메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 1497-1507

An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding

Author keywords

Clustering; Fault detection; Multimode processes; Principal component analysis

Indexed keywords

ADAPTIVE STRATEGY; CLUSTERING; COMPREHENSIVE MONITORING; K-MEANS ALGORITHM; MONITORING FRAMEWORKS; MULTI-MODE PROCESS; MULTIMODE PROCESS MONITORING; TENNESSEE EASTMAN;

EID: 84887285137     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.09.017     Document Type: Article
Times cited : (76)

References (42)
  • 1
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • J. MacGregor, and T. Kourti Statistical process control of multivariate processes Control Engineering Practice 3 1995 403 414
    • (1995) Control Engineering Practice , vol.3 , pp. 403-414
    • Macgregor, J.1    Kourti, T.2
  • 4
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B.R. Bakshi Multiscale PCA with application to multivariate statistical process monitoring AIChE Journal 44 1998 1596 1610 (Pubitemid 128768960)
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 5
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • DOI 10.1016/S0967-0661(02)00096-5, PII S0967066102000965
    • X. Wang, U. Kruger, and B. Lennox Recursive partial least squares algorithm for monitoring complex industrial processes Control Engineering Practice 11 2003 613 632 (Pubitemid 36777464)
    • (2003) Control Engineering Practice , vol.11 , Issue.6 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 6
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2003.09.012
    • J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.B. Lee Nonlinear process monitoring using kernel principal component analysis Chemical Engineering Science 59 2004 223 234 (Pubitemid 38034007)
    • (2004) Chemical Engineering Science , vol.59 , Issue.1 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 7
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Z.Q. Ge, M.G. Zhang, and Z.H. Song Nonlinear process monitoring based on linear subspace and Bayesian inference Journal of Process Control 20 2010 676 688
    • (2010) Journal of Process Control , vol.20 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3
  • 8
    • 80051697507 scopus 로고    scopus 로고
    • Fault detection, identification and diagnosis using CUSUM based PCA
    • M.A.B. Shams, H.M. Budman, and T.A. Duever Fault detection, identification and diagnosis using CUSUM based PCA Chemical Engineering Science 66 2011 4488 4498
    • (2011) Chemical Engineering Science , vol.66 , pp. 4488-4498
    • Shams, M.A.B.1    Budman, H.M.2    Duever, T.A.3
  • 9
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • DOI 10.1016/S0169-7439(00)00058-7, PII S0169743900000587
    • E.L. Russell, L.H. Chiang, and R.D. Braatz Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis Chemometrics and Intelligent Laboratory Systems 51 2000 81 93 (Pubitemid 30251932)
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 10
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • DOI 10.1002/aic.10978
    • J.M. Lee, S.J. Qin, and I.B. Lee Fault detection and diagnosis based on modified independent component analysis AIChE Journal 52 2006 3501 3514 (Pubitemid 44519578)
    • (2006) AIChE Journal , vol.52 , Issue.10 , pp. 3501-3514
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 11
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • J.M. Lee, S.J. Qin, and I.B. Lee Fault detection of non-linear processes using kernel independent component analysis Canadian Journal of Chemical Engineering 85 2007 526 536
    • (2007) Canadian Journal of Chemical Engineering , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 12
    • 79959985541 scopus 로고    scopus 로고
    • Global-local structure analysis model and its application for fault detection and identification
    • M.G. Zhang, Z.Q. Ge, Z.H. Song, and R.W. Fu Global-local structure analysis model and its application for fault detection and identification Industrial and Engineering Chemistry Research 50 2011 6837 6848
    • (2011) Industrial and Engineering Chemistry Research , vol.50 , pp. 6837-6848
    • Zhang, M.G.1    Ge, Z.Q.2    Song, Z.H.3    Fu, R.W.4
  • 13
    • 80052565753 scopus 로고    scopus 로고
    • Improved nonlinear PCA for process monitoring using support vector data description
    • X.Q. Liu, K. Li, M. McAfee, and G.W. Irwin Improved nonlinear PCA for process monitoring using support vector data description Journal of Process Control 21 2011 1306 1317
    • (2011) Journal of Process Control , vol.21 , pp. 1306-1317
    • Liu, X.Q.1    Li, K.2    McAfee, M.3    Irwin, G.W.4
  • 14
    • 84864297252 scopus 로고    scopus 로고
    • Local and global principal component analysis for process monitoring
    • J. Yu Local and global principal component analysis for process monitoring Journal of Process Control 22 2012 1358 1373
    • (2012) Journal of Process Control , vol.22 , pp. 1358-1373
    • Yu, J.1
  • 15
    • 77957355948 scopus 로고    scopus 로고
    • Statistical analysis and online monitoring for multimode process with between-mode transitions
    • C.H. Zhao, Y. Yao, F.R. Gao, and F.L. Wang Statistical analysis and online monitoring for multimode process with between-mode transitions Chemical Engineering Science 65 2010 5961 5975
    • (2010) Chemical Engineering Science , vol.65 , pp. 5961-5975
    • Zhao, C.H.1    Yao, Y.2    Gao, F.R.3    Wang, F.L.4
  • 16
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • D.H. Hwang, and C.H. Han Real-time monitoring for a process with multiple operating modes Control Engineering Practice 7 1999 891 902
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.H.2
  • 17
    • 0035255106 scopus 로고    scopus 로고
    • Performance monitoring of a multi-product semi-batch process
    • DOI 10.1016/S0959-1524(99)00063-3
    • S. Lane, E.B. Martin, R. Kooijmans, and A.J. Morris Performance monitoring of a multi-product semi-batch process Journal of Process Control 11 2001 1 11 (Pubitemid 32020432)
    • (2001) Journal of Process Control , vol.11 , Issue.1 , pp. 1-11
    • Lane, S.1    Martin, E.B.2    Kooijmans, R.3    Morris, A.J.4
  • 20
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principle component analysis models
    • S.J. Zhao, J. Zhang, and Y.M. Xu Monitoring of processes with multiple operating modes through multiple principal component analysis models Industrial and Engineering Chemistry Research 43 2004 7025 7035 (Pubitemid 39403289)
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , Issue.22 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 22
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • DOI 10.1002/aic.11515
    • J. Yu Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE Journal 54 2008 1811 1829 (Pubitemid 352006869)
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 23
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Z.Q. Ge, and Z.H. Song Mixture Bayesian regularization method of PPCA for multimode process monitoring AIChE Journal 56 2010 2838 2849
    • (2010) AIChE Journal , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 24
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • X. Xie, and H.B. Shi Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models Industrial and Engineering Chemistry Research 51 2012 5497 5505
    • (2012) Industrial and Engineering Chemistry Research , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 25
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • J. Yu Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring Journal of Process Control 20 2010 344 359
    • (2010) Journal of Process Control , vol.20 , pp. 344-359
    • Yu, J.1
  • 26
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • M.M. Rashid, and J. Yu Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection Industrial and Engineering Chemistry Research 51 2012 5506 5514
    • (2012) Industrial and Engineering Chemistry Research , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 27
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode process
    • H.H. Ma, Y. Hu, and H.B. Shi A novel local neighborhood standardization strategy and its application in fault detection of multimode process Chemometrics and Intelligent Laboratory Systems 118 2012 287 300
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 28
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • DOI 10.1016/j.ces.2004.04.020, PII S0009250904002453
    • C. Cheng, and M.S. Chiu A new data-based methodology for nonlinear process modeling Chemical Engineering Science 59 2004 2801 2810 (Pubitemid 38763544)
    • (2004) Chemical Engineering Science , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.-S.2
  • 29
    • 29344470519 scopus 로고    scopus 로고
    • A cluster aggregation scheme for ozone episode selection in the San Francisco, CA Bay Area
    • DOI 10.1016/j.atmosenv.2005.10.003, PII S1352231005009635
    • S. Beaver, and A. Palazoglu A cluster aggregation scheme for ozone episode selection in the San Francisco, CA Bay area Atmospheric Environment 40 2006 713 725 (Pubitemid 43003609)
    • (2006) Atmospheric Environment , vol.40 , Issue.4 , pp. 713-725
    • Beaver, S.1    Palazolu, A.2
  • 30
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • DOI 10.1109/TKDE.2005.198
    • D. Cai, X. He, and J. Han Document clustering using locality preserving indexing IEEE transactions on Knowledge and Data Engineering 17 2005 1624 1637 (Pubitemid 43060413)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 35
    • 70350130556 scopus 로고    scopus 로고
    • Rough-DBSCAN: A fast hybrid density based clustering method for large data sets
    • P. Viswanath, and V.S. Babu Rough-DBSCAN: a fast hybrid density based clustering method for large data sets Pattern Recognition Letters 30 2009 1477 1488
    • (2009) Pattern Recognition Letters , vol.30 , pp. 1477-1488
    • Viswanath, P.1    Babu, V.S.2
  • 36
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, and J.F. MacGregor Monitoring batch processes using multiway principal component analysis AIChE Journal 40 1994 1361 1375
    • (1994) AIChE Journal , vol.40 , pp. 1361-1375
    • Nomikos, P.1    Macgregor, J.F.2
  • 37
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • P. Nomikos, and J.F. MacGregor Multivariate SPC charts for monitoring batch processes Technometrics 37 1995 41 59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    Macgregor, J.F.2
  • 38
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • H.H. Yue, and S.J. Qin Reconstruction-based fault identification using a combined index Industrial and Engineering Chemistry Research 40 2001 4403 4414 (Pubitemid 33009817)
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 40
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman Challenge Process
    • DOI 10.1016/0959-1524(96)00031-5
    • N.L. Ricker Decentralized control of Tennessee Eastman challenge process Journal of Process Control 6 1996 205 221 (Pubitemid 126358692)
    • (1996) Journal of Process Control , vol.6 , Issue.4 , pp. 205-221
    • Ricker, N.L.1
  • 41
    • 83655196007 scopus 로고    scopus 로고
    • Process pattern construction and multi-mode monitoring
    • Z.B. Zhu, Z.H. Song, and A. Palazoglu Process pattern construction and multi-mode monitoring Journal of Process Control 22 2012 247 262
    • (2012) Journal of Process Control , vol.22 , pp. 247-262
    • Zhu, Z.B.1    Song, Z.H.2    Palazoglu, A.3
  • 42
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • N.L. Ricker Optimal steady-state operation of the Tennessee Eastman challenge process Computers and Chemical Engineering 19 1995 949 959
    • (1995) Computers and Chemical Engineering , vol.19 , pp. 949-959
    • Ricker, N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.