메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 84-96

Neighborhood based global coordination for multimode process monitoring

Author keywords

Clustering; Model alignment; Multimode; Process monitoring

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; CLUSTER ANALYSIS; CONTROLLED STUDY; COORDINATION; DATA BASE; FACTORIAL ANALYSIS; FEASIBILITY STUDY; MULTIMODE PROCESS MONITORING; NEIGHBORHOOD BASED GLOBAL COORDINATION; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY; PROCESS MONITORING; STEADY STATE;

EID: 84908591078     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.09.019     Document Type: Article
Times cited : (15)

References (37)
  • 2
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z.Q., Song Z.H., Gao F.R. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3534-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3534-3562
    • Ge, Z.Q.1    Song, Z.H.2    Gao, F.R.3
  • 3
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control. Eng. Pract. 2003, 11:613-632.
    • (2003) Control. Eng. Pract. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 4
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 6
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
    • (2006) J. Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 7
    • 0035493957 scopus 로고    scopus 로고
    • Knowledge discovery from process operational data using PCA and fuzzy clustering
    • Sebzalli Y.M., Wang X.Z. Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 2001, 14:607-616.
    • (2001) Eng. Appl. Artif. Intell. , vol.14 , pp. 607-616
    • Sebzalli, Y.M.1    Wang, X.Z.2
  • 8
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge Z.Q., Song Z.H. Multimode process monitoring based on Bayesian method. J. Chemom. 2009, 23:636-650.
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 9
    • 34250008772 scopus 로고    scopus 로고
    • Cluster analysis for auto-correlated and cyclic chemical process data
    • Beaver S., Palazoglu A. Cluster analysis for auto-correlated and cyclic chemical process data. Ind. Eng. Chem. Res. 2007, 46:3610-3622.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 3610-3622
    • Beaver, S.1    Palazoglu, A.2
  • 10
    • 83655196007 scopus 로고    scopus 로고
    • Process pattern construction and multi-mode monitoring
    • Zhu Z.B., Song Z.H., Palazoglu A. Process pattern construction and multi-mode monitoring. J. Process Control 2012, 22:247-262.
    • (2012) J. Process Control , vol.22 , pp. 247-262
    • Zhu, Z.B.1    Song, Z.H.2    Palazoglu, A.3
  • 11
    • 84887285137 scopus 로고    scopus 로고
    • An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding
    • Tong C.D., Palazoglu A., Yan X.F. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Control 2014, 23:1497-1507.
    • (2014) J. Process Control , vol.23 , pp. 1497-1507
    • Tong, C.D.1    Palazoglu, A.2    Yan, X.F.3
  • 12
    • 84877358989 scopus 로고    scopus 로고
    • Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring
    • Zhao C.H., Sun Y.X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring. Chemom. Intell. Lab. Syst. 2013, 125:109-120.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 109-120
    • Zhao, C.H.1    Sun, Y.X.2
  • 13
    • 84892436192 scopus 로고    scopus 로고
    • Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
    • Zhao C.H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AICHE J. 2014, 60:559-573.
    • (2014) AICHE J. , vol.60 , pp. 559-573
    • Zhao, C.H.1
  • 14
    • 77953535805 scopus 로고    scopus 로고
    • Multi-model based process condition monitoring of offshore oil and gas production process
    • Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chem. Eng. Res. Des. 2010, 88:572-591.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 572-591
    • Natarajan, S.1    Srinivasan, R.2
  • 15
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 16
    • 84876305649 scopus 로고    scopus 로고
    • Modeling and performance monitoring of multivariate multimodal processes
    • Feital T., Kruger U., Dutra J., Pinto J.C., Lima E.L. Modeling and performance monitoring of multivariate multimodal processes. AICHE J. 2013, 59:1557-1569.
    • (2013) AICHE J. , vol.59 , pp. 1557-1569
    • Feital, T.1    Kruger, U.2    Dutra, J.3    Pinto, J.C.4    Lima, E.L.5
  • 17
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 2008, 54:1811-1829.
    • (2008) AICHE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 18
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE J. 2010, 56:2838-2849.
    • (2010) AICHE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 19
    • 77953121551 scopus 로고    scopus 로고
    • Maximum-likelihood mixture factor analysis model and its application for process monitoring
    • Ge Z.Q., Song Z.H. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemom. Intell. Lab. Syst. 2010, 102:53-61.
    • (2010) Chemom. Intell. Lab. Syst. , vol.102 , pp. 53-61
    • Ge, Z.Q.1    Song, Z.H.2
  • 20
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 21
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control. Eng. Pract. 2008, 16:1427-1437.
    • (2008) Control. Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 22
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 23
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J. Process Control 2012, 22:778-788.
    • (2012) J. Process Control , vol.22 , pp. 778-788
    • Yu, J.1
  • 24
    • 84880292457 scopus 로고    scopus 로고
    • Dynamic process monitoring using adaptive local outlier factor
    • Ma Y.X., Shi H.B., Ma H.H., Wang M.L. Dynamic process monitoring using adaptive local outlier factor. Chemom. Intell. Lab. Syst. 2013, 127:89-101.
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 89-101
    • Ma, Y.X.1    Shi, H.B.2    Ma, H.H.3    Wang, M.L.4
  • 25
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
    • Ma H.H., Hu Y., Shi H.B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemom. Intell. Lab. Syst. 2012, 118:287-300.
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 26
    • 84873616584 scopus 로고    scopus 로고
    • Fault detection and identification based on the neighborhood standardized local outlier factor method
    • Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 2013, 52:2389-2402.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 2389-2402
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 27
    • 79952788723 scopus 로고    scopus 로고
    • Immune-system-inspired approach to process monitoring and fault diagnosis
    • Ghosh K., Srinivasan R. Immune-system-inspired approach to process monitoring and fault diagnosis. Ind. Eng. Chem. Res. 2011, 50:1637-1651.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 1637-1651
    • Ghosh, K.1    Srinivasan, R.2
  • 28
    • 84898795506 scopus 로고    scopus 로고
    • Multimode process monitoring using improved dynamic neighborhood preserving embedding
    • Song B., Ma Y.X., Shi H.B. Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemom. Intell. Lab. Syst. 2014, 135:17-30.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 17-30
    • Song, B.1    Ma, Y.X.2    Shi, H.B.3
  • 29
    • 84877622612 scopus 로고    scopus 로고
    • Modeling and monitoring of multimode process based on subspace separation
    • Zhang Y.W., Wang C., Lu R.Q. Modeling and monitoring of multimode process based on subspace separation. Chem. Eng. Res. Des. 2013, 91:831-842.
    • (2013) Chem. Eng. Res. Des. , vol.91 , pp. 831-842
    • Zhang, Y.W.1    Wang, C.2    Lu, R.Q.3
  • 30
    • 84889604438 scopus 로고    scopus 로고
    • Modeling and monitoring of nonlinear multi-mode processes
    • Zhang Y.W., Li S. Modeling and monitoring of nonlinear multi-mode processes. Control. Eng. Pract. 2014, 22:194-204.
    • (2014) Control. Eng. Pract. , vol.22 , pp. 194-204
    • Zhang, Y.W.1    Li, S.2
  • 31
    • 84890995320 scopus 로고    scopus 로고
    • Automatic alignment of local representations
    • Teh Y.W., Roweis S. Automatic alignment of local representations. Adv. Neural Inf. Process. Syst. 2002, 15:841-848.
    • (2002) Adv. Neural Inf. Process. Syst. , vol.15 , pp. 841-848
    • Teh, Y.W.1    Roweis, S.2
  • 33
    • 61649107911 scopus 로고    scopus 로고
    • Two-dimensional dynamic principal component analysis with auto determined support region
    • Yao Y., Diao Y.H., Lu N.Y., Lu J.D., Gao F.R. Two-dimensional dynamic principal component analysis with auto determined support region. Ind. Eng. Chem. Res. 2009, 48:837-843.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 837-843
    • Yao, Y.1    Diao, Y.H.2    Lu, N.Y.3    Lu, J.D.4    Gao, F.R.5
  • 34
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
    • Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 2013, 125:101-108.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 35
    • 84864297252 scopus 로고    scopus 로고
    • Local and global principal component analysis for process monitoring
    • Yu J.B. Local and global principal component analysis for process monitoring. J. Process Control 2012, 22:1358-1373.
    • (2012) J. Process Control , vol.22 , pp. 1358-1373
    • Yu, J.B.1
  • 36
    • 79959985541 scopus 로고    scopus 로고
    • Global local structure analysis model and its application for fault detection and identification
    • Zhang M.G., Ge Z.Q., Song Z.H., Fu R.W. Global local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res. 2011, 50:6837-6848.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 6837-6848
    • Zhang, M.G.1    Ge, Z.Q.2    Song, Z.H.3    Fu, R.W.4
  • 37
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.