-
1
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 17:480-502.
-
(2003)
Journal of Chemometrics
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
2
-
-
0034301495
-
Recursive PCA for adaptive process monitoring
-
Li W.H., Yue H.H., Cervantes S.V., Qin S.J. Recursive PCA for adaptive process monitoring. Journal of Process Control 2000, 10:471-486.
-
(2000)
Journal of Process Control
, vol.10
, pp. 471-486
-
-
Li, W.H.1
Yue, H.H.2
Cervantes, S.V.3
Qin, S.J.4
-
3
-
-
84864271297
-
Recursive fault detection and isolation approaches of time-varying processes
-
Elshenawy L.M., Awad H.A. Recursive fault detection and isolation approaches of time-varying processes. Industrial and Engineering Chemistry Research 2012, 51:9812-9824.
-
(2012)
Industrial and Engineering Chemistry Research
, vol.51
, pp. 9812-9824
-
-
Elshenawy, L.M.1
Awad, H.A.2
-
4
-
-
0038198780
-
Recursive partial least squares algorithms for monitoring complex industrial processes
-
Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice 2003, 11:613-632.
-
(2003)
Control Engineering Practice
, vol.11
, pp. 613-632
-
-
Wang, X.1
Kruger, U.2
Lennox, B.3
-
5
-
-
84863151045
-
Dynamic processes monitoring using recursive kernel principal component analysis
-
Zhang Y.W., Li S., Teng Y.D. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science 2012, 72:78-86.
-
(2012)
Chemical Engineering Science
, vol.72
, pp. 78-86
-
-
Zhang, Y.W.1
Li, S.2
Teng, Y.D.3
-
7
-
-
77954659382
-
Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
-
Jeng J.C. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms. Journal of the Taiwan Institute of Chemical Engineers 2010, 41:475-481.
-
(2010)
Journal of the Taiwan Institute of Chemical Engineers
, vol.41
, pp. 475-481
-
-
Jeng, J.C.1
-
8
-
-
64249101035
-
Moving window kernel PCA for adaptive monitoring of nonlinear processes
-
Liu X.Q., Kruger U., Littler T., Xie L., Wang S.Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems 2009, 96:132-143.
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.96
, pp. 132-143
-
-
Liu, X.Q.1
Kruger, U.2
Littler, T.3
Xie, L.4
Wang, S.Q.5
-
10
-
-
84862956465
-
Multimode process monitoring based on mode identification
-
Tan S., Wang F.L., Peng J., Chang Y.Q., Wang S. Multimode process monitoring based on mode identification. Industrial and Engineering Chemistry Research 2012, 51:374-388.
-
(2012)
Industrial and Engineering Chemistry Research
, vol.51
, pp. 374-388
-
-
Tan, S.1
Wang, F.L.2
Peng, J.3
Chang, Y.Q.4
Wang, S.5
-
11
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principal component analysis models
-
Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operation modes through multiple principal component analysis models. Industrial and Engineering Chemistry Research 2004, 43:7025-7035.
-
(2004)
Industrial and Engineering Chemistry Research
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
12
-
-
77953535805
-
Multi-model based process condition monitoring of offshore oil and gas production process
-
Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chemical Engineering Research and Design 2010, 88:572-591.
-
(2010)
Chemical Engineering Research and Design
, vol.88
, pp. 572-591
-
-
Natarajan, S.1
Srinivasan, R.2
-
13
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
-
(2008)
AICHE Journal
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
14
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE Journal 2010, 56:2838-2849.
-
(2010)
AICHE Journal
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
15
-
-
77953121551
-
Maximum-likelihood mixture factor analysis model and its application for process monitoring
-
Ge Z.Q., Song Z.H. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 102:53-61.
-
(2010)
Chemometrics and Intelligent Laboratory Systems
, vol.102
, pp. 53-61
-
-
Ge, Z.Q.1
Song, Z.H.2
-
16
-
-
81055156706
-
A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
-
Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science 2012, 68:506-519.
-
(2012)
Chemical Engineering Science
, vol.68
, pp. 506-519
-
-
Yu, J.1
-
17
-
-
84868210616
-
A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
-
Ma H.H., Hu Y., Shi H.B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemometrics and Intelligent Laboratory Systems 2012, 118:287-300.
-
(2012)
Chemometrics and Intelligent Laboratory Systems
, vol.118
, pp. 287-300
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
18
-
-
84873616584
-
Fault detection and identification based on the neighborhood standardized local outlier factor method
-
Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Industrial and Engineering Chemistry Research 2013, 52:2389-2402.
-
(2013)
Industrial and Engineering Chemistry Research
, vol.52
, pp. 2389-2402
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
20
-
-
33847325678
-
Modeling a large-Scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace
-
Liu J.L. Modeling a large-Scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace. Industrial and Engineering Chemistry Research 2007, 46:788-800.
-
(2007)
Industrial and Engineering Chemistry Research
, vol.46
, pp. 788-800
-
-
Liu, J.L.1
-
21
-
-
84859421708
-
On-line adaptive clustering for process monitoring and fault detection
-
Petković M., Rapaić M.R., Jeličić Z.D., Pisano A. On-line adaptive clustering for process monitoring and fault detection. Expert Systems with Applications 2012, 39:10226-10235.
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 10226-10235
-
-
Petković, M.1
Rapaić, M.R.2
Jeličić, Z.D.3
Pisano, A.4
-
22
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Industrial and Engineering Chemistry Research 2006, 45:696-703.
-
(2006)
Industrial and Engineering Chemistry Research
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
23
-
-
33646536772
-
Adaptive multivariate statistical process control for monitoring time-varying processes
-
Choi S.W., Martin E.B., Morris A.J., Lee I.B. Adaptive multivariate statistical process control for monitoring time-varying processes. Industrial and Engineering Chemistry Research 2006, 45:3108-3118.
-
(2006)
Industrial and Engineering Chemistry Research
, vol.45
, pp. 3108-3118
-
-
Choi, S.W.1
Martin, E.B.2
Morris, A.J.3
Lee, I.B.4
-
25
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Engineering Practice 2008, 16:1427-1437.
-
(2008)
Control Engineering Practice
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
26
-
-
84862875662
-
Modeling and monitoring of dynamic processes
-
Zhang Y.W., Chai T.Y., Li Z.M., Yang C.Y. Modeling and monitoring of dynamic processes. IEEE Transactions on Neural Networks 2012, 23:277-284.
-
(2012)
IEEE Transactions on Neural Networks
, vol.23
, pp. 277-284
-
-
Zhang, Y.W.1
Chai, T.Y.2
Li, Z.M.3
Yang, C.Y.4
-
27
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Industrial and Engineering Chemistry Research 2012, 51:5497-5505.
-
(2012)
Industrial and Engineering Chemistry Research
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
28
-
-
84862799924
-
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
-
Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. Journal of Process Control 2012, 22:778-788.
-
(2012)
Journal of Process Control
, vol.22
, pp. 778-788
-
-
Yu, J.1
-
29
-
-
1042281570
-
Combination of independent component analysis and principal component analysis for multivariate statistical process control
-
Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Combination of independent component analysis and principal component analysis for multivariate statistical process control. Proceedings of International Symposium on Design, Operation and Control of Chemical Plants (PSE Asia 2002), Taipei, Taiwan 2002, 319-324.
-
(2002)
Proceedings of International Symposium on Design, Operation and Control of Chemical Plants (PSE Asia 2002), Taipei, Taiwan
, pp. 319-324
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
30
-
-
3042699927
-
Independent component analysis applied on gas sensor array measurement data
-
Kermit M., Tomic O. Independent component analysis applied on gas sensor array measurement data. IEEE Sensors Journal 2003, 3:218-228.
-
(2003)
IEEE Sensors Journal
, vol.3
, pp. 218-228
-
-
Kermit, M.1
Tomic, O.2
-
31
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Ge Z.Q., Song Z.H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial and Engineering Chemistry Research 2007, 46:2054-2063.
-
(2007)
Industrial and Engineering Chemistry Research
, vol.46
, pp. 2054-2063
-
-
Ge, Z.Q.1
Song, Z.H.2
-
32
-
-
70350318936
-
Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis (KICA-PCA)
-
Zhao C.H., Gao F.R., Wang F.L. Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis (KICA-PCA). Industrial and Engineering Chemistry Research 2009, 48:9163-9174.
-
(2009)
Industrial and Engineering Chemistry Research
, vol.48
, pp. 9163-9174
-
-
Zhao, C.H.1
Gao, F.R.2
Wang, F.L.3
-
33
-
-
0039253819
-
LOF: identifying density-based local outliers
-
Breunig M.M., Kriegel H.P., Ng R.T., Sander J. LOF: identifying density-based local outliers. Proceedings of 29th ACM SIDMOD International Conference on Management of Data, New York 2000, 93-104.
-
(2000)
Proceedings of 29th ACM SIDMOD International Conference on Management of Data, New York
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
37
-
-
74549182696
-
LoOP: local outlier probabilities
-
Kriegel H.P., Kröger P., Schubert E., Zimek A. LoOP: local outlier probabilities. Proceedings of the 18th ACM conference on Information and knowledge management, New York 2009, 1649-1652.
-
(2009)
Proceedings of the 18th ACM conference on Information and knowledge management, New York
, pp. 1649-1652
-
-
Kriegel, H.P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
38
-
-
79960836522
-
Integrating independent component analysis and local outlier factor for plant-wide process monitoring
-
Lee J.S., Kang B.Y., Kang S.H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. Journal of Process Control 2011, 21:1011-1021.
-
(2011)
Journal of Process Control
, vol.21
, pp. 1011-1021
-
-
Lee, J.S.1
Kang, B.Y.2
Kang, S.H.3
-
39
-
-
33749473097
-
Fault detection and diagnosis based on modified independent component analysis
-
Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AICHE Journal 2006, 52:3501-3514.
-
(2006)
AICHE Journal
, vol.52
, pp. 3501-3514
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
40
-
-
0035427805
-
Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
-
Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
-
(2001)
Journal of Process Control
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.F.2
-
42
-
-
15944370634
-
Fault detection based on maximum-likelihood principal component analysis (PCA) mixture
-
Choi S.W., Martin E.B., Morris A.J., Lee I.B. Fault detection based on maximum-likelihood principal component analysis (PCA) mixture. Industrial and Engineering Chemistry Research 2005, 44:2316-2327.
-
(2005)
Industrial and Engineering Chemistry Research
, vol.44
, pp. 2316-2327
-
-
Choi, S.W.1
Martin, E.B.2
Morris, A.J.3
Lee, I.B.4
-
43
-
-
77956075435
-
Reconstruction-based contribution for process monitoring with kernel principal component analysis
-
Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial and Engineering Chemistry Research 2010, 49:7849-7857.
-
(2010)
Industrial and Engineering Chemistry Research
, vol.49
, pp. 7849-7857
-
-
Alcala, C.F.1
Qin, S.J.2
|