메뉴 건너뛰기




Volumn 118, Issue , 2012, Pages 287-300

A novel local neighborhood standardization strategy and its application in fault detection of multimode processes

Author keywords

Data preprocessing; Fault detection; Local neighborhood standardization; Multimode process monitoring; Principal component analysis

Indexed keywords

ANALYTIC METHOD; ARTICLE; CONTROLLED STUDY; DATA PROCESSING; FAULT DETECTION SCHEME; INDUSTRY; LOCAL NEIGHBORHOOD STANDARDIZATION STRATEGY; LOCAL NEIGHBORHOOD STANDARDIZATION STRATEGY PRINCIPAL COMPONENT ANALYSIS; MATHEMATICAL PHENOMENA; MULTIMODE PROCESS; MULTIVARIATE ANALYSIS; PARTIAL LEAST SQUARES REGRESSION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCESS MONITORING; PROCESS TECHNOLOGY; VALIDITY;

EID: 84868210616     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2012.05.010     Document Type: Article
Times cited : (121)

References (45)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 17:480-502.
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 2
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AICHE Journal 1994, 40:1361-1375.
    • (1994) AICHE Journal , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 8
    • 33645311553 scopus 로고    scopus 로고
    • Multi-phase principal component analysis for batch processes modelling
    • Camacho J., Picó J. Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems 2006, 81:127-136.
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.81 , pp. 127-136
    • Camacho, J.1    Picó, J.2
  • 9
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z.Q., Song Z.H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial and Engineering Chemistry Research 2007, 46:2054-2063.
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 10
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
    • (2008) AICHE Journal , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 11
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge Z.Q., Song Z.H. Multimode process monitoring based on Bayesian method. Journal of Chemometrics 2009, 23:636-650.
    • (2009) Journal of Chemometrics , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 12
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operation modes through multiple principle component analysis models. Industrial and Engineering Chemistry Research 2004, 43:7025-7035.
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 14
    • 77957355948 scopus 로고    scopus 로고
    • Statistical analysis and online monitoring for multimode processes with between-mode transitions
    • Zhao C.H., Yao Y., Gao F.R., Wang F.L. Statistical analysis and online monitoring for multimode processes with between-mode transitions. Chemical Engineering Science 2010, 65:5961-5975.
    • (2010) Chemical Engineering Science , vol.65 , pp. 5961-5975
    • Zhao, C.H.1    Yao, Y.2    Gao, F.R.3    Wang, F.L.4
  • 15
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. Journal of Process Control 2006, 16:763-772.
    • (2006) Journal of Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 16
    • 77953535805 scopus 로고    scopus 로고
    • Multi-model based process condition monitoring of offshore oil and gas production process
    • Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chemical Engineering Research and Design 2010, 88:572-591.
    • (2010) Chemical Engineering Research and Design , vol.88 , pp. 572-591
    • Natarajan, S.1    Srinivasan, R.2
  • 18
    • 67349090576 scopus 로고    scopus 로고
    • An adjoined multi-model approach for monitoring batch and transient operations
    • Ng Y.S., Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations. Computers and Chemical Engineering 2009, 33:887-902.
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 887-902
    • Ng, Y.S.1    Srinivasan, R.2
  • 19
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • Yu J.B. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring. Journal of Process Control 2010, 20:344-359.
    • (2010) Journal of Process Control , vol.20 , pp. 344-359
    • Yu, J.B.1
  • 20
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE Journal 2010, 56:2838-2849.
    • (2010) AICHE Journal , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 21
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge Z.Q., Gao F.R., Song Z.H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chemical Engineering Science 2011, 66:5173-5183.
    • (2011) Chemical Engineering Science , vol.66 , pp. 5173-5183
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 24
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Engineering Practice 2008, 16:1427-1437.
    • (2008) Control Engineering Practice , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 27
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    • Kano M., Hasebe S., Hashimoto I., Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Computers and Chemical Engineering 2004, 28:1157-1166.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 28
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.H., Han C.H. Real-time monitoring for a process with multiple operating modes. Control Engineering Practice 1999, 7:891-902.
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.H.2
  • 31
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 32
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978, 20:397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 33
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components-the variance of the reconstruction error criterion compared to other methods
    • Valle S., Li W., Qin S.J. Selection of the number of principal components-the variance of the reconstruction error criterion compared to other methods. Industrial and Engineering Chemistry Research 1999, 38:4389-4401.
    • (1999) Industrial and Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 36
    • 79951580710 scopus 로고    scopus 로고
    • All-nearest-neighbors finding based on the Hilbert curve
    • Chen H.L., Chang Y.I. All-nearest-neighbors finding based on the Hilbert curve. Expert Systems with Applications 2010, 38:7462-7475.
    • (2010) Expert Systems with Applications , vol.38 , pp. 7462-7475
    • Chen, H.L.1    Chang, Y.I.2
  • 37
    • 0141547380 scopus 로고    scopus 로고
    • Simple and efficient traversal methods for quadtrees and octrees
    • Frisken S.F., Perry R.N. Simple and efficient traversal methods for quadtrees and octrees. Journal of Graphics Tools 2002, 7:1-12.
    • (2002) Journal of Graphics Tools , vol.7 , pp. 1-12
    • Frisken, S.F.1    Perry, R.N.2
  • 38
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee J., Kang B., Kang S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. Journal of Process Control 2011, 21:1011-1021.
    • (2011) Journal of Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 40
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker N.L. Decentralized control of the Tennessee Eastman challenge process. Journal of Process Control 1996, 6:205-221.
    • (1996) Journal of Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 41
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • Ricker N.L. Optimal steady-state operation of the Tennessee Eastman challenge process. Computers and Chemical Engineering 1995, 19:949-959.
    • (1995) Computers and Chemical Engineering , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 42
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J.M., Yoo C., Lee I.B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 2004, 59:2995-3006.
    • (2004) Chemical Engineering Science , vol.59 , pp. 2995-3006
    • Lee, J.M.1    Yoo, C.2    Lee, I.B.3
  • 43
    • 34247990255 scopus 로고
    • On the Kolmogorov-Smirnov test for normality with mean and variance unknown
    • Lilliefors H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 1967, 62:399-402.
    • (1967) Journal of the American Statistical Association , vol.62 , pp. 399-402
    • Lilliefors, H.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.