메뉴 건너뛰기




Volumn 127, Issue , 2013, Pages 89-101

Dynamic process monitoring using adaptive local outlier factor

Author keywords

Fault detection; Local outlier factor; Moving window; Multimode; Non Gaussian; Time varying

Indexed keywords

ALGORITHM; ARTICLE; CONTINUOUS STIRRED TANK REACTOR; LOCAL OUTLIER FACTOR; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MATHEMATICAL PARAMETERS; METHODOLOGY; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCESS DESIGN; PROCESS MONITORING;

EID: 84880292457     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.06.004     Document Type: Article
Times cited : (55)

References (44)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 17:480-502.
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 84864271297 scopus 로고    scopus 로고
    • Recursive fault detection and isolation approaches of time-varying processes
    • Elshenawy L.M., Awad H.A. Recursive fault detection and isolation approaches of time-varying processes. Industrial and Engineering Chemistry Research 2012, 51:9812-9824.
    • (2012) Industrial and Engineering Chemistry Research , vol.51 , pp. 9812-9824
    • Elshenawy, L.M.1    Awad, H.A.2
  • 4
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice 2003, 11:613-632.
    • (2003) Control Engineering Practice , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 5
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Zhang Y.W., Li S., Teng Y.D. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science 2012, 72:78-86.
    • (2012) Chemical Engineering Science , vol.72 , pp. 78-86
    • Zhang, Y.W.1    Li, S.2    Teng, Y.D.3
  • 7
    • 77954659382 scopus 로고    scopus 로고
    • Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
    • Jeng J.C. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms. Journal of the Taiwan Institute of Chemical Engineers 2010, 41:475-481.
    • (2010) Journal of the Taiwan Institute of Chemical Engineers , vol.41 , pp. 475-481
    • Jeng, J.C.1
  • 11
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principal component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operation modes through multiple principal component analysis models. Industrial and Engineering Chemistry Research 2004, 43:7025-7035.
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 12
    • 77953535805 scopus 로고    scopus 로고
    • Multi-model based process condition monitoring of offshore oil and gas production process
    • Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chemical Engineering Research and Design 2010, 88:572-591.
    • (2010) Chemical Engineering Research and Design , vol.88 , pp. 572-591
    • Natarajan, S.1    Srinivasan, R.2
  • 13
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
    • (2008) AICHE Journal , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 14
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE Journal 2010, 56:2838-2849.
    • (2010) AICHE Journal , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 15
    • 77953121551 scopus 로고    scopus 로고
    • Maximum-likelihood mixture factor analysis model and its application for process monitoring
    • Ge Z.Q., Song Z.H. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 102:53-61.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.102 , pp. 53-61
    • Ge, Z.Q.1    Song, Z.H.2
  • 16
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science 2012, 68:506-519.
    • (2012) Chemical Engineering Science , vol.68 , pp. 506-519
    • Yu, J.1
  • 17
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
    • Ma H.H., Hu Y., Shi H.B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemometrics and Intelligent Laboratory Systems 2012, 118:287-300.
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 18
    • 84873616584 scopus 로고    scopus 로고
    • Fault detection and identification based on the neighborhood standardized local outlier factor method
    • Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Industrial and Engineering Chemistry Research 2013, 52:2389-2402.
    • (2013) Industrial and Engineering Chemistry Research , vol.52 , pp. 2389-2402
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 20
    • 33847325678 scopus 로고    scopus 로고
    • Modeling a large-Scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace
    • Liu J.L. Modeling a large-Scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace. Industrial and Engineering Chemistry Research 2007, 46:788-800.
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 788-800
    • Liu, J.L.1
  • 25
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Engineering Practice 2008, 16:1427-1437.
    • (2008) Control Engineering Practice , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 27
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Industrial and Engineering Chemistry Research 2012, 51:5497-5505.
    • (2012) Industrial and Engineering Chemistry Research , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 28
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. Journal of Process Control 2012, 22:778-788.
    • (2012) Journal of Process Control , vol.22 , pp. 778-788
    • Yu, J.1
  • 30
    • 3042699927 scopus 로고    scopus 로고
    • Independent component analysis applied on gas sensor array measurement data
    • Kermit M., Tomic O. Independent component analysis applied on gas sensor array measurement data. IEEE Sensors Journal 2003, 3:218-228.
    • (2003) IEEE Sensors Journal , vol.3 , pp. 218-228
    • Kermit, M.1    Tomic, O.2
  • 31
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z.Q., Song Z.H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial and Engineering Chemistry Research 2007, 46:2054-2063.
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 32
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis (KICA-PCA)
    • Zhao C.H., Gao F.R., Wang F.L. Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis (KICA-PCA). Industrial and Engineering Chemistry Research 2009, 48:9163-9174.
    • (2009) Industrial and Engineering Chemistry Research , vol.48 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 34
  • 38
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee J.S., Kang B.Y., Kang S.H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. Journal of Process Control 2011, 21:1011-1021.
    • (2011) Journal of Process Control , vol.21 , pp. 1011-1021
    • Lee, J.S.1    Kang, B.Y.2    Kang, S.H.3
  • 39
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AICHE Journal 2006, 52:3501-3514.
    • (2006) AICHE Journal , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 40
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 43
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial and Engineering Chemistry Research 2010, 49:7849-7857.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.