메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 17-30

Multimode process monitoring using improved dynamic neighborhood preserving embedding

Author keywords

Dynamic behaviors; Fault detection; Multimode; Neighborhood preserving embedding; Serial correlation

Indexed keywords

ALGORITHM; ARTICLE; CONTROLLED STUDY; CORRELATION ANALYSIS; DYNAMICS; NEIGHBORHOOD PRESERVING EMBEDDING; PERFORMANCE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCESS MONITORING; QUALITY CONTROL; RATING SCALE; STATISTICAL MODEL;

EID: 84898795506     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.03.013     Document Type: Article
Times cited : (54)

References (39)
  • 1
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z.Q., Song Z.H., Gao F.R. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.Q.1    Song, Z.H.2    Gao, F.R.3
  • 2
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AICHE J. 2008, 54:2581-2596.
    • (2008) AICHE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 3
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 4
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE J. 2010, 56:2838-2849.
    • (2010) AICHE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 5
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
    • (2006) J. Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 6
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim D.S., Lee I.B. Process monitoring based on probabilistic PCA. Chemometr. Intell. Lab. Syst. 2003, 67:109-123.
    • (2003) Chemometr. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 7
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 8
    • 3242705894 scopus 로고    scopus 로고
    • Improved principal component monitoring of large-scale processes
    • Kruger U., Zhou Y.Q., Irwin G.W. Improved principal component monitoring of large-scale processes. J. Process Control 2004, 14:879-888.
    • (2004) J. Process Control , vol.14 , pp. 879-888
    • Kruger, U.1    Zhou, Y.Q.2    Irwin, G.W.3
  • 9
    • 84873616584 scopus 로고    scopus 로고
    • Fault detection and identification based on the neighborhood standardized local outlier factor method
    • Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 2013, 52:2389-2402.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 2389-2402
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 11
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge Z.Q., Gao F.R., Song Z.H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chem. Eng. Sci. 2011, 66:5173-5183.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5173-5183
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 12
    • 65349135893 scopus 로고    scopus 로고
    • Fault detection and identification using modified Bayesian classification on PCA subspace
    • Liu J., Chen D.S. Fault detection and identification using modified Bayesian classification on PCA subspace. Ind. Eng. Chem. Res. 2009, 48:3059-3077.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 3059-3077
    • Liu, J.1    Chen, D.S.2
  • 13
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 14
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 2008, 54:1811-1829.
    • (2008) AICHE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 15
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 16
    • 84880292457 scopus 로고    scopus 로고
    • Dynamic process monitoring using adaptive local outlier factor
    • Ma Y.X., Shi H.B., Ma H.H., Wang M.L. Dynamic process monitoring using adaptive local outlier factor. Chemometr. Intell. Lab. Syst. 2013, 127:89-101.
    • (2013) Chemometr. Intell. Lab. Syst. , vol.127 , pp. 89-101
    • Ma, Y.X.1    Shi, H.B.2    Ma, H.H.3    Wang, M.L.4
  • 17
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • Rashid M.M., Yu J. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection. Ind. Eng. Chem. Res. 2012, 51:5506-5514.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 18
    • 36749028738 scopus 로고    scopus 로고
    • Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
    • Yao Y., Gao F.R. Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA). Ind. Eng. Chem. Res. 2007, 46:8033-8043.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 8033-8043
    • Yao, Y.1    Gao, F.R.2
  • 19
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W.F., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 1995, 30:179-196.
    • (1995) Chemometr. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.F.1    Storer, R.H.2    Georgakis, C.3
  • 20
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 2000, 51:81-93.
    • (2000) Chemometr. Intell. Lab. Syst. , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 21
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimensional dynamic PCA for batch process monitoring
    • Lu N.Y., Yao Y., Gao F.R., Wang F.L. Two-dimensional dynamic PCA for batch process monitoring. AICHE J. 2005, 51:3300-3304.
    • (2005) AICHE J. , vol.51 , pp. 3300-3304
    • Lu, N.Y.1    Yao, Y.2    Gao, F.R.3    Wang, F.L.4
  • 22
    • 71849093181 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes
    • Yao Y., Gao F.R. Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes. J. Process Control 2009, 19:1716-1724.
    • (2009) J. Process Control , vol.19 , pp. 1716-1724
    • Yao, Y.1    Gao, F.R.2
  • 23
    • 78149285529 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
    • Yao Y., Chen T., Gao F.R. Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information. J. Process Control 2010, 20:1188-1197.
    • (2010) J. Process Control , vol.20 , pp. 1188-1197
    • Yao, Y.1    Chen, T.2    Gao, F.R.3
  • 24
    • 77958005422 scopus 로고    scopus 로고
    • Statistical monitoring and fault diagnosis of batch processes using two-dimensional dynamic information
    • Yao Y., Gao F.R. Statistical monitoring and fault diagnosis of batch processes using two-dimensional dynamic information. Ind. Eng. Chem. Res. 2010, 49:9961-9969.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 9961-9969
    • Yao, Y.1    Gao, F.R.2
  • 25
    • 44749086556 scopus 로고    scopus 로고
    • Subspace identification for two-dimensional dynamic batch process statistical monitoring
    • Yao Y., Gao F.R. Subspace identification for two-dimensional dynamic batch process statistical monitoring. Chem. Eng. Sci. 2008, 63:3411-3418.
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 3411-3418
    • Yao, Y.1    Gao, F.R.2
  • 26
    • 61649107911 scopus 로고    scopus 로고
    • Two-dimensional dynamic principal component analysis with auto determined support region
    • Yao Y., Diao Y.H., Lu N.Y., Lu J.D., Gao F.R. Two-dimensional dynamic principal component analysis with auto determined support region. Ind. Eng. Chem. Res. 2009, 48:837-843.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 837-843
    • Yao, Y.1    Diao, Y.H.2    Lu, N.Y.3    Lu, J.D.4    Gao, F.R.5
  • 27
    • 77957303678 scopus 로고    scopus 로고
    • Statistical analysis and adaptive technique for dynamical process monitoring
    • Zhang Y.W., Li Z.M., Zhou H. Statistical analysis and adaptive technique for dynamical process monitoring. Chem. Eng. Res. Des. 2010, 88:1381-1392.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 1381-1392
    • Zhang, Y.W.1    Li, Z.M.2    Zhou, H.3
  • 28
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
    • Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemometr. Intell. Lab. Syst. 2013, 125:101-108.
    • (2013) Chemometr. Intell. Lab. Syst. , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 29
    • 38149001494 scopus 로고    scopus 로고
    • Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding
    • Hu K.L., Yuan J.Q. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding. Chemometr. Intell. Lab. Syst. 2008, 90:195-203.
    • (2008) Chemometr. Intell. Lab. Syst. , vol.90 , pp. 195-203
    • Hu, K.L.1    Yuan, J.Q.2
  • 30
    • 84863418938 scopus 로고    scopus 로고
    • Discriminant sparse neighborhood preserving embedding for face recognition
    • Gui J., Sun Z.N., Jia W., Hu R.X., Lei Y.K., Ji S.W. Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit. 2012, 45:2884-2893.
    • (2012) Pattern Recognit. , vol.45 , pp. 2884-2893
    • Gui, J.1    Sun, Z.N.2    Jia, W.3    Hu, R.X.4    Lei, Y.K.5    Ji, S.W.6
  • 31
    • 70350125913 scopus 로고    scopus 로고
    • Neighbourhood preserving discriminant embedding in face recognition
    • Han P.Y., Jin A.T.B., Abas F.S. Neighbourhood preserving discriminant embedding in face recognition. J. Vis. Commun. Image Represent. 2009, 20:532-542.
    • (2009) J. Vis. Commun. Image Represent. , vol.20 , pp. 532-542
    • Han, P.Y.1    Jin, A.T.B.2    Abas, F.S.3
  • 35
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 2003, 4:119-155.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 36
    • 76849114320 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations
    • Odiowei P.E.P., Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations. IEEE Trans. Ind. Inf. 2010, 6:36-45.
    • (2010) IEEE Trans. Ind. Inf. , vol.6 , pp. 36-45
    • Odiowei, P.E.P.1    Cao, Y.2
  • 37
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • Ricker N.L. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput. Chem. Eng. 1995, 19:949-959.
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 38
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 39
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J.M., Yoo C., Lee I.B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 2004, 59:2995-3006.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995-3006
    • Lee, J.M.1    Yoo, C.2    Lee, I.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.