메뉴 건너뛰기




Volumn 53, Issue 42, 2014, Pages 16453-16464

Multisubspace principal component analysis with local outlier factor for multimode process monitoring

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ANALYSIS; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; ITERATIVE METHODS; PROCESS CONTROL; PROCESS MONITORING; STATISTICS;

EID: 84908210209     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie502344q     Document Type: Article
Times cited : (46)

References (50)
  • 1
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 2
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge, Z. Q.; Song, Z. H. Mixture Bayesian regularization method of PPCA for multimode process monitoring AIChE J. 2010, 56, 2838-2849
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 3
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim, D. S.; Lee, I. B. Process monitoring based on probabilistic PCA Chemom. Intell. Lab. Syst. 2003, 67, 109-123
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 4
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin, H. D.; Lee, Y. H.; Lee, G.; Han, C. H. Robust recursive principal component analysis modeling for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 696-703
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 5
    • 84894088611 scopus 로고    scopus 로고
    • Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
    • Zhao, C. H.; Gao, F. R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring Chemom. Intell. Lab. Syst. 2014, 133, 1-16
    • (2014) Chemom. Intell. Lab. Syst. , vol.133 , pp. 1-16
    • Zhao, C.H.1    Gao, F.R.2
  • 6
    • 84887285137 scopus 로고    scopus 로고
    • An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding
    • Tong, C. D.; Palazoglu, A.; Yan, X. F. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding J. Process Control 2013, 23, 1497-1507
    • (2013) J. Process Control , vol.23 , pp. 1497-1507
    • Tong, C.D.1    Palazoglu, A.2    Yan, X.F.3
  • 7
    • 77951170257 scopus 로고    scopus 로고
    • Operational performance assessment and fault isolation for multimode processes
    • Liu, J. L.; Chen, D. S. Operational performance assessment and fault isolation for multimode processes Ind. Eng. Chem. Res. 2010, 49, 3700-3714
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 3700-3714
    • Liu, J.L.1    Chen, D.S.2
  • 8
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge, Z. Q.; Song, Z. H.; Gao, F. R. Review of recent research on data-based process monitoring Ind. Eng. Chem. Res. 2013, 52, 3543-3562
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.Q.1    Song, Z.H.2    Gao, F.R.3
  • 9
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge, Z. Q.; Song, Z. H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Eng. Pract. 2008, 16, 1427-1437
    • (2008) Control Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 10
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
    • Ma, H. H.; Hu, Y.; Shi, H. B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes Chemom. Intell. Lab. Syst. 2012, 118, 287-300
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 11
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 12
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie, X.; Shi, H. B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models Ind. Eng. Chem. Res. 2012, 51, 5497-5505
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 13
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: Application of independent component analysis and external analysis
    • Kano, M.; Hasebe, S.; Hashimoto, I.; Ohno, H. Evolution of multivariate statistical process control: Application of independent component analysis and external analysis Comput. Chem. Eng. 2004, 28, 1157-1166
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 14
    • 84892736167 scopus 로고    scopus 로고
    • Multimode process monitoring based on aligned mixture factor analysis
    • Ma, Y. X.; Shi, H. B. Multimode process monitoring based on aligned mixture factor analysis Ind. Eng. Chem. Res. 2014, 53, 786-799
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 786-799
    • Ma, Y.X.1    Shi, H.B.2
  • 15
    • 84898795506 scopus 로고    scopus 로고
    • Multimode process monitoring using improved dynamic neighborhood preserving embedding
    • Song, B.; Ma, Y. X.; Shi, H. B. Multimode process monitoring using improved dynamic neighborhood preserving embedding Chemom. Intell. Lab. Syst. 2014, 135, 17-30
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 17-30
    • Song, B.1    Ma, Y.X.2    Shi, H.B.3
  • 16
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge, Z. Q.; Song, Z. H. Multimode process monitoring based on Bayesian method J. Chemom. 2009, 23, 636-650
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 17
    • 83655201159 scopus 로고    scopus 로고
    • Process monitoring based on mode identification for multi-mode process with transitions
    • Wang, F. L.; Tan, S.; Peng, J.; Chang, Y. Q. Process monitoring based on mode identification for multi-mode process with transitions Chemom. Intell. Lab. Syst. 2012, 110, 144-155
    • (2012) Chemom. Intell. Lab. Syst. , vol.110 , pp. 144-155
    • Wang, F.L.1    Tan, S.2    Peng, J.3    Chang, Y.Q.4
  • 18
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge, Z. Q.; Gao, F. R.; Song, Z. H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes Chem. Eng. Sci. 2011, 66, 5173-5183
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5173-5183
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 19
    • 65349135893 scopus 로고    scopus 로고
    • Fault detection and identification using modified Bayesian classification on PCA subspace
    • Liu, J. L.; Chen, D. S. Fault detection and identification using modified Bayesian classification on PCA subspace Ind. Eng. Chem. Res. 2009, 48, 3059-3077
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 3059-3077
    • Liu, J.L.1    Chen, D.S.2
  • 20
  • 21
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • Zhao, S. J.; Zhang, J.; Xu, Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 22
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li, R. F.; Wang, X. Z. Dimension reduction of process dynamic trends using independent component analysis Comput. Chem. Eng. 2002, 26, 467-473
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 23
    • 84899881230 scopus 로고    scopus 로고
    • Improved ICA for process monitoring based on ensemble learning and Bayesian inference
    • Tong, C. D.; Palazoglu, A.; Yan, X. F. Improved ICA for process monitoring based on ensemble learning and Bayesian inference Chemom. Intell. Lab. Syst. 2014, 135, 141-149
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 141-149
    • Tong, C.D.1    Palazoglu, A.2    Yan, X.F.3
  • 24
    • 44349144443 scopus 로고    scopus 로고
    • Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data
    • Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data Ind. Eng. Chem. Res. 2008, 47, 3104-3113
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 3104-3113
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 25
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054-2063
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 26
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
    • Zhao, C. H.; Gao, F. R.; Wang, F. L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 27
    • 84880292457 scopus 로고    scopus 로고
    • Dynamic process monitoring using adaptive local outlier factor
    • Ma, Y. X.; Shi, H. B.; Ma, H. H.; Wang, M. L. Dynamic process monitoring using adaptive local outlier factor Chemom. Intell. Lab. Syst. 2013, 127, 89-101
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 89-101
    • Ma, Y.X.1    Shi, H.B.2    Ma, H.H.3    Wang, M.L.4
  • 28
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee, J.; Kang, B.; Kang, S. H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring J. Process Control 2011, 21, 1011-1021
    • (2011) J. Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.H.3
  • 29
    • 84873616584 scopus 로고    scopus 로고
    • Fault detection and identification based on the neighborhood standardized local outlier factor method
    • Ma, H. H.; Hu, Y.; Shi, H. B. Fault detection and identification based on the neighborhood standardized local outlier factor method Ind. Eng. Chem. Res. 2013, 52, 2389-2402
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 2389-2402
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 30
    • 0033903077 scopus 로고    scopus 로고
    • Determining the number of principal components for best reconstruction
    • Qin, S. J.; Dunia, R. Determining the number of principal components for best reconstruction J. Process Control 2000, 10, 245-250
    • (2000) J. Process Control , vol.10 , pp. 245-250
    • Qin, S.J.1    Dunia, R.2
  • 31
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Tamura, M.; Tsujita, S. A study on the number of principal components and sensitivity of fault detection using PCA Comput. Chem. Eng. 2007, 31, 1035-1046
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 32
    • 0001247934 scopus 로고
    • A note on the use of principal components in regression
    • Jolliffe, I. T. A note on the use of principal components in regression Appl. Statist. 1982, 300-303
    • (1982) Appl. Statist. , pp. 300-303
    • Jolliffe, I.T.1
  • 33
    • 0035139041 scopus 로고    scopus 로고
    • Experimental design and inferential modeling in pharmaceutical crystallization
    • Togkalidou, T.; Braatz, R. D.; Johnson, B. K.; Davidson, O.; Andrews, A. Experimental design and inferential modeling in pharmaceutical crystallization AIChE J. 2001, 47, 160-168
    • (2001) AIChE J. , vol.47 , pp. 160-168
    • Togkalidou, T.1    Braatz, R.D.2    Johnson, B.K.3    Davidson, O.4    Andrews, A.5
  • 34
    • 84873855648 scopus 로고    scopus 로고
    • Fault detection and diagnosis in chemical processes using sensitive principal component analysis
    • Jiang, Q. C.; Yan, X. F.; Zhao, W. X. Fault detection and diagnosis in chemical processes using sensitive principal component analysis Ind. Eng. Chem. Res. 2013, 52, 1635-1644
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1635-1644
    • Jiang, Q.C.1    Yan, X.F.2    Zhao, W.X.3
  • 35
    • 84880858673 scopus 로고    scopus 로고
    • Distributed statistical process monitoring based on four-subspace construction and Bayesian inference
    • Tong, C. D.; Song, Y.; Yan, X. F. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference Ind. Eng. Chem. Res. 2013, 52, 9897-9907
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 9897-9907
    • Tong, C.D.1    Song, Y.2    Yan, X.F.3
  • 37
    • 84896696453 scopus 로고    scopus 로고
    • Improved two-level monitoring system for plant-wide processes
    • Ge, Z. Q. Improved two-level monitoring system for plant-wide processes Chemom. Intell. Lab. Syst. 2014, 132, 141-151
    • (2014) Chemom. Intell. Lab. Syst. , vol.132 , pp. 141-151
    • Ge, Z.Q.1
  • 38
    • 0035493957 scopus 로고    scopus 로고
    • Knowledge discovery from process operational data using PCA and fuzzy clustering
    • Sebzalli, Y. M.; Wang, X. Z. Knowledge discovery from process operational data using PCA and fuzzy clustering Eng. Appl. Artif. Intel. 2001, 14, 607-616
    • (2001) Eng. Appl. Artif. Intel. , vol.14 , pp. 607-616
    • Sebzalli, Y.M.1    Wang, X.Z.2
  • 39
    • 56349129392 scopus 로고    scopus 로고
    • A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
    • Chen, W. C.; Wang, M. S. A fuzzy c-means clustering-based fragile watermarking scheme for image authentication Expert Syst. Appl. 2009, 36, 1300-1307
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1300-1307
    • Chen, W.C.1    Wang, M.S.2
  • 40
    • 56749095428 scopus 로고    scopus 로고
    • Fault detection and classification for a process with multiple production grades
    • Liu, J. L. Fault detection and classification for a process with multiple production grades Ind. Eng. Chem. Res. 2008, 47, 8250-8262
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8250-8262
    • Liu, J.L.1
  • 41
    • 34250008772 scopus 로고    scopus 로고
    • Cluster analysis for autocorrelated and cyclic chemical process data
    • Beaver, S.; Palazoglu, A.; Romagnoli, J. A. Cluster analysis for autocorrelated and cyclic chemical process data Ind. Eng. Chem. Res. 2007, 46, 3610-3622
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 3610-3622
    • Beaver, S.1    Palazoglu, A.2    Romagnoli, J.A.3
  • 42
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W. F.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.F.1    Storer, R.H.2    Georgakis, C.3
  • 43
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Ge, Z. Q.; Zhang, M. G.; Song, Z. H. Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 2010, 20, 676-688
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3
  • 44
    • 84892436192 scopus 로고    scopus 로고
    • Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
    • Zhao, C. H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring AIChE J. 2014, 60, 559-573
    • (2014) AIChE J. , vol.60 , pp. 559-573
    • Zhao, C.H.1
  • 45
    • 77957355948 scopus 로고    scopus 로고
    • Statistical analysis and online monitoring for multimode processes with between-mode transitions
    • Zhao, C. H.; Yao, Y.; Gao, F. R.; Wang, F. L. Statistical analysis and online monitoring for multimode processes with between-mode transitions Chem. Eng. Sci. 2010, 65, 5961-5975
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 5961-5975
    • Zhao, C.H.1    Yao, Y.2    Gao, F.R.3    Wang, F.L.4
  • 46
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • Ricker, N. L. Optimal steady-state operation of the Tennessee Eastman challenge process Comput. Chem. Eng. 1995, 19, 949-959
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 47
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 48
    • 84899008862 scopus 로고    scopus 로고
    • Improved kernel PLS-based fault detection approach for nonlinear chemical processes
    • Wang, L.; Shi, H. B. Improved kernel PLS-based fault detection approach for nonlinear chemical processes Chin. J. Chem. Eng. 2014, 22, 657-663
    • (2014) Chin. J. Chem. Eng. , vol.22 , pp. 657-663
    • Wang, L.1    Shi, H.B.2
  • 49
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures
    • Yoon, S.; MacGregor, J. F. Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures J. Process Control 2001, 11, 387-400
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 50
    • 84906314849 scopus 로고    scopus 로고
    • Adaptive local outlier probability for dynamic process monitoring
    • Ma, Y. X.; Shi, H. B.; Wang, M. L. Adaptive local outlier probability for dynamic process monitoring Chin. J. Chem. Eng. 2014, 22, 820-827
    • (2014) Chin. J. Chem. Eng. , vol.22 , pp. 820-827
    • Ma, Y.X.1    Shi, H.B.2    Wang, M.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.