-
1
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z.Q., Song Z.H., Gao F.R. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3543-3562
-
-
Ge, Z.Q.1
Song, Z.H.2
Gao, F.R.3
-
2
-
-
54949117106
-
Diagnosis of process faults in chemical systems using a local partial least squares approach
-
Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AICHE J. 2008, 54:2581-2596.
-
(2008)
AICHE J.
, vol.54
, pp. 2581-2596
-
-
Kruger, U.1
Dimitriadis, G.2
-
3
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
4
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE J. 2010, 56:2838-2849.
-
(2010)
AICHE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
5
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
-
(2006)
J. Process Control
, vol.16
, pp. 763-772
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
6
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim D.S., Lee I.B. Process monitoring based on probabilistic PCA. Chemometr. Intell. Lab. Syst. 2003, 67:109-123.
-
(2003)
Chemometr. Intell. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.S.1
Lee, I.B.2
-
7
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
8
-
-
3242705894
-
Improved principal component monitoring of large-scale processes
-
Kruger U., Zhou Y.Q., Irwin G.W. Improved principal component monitoring of large-scale processes. J. Process Control 2004, 14:879-888.
-
(2004)
J. Process Control
, vol.14
, pp. 879-888
-
-
Kruger, U.1
Zhou, Y.Q.2
Irwin, G.W.3
-
9
-
-
84873616584
-
Fault detection and identification based on the neighborhood standardized local outlier factor method
-
Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 2013, 52:2389-2402.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 2389-2402
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
10
-
-
84862956465
-
Multimode process monitoring based on mode identification
-
Tan S., Wang F.L., Peng J., Chang Y.Q., Wang S. Multimode process monitoring based on mode identification. Ind. Eng. Chem. Res. 2012, 51:374-388.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 374-388
-
-
Tan, S.1
Wang, F.L.2
Peng, J.3
Chang, Y.Q.4
Wang, S.5
-
11
-
-
80051914224
-
Two-dimensional Bayesian monitoring method for nonlinear multimode processes
-
Ge Z.Q., Gao F.R., Song Z.H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chem. Eng. Sci. 2011, 66:5173-5183.
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 5173-5183
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
12
-
-
65349135893
-
Fault detection and identification using modified Bayesian classification on PCA subspace
-
Liu J., Chen D.S. Fault detection and identification using modified Bayesian classification on PCA subspace. Ind. Eng. Chem. Res. 2009, 48:3059-3077.
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 3059-3077
-
-
Liu, J.1
Chen, D.S.2
-
13
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi S.W., Park J.H., Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.B.3
-
14
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 2008, 54:1811-1829.
-
(2008)
AICHE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
15
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
16
-
-
84880292457
-
Dynamic process monitoring using adaptive local outlier factor
-
Ma Y.X., Shi H.B., Ma H.H., Wang M.L. Dynamic process monitoring using adaptive local outlier factor. Chemometr. Intell. Lab. Syst. 2013, 127:89-101.
-
(2013)
Chemometr. Intell. Lab. Syst.
, vol.127
, pp. 89-101
-
-
Ma, Y.X.1
Shi, H.B.2
Ma, H.H.3
Wang, M.L.4
-
17
-
-
84859903438
-
Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
-
Rashid M.M., Yu J. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection. Ind. Eng. Chem. Res. 2012, 51:5506-5514.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5506-5514
-
-
Rashid, M.M.1
Yu, J.2
-
18
-
-
36749028738
-
Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
-
Yao Y., Gao F.R. Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA). Ind. Eng. Chem. Res. 2007, 46:8033-8043.
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 8033-8043
-
-
Yao, Y.1
Gao, F.R.2
-
19
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku W.F., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 1995, 30:179-196.
-
(1995)
Chemometr. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.F.1
Storer, R.H.2
Georgakis, C.3
-
20
-
-
0034621334
-
Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
-
Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 2000, 51:81-93.
-
(2000)
Chemometr. Intell. Lab. Syst.
, vol.51
, pp. 81-93
-
-
Russell, E.L.1
Chiang, L.H.2
Braatz, R.D.3
-
21
-
-
30544445406
-
Two-dimensional dynamic PCA for batch process monitoring
-
Lu N.Y., Yao Y., Gao F.R., Wang F.L. Two-dimensional dynamic PCA for batch process monitoring. AICHE J. 2005, 51:3300-3304.
-
(2005)
AICHE J.
, vol.51
, pp. 3300-3304
-
-
Lu, N.Y.1
Yao, Y.2
Gao, F.R.3
Wang, F.L.4
-
22
-
-
71849093181
-
Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes
-
Yao Y., Gao F.R. Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes. J. Process Control 2009, 19:1716-1724.
-
(2009)
J. Process Control
, vol.19
, pp. 1716-1724
-
-
Yao, Y.1
Gao, F.R.2
-
23
-
-
78149285529
-
Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
-
Yao Y., Chen T., Gao F.R. Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information. J. Process Control 2010, 20:1188-1197.
-
(2010)
J. Process Control
, vol.20
, pp. 1188-1197
-
-
Yao, Y.1
Chen, T.2
Gao, F.R.3
-
24
-
-
77958005422
-
Statistical monitoring and fault diagnosis of batch processes using two-dimensional dynamic information
-
Yao Y., Gao F.R. Statistical monitoring and fault diagnosis of batch processes using two-dimensional dynamic information. Ind. Eng. Chem. Res. 2010, 49:9961-9969.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 9961-9969
-
-
Yao, Y.1
Gao, F.R.2
-
25
-
-
44749086556
-
Subspace identification for two-dimensional dynamic batch process statistical monitoring
-
Yao Y., Gao F.R. Subspace identification for two-dimensional dynamic batch process statistical monitoring. Chem. Eng. Sci. 2008, 63:3411-3418.
-
(2008)
Chem. Eng. Sci.
, vol.63
, pp. 3411-3418
-
-
Yao, Y.1
Gao, F.R.2
-
26
-
-
61649107911
-
Two-dimensional dynamic principal component analysis with auto determined support region
-
Yao Y., Diao Y.H., Lu N.Y., Lu J.D., Gao F.R. Two-dimensional dynamic principal component analysis with auto determined support region. Ind. Eng. Chem. Res. 2009, 48:837-843.
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 837-843
-
-
Yao, Y.1
Diao, Y.H.2
Lu, N.Y.3
Lu, J.D.4
Gao, F.R.5
-
27
-
-
77957303678
-
Statistical analysis and adaptive technique for dynamical process monitoring
-
Zhang Y.W., Li Z.M., Zhou H. Statistical analysis and adaptive technique for dynamical process monitoring. Chem. Eng. Res. Des. 2010, 88:1381-1392.
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, pp. 1381-1392
-
-
Zhang, Y.W.1
Li, Z.M.2
Zhou, H.3
-
28
-
-
84877316529
-
Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
-
Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemometr. Intell. Lab. Syst. 2013, 125:101-108.
-
(2013)
Chemometr. Intell. Lab. Syst.
, vol.125
, pp. 101-108
-
-
Rato, T.J.1
Reis, M.S.2
-
29
-
-
38149001494
-
Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding
-
Hu K.L., Yuan J.Q. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding. Chemometr. Intell. Lab. Syst. 2008, 90:195-203.
-
(2008)
Chemometr. Intell. Lab. Syst.
, vol.90
, pp. 195-203
-
-
Hu, K.L.1
Yuan, J.Q.2
-
30
-
-
84863418938
-
Discriminant sparse neighborhood preserving embedding for face recognition
-
Gui J., Sun Z.N., Jia W., Hu R.X., Lei Y.K., Ji S.W. Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit. 2012, 45:2884-2893.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 2884-2893
-
-
Gui, J.1
Sun, Z.N.2
Jia, W.3
Hu, R.X.4
Lei, Y.K.5
Ji, S.W.6
-
31
-
-
70350125913
-
Neighbourhood preserving discriminant embedding in face recognition
-
Han P.Y., Jin A.T.B., Abas F.S. Neighbourhood preserving discriminant embedding in face recognition. J. Vis. Commun. Image Represent. 2009, 20:532-542.
-
(2009)
J. Vis. Commun. Image Represent.
, vol.20
, pp. 532-542
-
-
Han, P.Y.1
Jin, A.T.B.2
Abas, F.S.3
-
32
-
-
33745881038
-
-
IEEE Computer Society Press, Los Alamitos, CA
-
He X.F., Cai D., Yan S.C., Zhang H.J. Proceedings of the Tenth IEEE International Conference on Computer Vision, 17-21 October 2005, Beijing, China 2005, 1208-1213. IEEE Computer Society Press, Los Alamitos, CA.
-
(2005)
Proceedings of the Tenth IEEE International Conference on Computer Vision, 17-21 October 2005, Beijing, China
, pp. 1208-1213
-
-
He, X.F.1
Cai, D.2
Yan, S.C.3
Zhang, H.J.4
-
33
-
-
0039253819
-
LOF: identifying density-based local outliers
-
Breunig M.M., Kriegel H.P., Ng R.T., Sander J. LOF: identifying density-based local outliers. Proceedings of 29th ACM SIDMOD International Conference on Management of Data, New York, 2000 2000, 93-104.
-
(2000)
Proceedings of 29th ACM SIDMOD International Conference on Management of Data, New York, 2000
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
34
-
-
0041875228
-
-
MIT Press, Cambridge, MA
-
Polito M., Perona P. Proceedings of the Fourteenth Neural Information Processing Systems Conference, 3-8 December 2001, British Columbia, Canada 2002, 1255-1262. MIT Press, Cambridge, MA.
-
(2002)
Proceedings of the Fourteenth Neural Information Processing Systems Conference, 3-8 December 2001, British Columbia, Canada
, pp. 1255-1262
-
-
Polito, M.1
Perona, P.2
-
35
-
-
2342517502
-
Think globally, fit locally: unsupervised learning of low dimensional manifolds
-
Saul L.K., Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 2003, 4:119-155.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
36
-
-
76849114320
-
Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations
-
Odiowei P.E.P., Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations. IEEE Trans. Ind. Inf. 2010, 6:36-45.
-
(2010)
IEEE Trans. Ind. Inf.
, vol.6
, pp. 36-45
-
-
Odiowei, P.E.P.1
Cao, Y.2
-
37
-
-
0029379330
-
Optimal steady-state operation of the Tennessee Eastman challenge process
-
Ricker N.L. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput. Chem. Eng. 1995, 19:949-959.
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 949-959
-
-
Ricker, N.L.1
-
38
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
39
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
Lee J.M., Yoo C., Lee I.B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 2004, 59:2995-3006.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2995-3006
-
-
Lee, J.M.1
Yoo, C.2
Lee, I.B.3
|