issue.6 , pp. 1103-1113
    • Gang, L.1    Si-Zhao, Q.2    Yin-Dong, J.3    Dong-Hua, Z.4
  • 8
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z., Yang C., Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64:2245-2255.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 9
    • 33745467111 scopus 로고    scopus 로고
    • Time-series segmentation for context recognition in mobile devices
    • In: IEEE International Conference on Data Mining (ICDM01), San Jose, California
    • Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H., 2001. Time-series segmentation for context recognition in mobile devices. In: IEEE International Conference on Data Mining (ICDM01), San Jose, California, pp. 466-473.
    • (2001) , pp. 466-473
    • Himberg, J.1    Korpiaho, K.2    Mannila, H.3    Tikanmaki, J.4    Toivonen, H.5
  • 10
    • 0035255111 scopus 로고    scopus 로고
    • Process identification based on last principal component analysis
    • Huang B. Process identification based on last principal component analysis. J. Process Control 2001, 11:19-33.
    • (2001) J. Process Control , vol.11 , pp. 19-33
    • Huang, B.1
  • 11
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • Kano M., Hasebe S., Hashimoto I., Ohno H. A new multivariate statistical process monitoring method using principal component analysis. Comput. Chem. Eng. 2001, 25:1103-1113.
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1103-1113
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 12
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • In: IEEE International Conference on Data Mining. URL:
    • Keogh, E., Chu, S., Hart, D., Pazzani, H., 2001. An online algorithm for segmenting time series. In: IEEE International Conference on Data Mining. URL: http://citeseer.nj.nec.com/keogh01online.html.
    • (2001)
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazzani, H.4
  • 13
    • 0002852010 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • In: Fourth International Conference on KDD
    • Keogh, E., Chu, S., Hart, D., Pazzani, M., 1998. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In: Fourth International Conference on KDD, pp. 239-243.
    • (1998) , pp. 239-243
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazzani, M.4
  • 14
    • 84860581188 scopus 로고    scopus 로고
    • Overview of process trend analysis methods and applications
    • In: ERUDIT Workshop on Applications in Pulp and Paper Industry. CD-ROM.
    • Kivikunnas, S., 1998. Overview of process trend analysis methods and applications. In: ERUDIT Workshop on Applications in Pulp and Paper Industry. CD-ROM.
    • (1998)
    • Kivikunnas, S.1
  • 15
    • 84950659640 scopus 로고
    • Between group comparison of principal components
    • Krzanowsky W. Between group comparison of principal components. J. Am. Stat. Assoc. 1979, 703-707.
    • (1979) J. Am. Stat. Assoc. , pp. 703-707
    • Krzanowsky, W.1
  • 16
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principle component analysis
    • Ku W., Storer R., Georgakis C. Disturbance detection and isolation by dynamic principle component analysis. Chemomet. Intell. Lab. Syst. 1995, 30:179-196.
    • (1995) Chemomet. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.2    Georgakis, C.3
  • 17
    • 0037288818 scopus 로고    scopus 로고
    • Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process
    • Lane S., Martin E., Morris A., Gover P. Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process. Trans. Inst. Meas. Control 2003, 25:17-35.
    • (2003) Trans. Inst. Meas. Control , vol.25 , pp. 17-35
    • Lane, S.1    Martin, E.2    Morris, A.3    Gover, P.4
  • 18
  • 19
    • 79951581598 scopus 로고    scopus 로고
    • A novel artificial immune system for fault behavior detection
    • Laurentys C.A., Palhares R.M., Caminhas W.M. A novel artificial immune system for fault behavior detection. Expert Syst. Appl. 2011, 38:6957-6966.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 6957-6966
    • Laurentys, C.A.1    Palhares, R.M.2    Caminhas, W.M.3
  • 20
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J.M., Yoob C., Lee I.B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 2004, 59:2995-3006.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995-3006
    • Lee, J.M.1    Yoob, C.2    Lee, I.B.3
  • 22
    • 27144456830 scopus 로고    scopus 로고
    • Fault diagnosis by qualitative trend analysis of principal components
    • Maurya M.R., Rengaswamy R., Venkatasubramanian V. Fault diagnosis by qualitative trend analysis of principal components. Chem. Eng. Res. Des. 2005, 83:1122-1132.
    • (2005) Chem. Eng. Res. Des. , vol.83 , pp. 1122-1132
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 23
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker N. Decentralized control of the Tennessee Eastman challenge process. J. Process Control 1996, 6:205-221.
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Ricker, N.1
  • 24
    • 0035493957 scopus 로고    scopus 로고
    • Knowledge discovery from process operational data using PCA and fuzzy clustering
    • Sebzalli Y., Wang X. Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 2001, 14:607-616.
    • (2001) Eng. Appl. Artif. Intell. , vol.14 , pp. 607-616
    • Sebzalli, Y.1    Wang, X.2
  • 25
    • 78651417659 scopus 로고    scopus 로고
    • Finding a trade off between observability and economics in fault detection of chemical processes
    • Shams M.B., Budman H., Duever T. Finding a trade off between observability and economics in fault detection of chemical processes. Comput. Chem. Eng. 2011, 35:319-328.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 319-328
    • Shams, M.B.1    Budman, H.2    Duever, T.3
  • 26
    • 80051697507 scopus 로고    scopus 로고
    • Fault detection, identification and diagnosis using CUSUM based PCA
    • Shams M.B., Budman H., Duever T. Fault detection, identification and diagnosis using CUSUM based PCA. Chem. Eng. Sci. 2011, 66:4488-4498.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 4488-4498
    • Shams, M.B.1    Budman, H.2    Duever, T.3
  • 27
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and non-linear principal components analysis for process monitoring
    • Shao R., Jia F., Martin E., Morris A. Wavelets and non-linear principal components analysis for process monitoring. Control Eng. Pract. 1999, 7:865-879.
    • (1999) Control Eng. Pract. , vol.7 , pp. 865-879
    • Shao, R.1    Jia, F.2    Martin, E.3    Morris, A.4
  • 28
    • 0034856237 scopus 로고    scopus 로고
    • Matching patterns from historical data using PCA and distance similarity factors
    • In: Proceedings of the American Control Conference
    • Singhal, A., Seborg, D., 2001. Matching patterns from historical data using PCA and distance similarity factors. In: Proceedings of the American Control Conference, pp. 1759-1764.
    • (2001) , pp. 1759-1764
    • Singhal, A.1    Seborg, D.2
  • 29
    • 33746297394 scopus 로고    scopus 로고
    • Online fault diagnosis and state identification during process transitions using dynamic locus analysis
    • Srinivasan R., Qian M.S. Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chem. Eng. Sci. 2006, 61:6109-6132.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 6109-6132
    • Srinivasan, R.1    Qian, M.S.2
  • 30
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal components analysis
    • Tipping M.E., Bishop C.M. Mixtures of probabilistic principal components analysis. Neural Comput. 1999, 11:443-482.
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 31
    • 0001925804 scopus 로고
    • Multivariate control charts for individual observations
    • Tracy N., Young J., Mason R. Multivariate control charts for individual observations. J. Qual. Technol. 1992, 24:88-95.
    • (1992) J. Qual. Technol. , vol.24 , pp. 88-95
    • Tracy, N.1    Young, J.2    Mason, R.3
  • 32
    • 1642433203 scopus 로고    scopus 로고
    • Estimating the number of segments in time series data using permutation tests
    • In: IEEE International Conference on Data Mining
    • Vasko, K., Toivonen, H., 2002. Estimating the number of segments in time series data using permutation tests. In: IEEE International Conference on Data Mining, pp. 466-473.
    • (2002) , pp. 466-473
    • Vasko, K.1    Toivonen, H.2
  • 33
    • 0036778659 scopus 로고    scopus 로고
    • A new subspace identification approach based on principal component analysis
    • Wang J., Qin S.J. A new subspace identification approach based on principal component analysis. J. Process Control 2002, 12:841-855.
    • (2002) J. Process Control , vol.12 , pp. 841-855
    • Wang, J.1    Qin, S.J.2
  • 34
    • 84983978219 scopus 로고
    • Multivariate statistical process control- recent results and directions for future research
    • Wieda S. Multivariate statistical process control- recent results and directions for future research. Stat. Neerl. 1994, 48:147-168.
    • (1994) Stat. Neerl. , vol.48 , pp. 147-168
    • Wieda, S.1
  • 35
    • 70350134739 scopus 로고    scopus 로고
    • The use of computation intelligence in intrusion detection systems: a review
    • Wu S.X., Banzhaf W. The use of computation intelligence in intrusion detection systems: a review. Appl. Soft Comput. 2010, 10:1-35.
    • (2010) Appl. Soft Comput. , vol.10 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 36
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • Zhang Y., Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem. Eng. Sci. 2011, 66:64-72.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.