-
2
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z.Q., Song Z.H., Gao F.R. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3534-3562.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3534-3562
-
-
Ge, Z.Q.1
Song, Z.H.2
Gao, F.R.3
-
3
-
-
0038198780
-
Recursive partial least squares algorithms for monitoring complex industrial processes
-
Wang X., Kruger U., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control. Eng. Pract. 2003, 11:613-632.
-
(2003)
Control. Eng. Pract.
, vol.11
, pp. 613-632
-
-
Wang, X.1
Kruger, U.2
Lennox, B.3
-
4
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
6
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
-
(2006)
J. Process Control
, vol.16
, pp. 763-772
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
7
-
-
0035493957
-
Knowledge discovery from process operational data using PCA and fuzzy clustering
-
Sebzalli Y.M., Wang X.Z. Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 2001, 14:607-616.
-
(2001)
Eng. Appl. Artif. Intell.
, vol.14
, pp. 607-616
-
-
Sebzalli, Y.M.1
Wang, X.Z.2
-
8
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge Z.Q., Song Z.H. Multimode process monitoring based on Bayesian method. J. Chemom. 2009, 23:636-650.
-
(2009)
J. Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
9
-
-
34250008772
-
Cluster analysis for auto-correlated and cyclic chemical process data
-
Beaver S., Palazoglu A. Cluster analysis for auto-correlated and cyclic chemical process data. Ind. Eng. Chem. Res. 2007, 46:3610-3622.
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 3610-3622
-
-
Beaver, S.1
Palazoglu, A.2
-
10
-
-
83655196007
-
Process pattern construction and multi-mode monitoring
-
Zhu Z.B., Song Z.H., Palazoglu A. Process pattern construction and multi-mode monitoring. J. Process Control 2012, 22:247-262.
-
(2012)
J. Process Control
, vol.22
, pp. 247-262
-
-
Zhu, Z.B.1
Song, Z.H.2
Palazoglu, A.3
-
11
-
-
84887285137
-
An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding
-
Tong C.D., Palazoglu A., Yan X.F. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Control 2014, 23:1497-1507.
-
(2014)
J. Process Control
, vol.23
, pp. 1497-1507
-
-
Tong, C.D.1
Palazoglu, A.2
Yan, X.F.3
-
12
-
-
84877358989
-
Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring
-
Zhao C.H., Sun Y.X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring. Chemom. Intell. Lab. Syst. 2013, 125:109-120.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.125
, pp. 109-120
-
-
Zhao, C.H.1
Sun, Y.X.2
-
13
-
-
84892436192
-
Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
-
Zhao C.H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AICHE J. 2014, 60:559-573.
-
(2014)
AICHE J.
, vol.60
, pp. 559-573
-
-
Zhao, C.H.1
-
14
-
-
77953535805
-
Multi-model based process condition monitoring of offshore oil and gas production process
-
Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chem. Eng. Res. Des. 2010, 88:572-591.
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, pp. 572-591
-
-
Natarajan, S.1
Srinivasan, R.2
-
15
-
-
6344249065
-
Monitoring of processes with multiple operating modes through multiple principal component analysis models
-
Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
16
-
-
84876305649
-
Modeling and performance monitoring of multivariate multimodal processes
-
Feital T., Kruger U., Dutra J., Pinto J.C., Lima E.L. Modeling and performance monitoring of multivariate multimodal processes. AICHE J. 2013, 59:1557-1569.
-
(2013)
AICHE J.
, vol.59
, pp. 1557-1569
-
-
Feital, T.1
Kruger, U.2
Dutra, J.3
Pinto, J.C.4
Lima, E.L.5
-
17
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 2008, 54:1811-1829.
-
(2008)
AICHE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
18
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z.Q., Song Z.H. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE J. 2010, 56:2838-2849.
-
(2010)
AICHE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
19
-
-
77953121551
-
Maximum-likelihood mixture factor analysis model and its application for process monitoring
-
Ge Z.Q., Song Z.H. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemom. Intell. Lab. Syst. 2010, 102:53-61.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.102
, pp. 53-61
-
-
Ge, Z.Q.1
Song, Z.H.2
-
20
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin H.D., Lee Y.H., Lee G., Han C.H. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:696-703.
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
21
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control. Eng. Pract. 2008, 16:1427-1437.
-
(2008)
Control. Eng. Pract.
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
22
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
23
-
-
84862799924
-
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
-
Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J. Process Control 2012, 22:778-788.
-
(2012)
J. Process Control
, vol.22
, pp. 778-788
-
-
Yu, J.1
-
24
-
-
84880292457
-
Dynamic process monitoring using adaptive local outlier factor
-
Ma Y.X., Shi H.B., Ma H.H., Wang M.L. Dynamic process monitoring using adaptive local outlier factor. Chemom. Intell. Lab. Syst. 2013, 127:89-101.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.127
, pp. 89-101
-
-
Ma, Y.X.1
Shi, H.B.2
Ma, H.H.3
Wang, M.L.4
-
25
-
-
84868210616
-
A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
-
Ma H.H., Hu Y., Shi H.B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes. Chemom. Intell. Lab. Syst. 2012, 118:287-300.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.118
, pp. 287-300
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
26
-
-
84873616584
-
Fault detection and identification based on the neighborhood standardized local outlier factor method
-
Ma H.H., Hu Y., Shi H.B. Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 2013, 52:2389-2402.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 2389-2402
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
27
-
-
79952788723
-
Immune-system-inspired approach to process monitoring and fault diagnosis
-
Ghosh K., Srinivasan R. Immune-system-inspired approach to process monitoring and fault diagnosis. Ind. Eng. Chem. Res. 2011, 50:1637-1651.
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 1637-1651
-
-
Ghosh, K.1
Srinivasan, R.2
-
28
-
-
84898795506
-
Multimode process monitoring using improved dynamic neighborhood preserving embedding
-
Song B., Ma Y.X., Shi H.B. Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemom. Intell. Lab. Syst. 2014, 135:17-30.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 17-30
-
-
Song, B.1
Ma, Y.X.2
Shi, H.B.3
-
29
-
-
84877622612
-
Modeling and monitoring of multimode process based on subspace separation
-
Zhang Y.W., Wang C., Lu R.Q. Modeling and monitoring of multimode process based on subspace separation. Chem. Eng. Res. Des. 2013, 91:831-842.
-
(2013)
Chem. Eng. Res. Des.
, vol.91
, pp. 831-842
-
-
Zhang, Y.W.1
Wang, C.2
Lu, R.Q.3
-
30
-
-
84889604438
-
Modeling and monitoring of nonlinear multi-mode processes
-
Zhang Y.W., Li S. Modeling and monitoring of nonlinear multi-mode processes. Control. Eng. Pract. 2014, 22:194-204.
-
(2014)
Control. Eng. Pract.
, vol.22
, pp. 194-204
-
-
Zhang, Y.W.1
Li, S.2
-
32
-
-
74549182696
-
LoOP: local outlier probabilities
-
Kriegel H.P., Kröger P., Schubert E., Zimek A. LoOP: local outlier probabilities. Proceeding of the 18th ACM conference on Information and knowledge management, New York 2009, 1649-1652.
-
(2009)
Proceeding of the 18th ACM conference on Information and knowledge management, New York
, pp. 1649-1652
-
-
Kriegel, H.P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
33
-
-
61649107911
-
Two-dimensional dynamic principal component analysis with auto determined support region
-
Yao Y., Diao Y.H., Lu N.Y., Lu J.D., Gao F.R. Two-dimensional dynamic principal component analysis with auto determined support region. Ind. Eng. Chem. Res. 2009, 48:837-843.
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 837-843
-
-
Yao, Y.1
Diao, Y.H.2
Lu, N.Y.3
Lu, J.D.4
Gao, F.R.5
-
34
-
-
84877316529
-
Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
-
Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 2013, 125:101-108.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.125
, pp. 101-108
-
-
Rato, T.J.1
Reis, M.S.2
-
35
-
-
84864297252
-
Local and global principal component analysis for process monitoring
-
Yu J.B. Local and global principal component analysis for process monitoring. J. Process Control 2012, 22:1358-1373.
-
(2012)
J. Process Control
, vol.22
, pp. 1358-1373
-
-
Yu, J.B.1
-
36
-
-
79959985541
-
Global local structure analysis model and its application for fault detection and identification
-
Zhang M.G., Ge Z.Q., Song Z.H., Fu R.W. Global local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res. 2011, 50:6837-6848.
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 6837-6848
-
-
Zhang, M.G.1
Ge, Z.Q.2
Song, Z.H.3
Fu, R.W.4
-
37
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
|