-
1
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
2
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge, Z. Q.; Song, Z. H. Mixture Bayesian regularization method of PPCA for multimode process monitoring AIChE J. 2010, 56, 2838-2849
-
(2010)
AIChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
3
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim, D. S.; Lee, I. B. Process monitoring based on probabilistic PCA Chemom. Intell. Lab. Syst. 2003, 67, 109-123
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.S.1
Lee, I.B.2
-
4
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin, H. D.; Lee, Y. H.; Lee, G.; Han, C. H. Robust recursive principal component analysis modeling for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 696-703
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
5
-
-
84894088611
-
Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
-
Zhao, C. H.; Gao, F. R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring Chemom. Intell. Lab. Syst. 2014, 133, 1-16
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.133
, pp. 1-16
-
-
Zhao, C.H.1
Gao, F.R.2
-
6
-
-
84887285137
-
An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding
-
Tong, C. D.; Palazoglu, A.; Yan, X. F. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding J. Process Control 2013, 23, 1497-1507
-
(2013)
J. Process Control
, vol.23
, pp. 1497-1507
-
-
Tong, C.D.1
Palazoglu, A.2
Yan, X.F.3
-
7
-
-
77951170257
-
Operational performance assessment and fault isolation for multimode processes
-
Liu, J. L.; Chen, D. S. Operational performance assessment and fault isolation for multimode processes Ind. Eng. Chem. Res. 2010, 49, 3700-3714
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 3700-3714
-
-
Liu, J.L.1
Chen, D.S.2
-
8
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge, Z. Q.; Song, Z. H.; Gao, F. R. Review of recent research on data-based process monitoring Ind. Eng. Chem. Res. 2013, 52, 3543-3562
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3543-3562
-
-
Ge, Z.Q.1
Song, Z.H.2
Gao, F.R.3
-
9
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge, Z. Q.; Song, Z. H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Eng. Pract. 2008, 16, 1427-1437
-
(2008)
Control Eng. Pract.
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
10
-
-
84868210616
-
A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
-
Ma, H. H.; Hu, Y.; Shi, H. B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes Chemom. Intell. Lab. Syst. 2012, 118, 287-300
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.118
, pp. 287-300
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
11
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
12
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
Xie, X.; Shi, H. B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models Ind. Eng. Chem. Res. 2012, 51, 5497-5505
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
13
-
-
1942468131
-
Evolution of multivariate statistical process control: Application of independent component analysis and external analysis
-
Kano, M.; Hasebe, S.; Hashimoto, I.; Ohno, H. Evolution of multivariate statistical process control: Application of independent component analysis and external analysis Comput. Chem. Eng. 2004, 28, 1157-1166
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1157-1166
-
-
Kano, M.1
Hasebe, S.2
Hashimoto, I.3
Ohno, H.4
-
14
-
-
84892736167
-
Multimode process monitoring based on aligned mixture factor analysis
-
Ma, Y. X.; Shi, H. B. Multimode process monitoring based on aligned mixture factor analysis Ind. Eng. Chem. Res. 2014, 53, 786-799
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 786-799
-
-
Ma, Y.X.1
Shi, H.B.2
-
15
-
-
84898795506
-
Multimode process monitoring using improved dynamic neighborhood preserving embedding
-
Song, B.; Ma, Y. X.; Shi, H. B. Multimode process monitoring using improved dynamic neighborhood preserving embedding Chemom. Intell. Lab. Syst. 2014, 135, 17-30
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 17-30
-
-
Song, B.1
Ma, Y.X.2
Shi, H.B.3
-
16
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge, Z. Q.; Song, Z. H. Multimode process monitoring based on Bayesian method J. Chemom. 2009, 23, 636-650
-
(2009)
J. Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
17
-
-
83655201159
-
Process monitoring based on mode identification for multi-mode process with transitions
-
Wang, F. L.; Tan, S.; Peng, J.; Chang, Y. Q. Process monitoring based on mode identification for multi-mode process with transitions Chemom. Intell. Lab. Syst. 2012, 110, 144-155
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.110
, pp. 144-155
-
-
Wang, F.L.1
Tan, S.2
Peng, J.3
Chang, Y.Q.4
-
18
-
-
80051914224
-
Two-dimensional Bayesian monitoring method for nonlinear multimode processes
-
Ge, Z. Q.; Gao, F. R.; Song, Z. H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes Chem. Eng. Sci. 2011, 66, 5173-5183
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 5173-5183
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
19
-
-
65349135893
-
Fault detection and identification using modified Bayesian classification on PCA subspace
-
Liu, J. L.; Chen, D. S. Fault detection and identification using modified Bayesian classification on PCA subspace Ind. Eng. Chem. Res. 2009, 48, 3059-3077
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 3059-3077
-
-
Liu, J.L.1
Chen, D.S.2
-
20
-
-
84862956465
-
Multimode process monitoring based on mode identification
-
Tan, S.; Wang, F. L.; Peng, J.; Chang, Y. Q.; Wang, S. Multimode process monitoring based on mode identification Ind. Eng. Chem. Res. 2012, 51, 374-388
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 374-388
-
-
Tan, S.1
Wang, F.L.2
Peng, J.3
Chang, Y.Q.4
Wang, S.5
-
21
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principle component analysis models
-
Zhao, S. J.; Zhang, J.; Xu, Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
22
-
-
0037086546
-
Dimension reduction of process dynamic trends using independent component analysis
-
Li, R. F.; Wang, X. Z. Dimension reduction of process dynamic trends using independent component analysis Comput. Chem. Eng. 2002, 26, 467-473
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 467-473
-
-
Li, R.F.1
Wang, X.Z.2
-
23
-
-
84899881230
-
Improved ICA for process monitoring based on ensemble learning and Bayesian inference
-
Tong, C. D.; Palazoglu, A.; Yan, X. F. Improved ICA for process monitoring based on ensemble learning and Bayesian inference Chemom. Intell. Lab. Syst. 2014, 135, 141-149
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 141-149
-
-
Tong, C.D.1
Palazoglu, A.2
Yan, X.F.3
-
24
-
-
44349144443
-
Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data
-
Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data Ind. Eng. Chem. Res. 2008, 47, 3104-3113
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 3104-3113
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.Z.3
Lu, N.Y.4
Jia, M.X.5
-
25
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054-2063
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 2054-2063
-
-
Ge, Z.Q.1
Song, Z.H.2
-
26
-
-
70350318936
-
Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
-
Zhao, C. H.; Gao, F. R.; Wang, F. L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 9163-9174
-
-
Zhao, C.H.1
Gao, F.R.2
Wang, F.L.3
-
27
-
-
84880292457
-
Dynamic process monitoring using adaptive local outlier factor
-
Ma, Y. X.; Shi, H. B.; Ma, H. H.; Wang, M. L. Dynamic process monitoring using adaptive local outlier factor Chemom. Intell. Lab. Syst. 2013, 127, 89-101
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.127
, pp. 89-101
-
-
Ma, Y.X.1
Shi, H.B.2
Ma, H.H.3
Wang, M.L.4
-
28
-
-
79960836522
-
Integrating independent component analysis and local outlier factor for plant-wide process monitoring
-
Lee, J.; Kang, B.; Kang, S. H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring J. Process Control 2011, 21, 1011-1021
-
(2011)
J. Process Control
, vol.21
, pp. 1011-1021
-
-
Lee, J.1
Kang, B.2
Kang, S.H.3
-
29
-
-
84873616584
-
Fault detection and identification based on the neighborhood standardized local outlier factor method
-
Ma, H. H.; Hu, Y.; Shi, H. B. Fault detection and identification based on the neighborhood standardized local outlier factor method Ind. Eng. Chem. Res. 2013, 52, 2389-2402
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 2389-2402
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
30
-
-
0033903077
-
Determining the number of principal components for best reconstruction
-
Qin, S. J.; Dunia, R. Determining the number of principal components for best reconstruction J. Process Control 2000, 10, 245-250
-
(2000)
J. Process Control
, vol.10
, pp. 245-250
-
-
Qin, S.J.1
Dunia, R.2
-
31
-
-
34249106480
-
A study on the number of principal components and sensitivity of fault detection using PCA
-
Tamura, M.; Tsujita, S. A study on the number of principal components and sensitivity of fault detection using PCA Comput. Chem. Eng. 2007, 31, 1035-1046
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 1035-1046
-
-
Tamura, M.1
Tsujita, S.2
-
32
-
-
0001247934
-
A note on the use of principal components in regression
-
Jolliffe, I. T. A note on the use of principal components in regression Appl. Statist. 1982, 300-303
-
(1982)
Appl. Statist.
, pp. 300-303
-
-
Jolliffe, I.T.1
-
33
-
-
0035139041
-
Experimental design and inferential modeling in pharmaceutical crystallization
-
Togkalidou, T.; Braatz, R. D.; Johnson, B. K.; Davidson, O.; Andrews, A. Experimental design and inferential modeling in pharmaceutical crystallization AIChE J. 2001, 47, 160-168
-
(2001)
AIChE J.
, vol.47
, pp. 160-168
-
-
Togkalidou, T.1
Braatz, R.D.2
Johnson, B.K.3
Davidson, O.4
Andrews, A.5
-
34
-
-
84873855648
-
Fault detection and diagnosis in chemical processes using sensitive principal component analysis
-
Jiang, Q. C.; Yan, X. F.; Zhao, W. X. Fault detection and diagnosis in chemical processes using sensitive principal component analysis Ind. Eng. Chem. Res. 2013, 52, 1635-1644
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 1635-1644
-
-
Jiang, Q.C.1
Yan, X.F.2
Zhao, W.X.3
-
35
-
-
84880858673
-
Distributed statistical process monitoring based on four-subspace construction and Bayesian inference
-
Tong, C. D.; Song, Y.; Yan, X. F. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference Ind. Eng. Chem. Res. 2013, 52, 9897-9907
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 9897-9907
-
-
Tong, C.D.1
Song, Y.2
Yan, X.F.3
-
36
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
In; Chen, W. Naughton, J. F. Bernstein, P. A. ACM: New York - 104
-
Breunig, M. M.; Kriegel, H.; Ng, R. T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Mangement of Data; Chen, W.; Naughton, J. F.; Bernstein, P. A., Eds.; ACM: New York, 2000; pp 93-104.
-
(2000)
Proceedings of the 2000 ACM SIGMOD International Conference on Mangement of Data
, pp. 93
-
-
Breunig, M.M.1
Kriegel, H.2
Ng, R.T.3
Sander, J.4
-
37
-
-
84896696453
-
Improved two-level monitoring system for plant-wide processes
-
Ge, Z. Q. Improved two-level monitoring system for plant-wide processes Chemom. Intell. Lab. Syst. 2014, 132, 141-151
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.132
, pp. 141-151
-
-
Ge, Z.Q.1
-
38
-
-
0035493957
-
Knowledge discovery from process operational data using PCA and fuzzy clustering
-
Sebzalli, Y. M.; Wang, X. Z. Knowledge discovery from process operational data using PCA and fuzzy clustering Eng. Appl. Artif. Intel. 2001, 14, 607-616
-
(2001)
Eng. Appl. Artif. Intel.
, vol.14
, pp. 607-616
-
-
Sebzalli, Y.M.1
Wang, X.Z.2
-
39
-
-
56349129392
-
A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
-
Chen, W. C.; Wang, M. S. A fuzzy c-means clustering-based fragile watermarking scheme for image authentication Expert Syst. Appl. 2009, 36, 1300-1307
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 1300-1307
-
-
Chen, W.C.1
Wang, M.S.2
-
40
-
-
56749095428
-
Fault detection and classification for a process with multiple production grades
-
Liu, J. L. Fault detection and classification for a process with multiple production grades Ind. Eng. Chem. Res. 2008, 47, 8250-8262
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 8250-8262
-
-
Liu, J.L.1
-
41
-
-
34250008772
-
Cluster analysis for autocorrelated and cyclic chemical process data
-
Beaver, S.; Palazoglu, A.; Romagnoli, J. A. Cluster analysis for autocorrelated and cyclic chemical process data Ind. Eng. Chem. Res. 2007, 46, 3610-3622
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 3610-3622
-
-
Beaver, S.1
Palazoglu, A.2
Romagnoli, J.A.3
-
42
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku, W. F.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.F.1
Storer, R.H.2
Georgakis, C.3
-
43
-
-
77955305868
-
Nonlinear process monitoring based on linear subspace and Bayesian inference
-
Ge, Z. Q.; Zhang, M. G.; Song, Z. H. Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 2010, 20, 676-688
-
(2010)
J. Process Control
, vol.20
, pp. 676-688
-
-
Ge, Z.Q.1
Zhang, M.G.2
Song, Z.H.3
-
44
-
-
84892436192
-
Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
-
Zhao, C. H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring AIChE J. 2014, 60, 559-573
-
(2014)
AIChE J.
, vol.60
, pp. 559-573
-
-
Zhao, C.H.1
-
45
-
-
77957355948
-
Statistical analysis and online monitoring for multimode processes with between-mode transitions
-
Zhao, C. H.; Yao, Y.; Gao, F. R.; Wang, F. L. Statistical analysis and online monitoring for multimode processes with between-mode transitions Chem. Eng. Sci. 2010, 65, 5961-5975
-
(2010)
Chem. Eng. Sci.
, vol.65
, pp. 5961-5975
-
-
Zhao, C.H.1
Yao, Y.2
Gao, F.R.3
Wang, F.L.4
-
46
-
-
0029379330
-
Optimal steady-state operation of the Tennessee Eastman challenge process
-
Ricker, N. L. Optimal steady-state operation of the Tennessee Eastman challenge process Comput. Chem. Eng. 1995, 19, 949-959
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 949-959
-
-
Ricker, N.L.1
-
47
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
48
-
-
84899008862
-
Improved kernel PLS-based fault detection approach for nonlinear chemical processes
-
Wang, L.; Shi, H. B. Improved kernel PLS-based fault detection approach for nonlinear chemical processes Chin. J. Chem. Eng. 2014, 22, 657-663
-
(2014)
Chin. J. Chem. Eng.
, vol.22
, pp. 657-663
-
-
Wang, L.1
Shi, H.B.2
-
49
-
-
0035427805
-
Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures
-
Yoon, S.; MacGregor, J. F. Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures J. Process Control 2001, 11, 387-400
-
(2001)
J. Process Control
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.F.2
-
50
-
-
84906314849
-
Adaptive local outlier probability for dynamic process monitoring
-
Ma, Y. X.; Shi, H. B.; Wang, M. L. Adaptive local outlier probability for dynamic process monitoring Chin. J. Chem. Eng. 2014, 22, 820-827
-
(2014)
Chin. J. Chem. Eng.
, vol.22
, pp. 820-827
-
-
Ma, Y.X.1
Shi, H.B.2
Wang, M.L.3
|