메뉴 건너뛰기




Volumn 10, Issue 2, 2000, Pages 245-250

Determining the number of principal components for best reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION METHODS; ERROR ANALYSIS; MATHEMATICAL MODELS; SENSORS;

EID: 0033903077     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-1524(99)00043-8     Document Type: Article
Times cited : (199)

References (15)
  • 1
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics. 37 (1):1995;41-59.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 2
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., Koutodi M. Statistical process control of multivariate processes. Control Engineering Practice. 3:1995;403-414.
    • (1995) Control Engineering Practice , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Koutodi, M.2
  • 3
    • 0000514173 scopus 로고
    • Factor analytical modeing of biochemical data
    • Harmon J.L., Duboc P.H., Bonvin D. Factor analytical modeing of biochemical data. Comput. Chem. 19:1995;1287-1300.
    • (1995) Comput. Chem. , vol.19 , pp. 1287-1300
    • Harmon, J.L.1    Duboc, P.H.2    Bonvin, D.3
  • 6
    • 0002878789 scopus 로고
    • Recent advances in multivariative statistical process control: Improving robustness and sensitivity
    • Wise, B.M., Ricker, N.L. Recent advances in multivariative statistical process control: Improving robustness and sensitivity, in: Proceedings of the IFAC. ADCHEM Syposium, 1994, 125-130.
    • (1994) In: Proceedings of the IFAC. ADCHEM Syposium , pp. 125-130
    • Wise, B.M.1    Ricker, N.L.2
  • 7
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin J., Edgar T.F., McAvoy T.J. Identification of faulty sensors using principal component analysis. AIChE J. 42:1996;2797-2812.
    • (1996) AIChE J. , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 8
    • 0010263398 scopus 로고    scopus 로고
    • A unified geometric approach to process and sensor fault identification
    • In press
    • R. Dunia, S.J. Qin, A unified geometric approach to process and sensor fault identification, Comput. Chem. In press.
    • Comput. Chem.
    • Dunia, R.1    Qin, S.J.2
  • 9
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chem. Intell. Lab. Sys. 30:1995;179.
    • (1995) Chem. Intell. Lab. Sys. , vol.30 , pp. 179
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 10
    • 84951601886 scopus 로고
    • Cross validatory estimation of the number of components in factor and principal component analysis
    • Wold S. Cross validatory estimation of the number of components in factor and principal component analysis. Technometrics. 20:1978;397-406.
    • (1978) Technometrics , vol.20 , pp. 397-406
    • Wold, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.