-
1
-
-
84866497004
-
Approximate inference in state-space models with heavy-tailed noise
-
Agamennoni G., Nieto J.I., Nebot E.M. Approximate inference in state-space models with heavy-tailed noise. IEEE Trans. Signal Process. 2012, 60:5024-5037.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, pp. 5024-5037
-
-
Agamennoni, G.1
Nieto, J.I.2
Nebot, E.M.3
-
2
-
-
59349107270
-
A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
-
Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
-
(2009)
Korean J. Chem. Eng.
, vol.26
, pp. 14-20
-
-
Ahmed, F.1
Nazir, S.2
Yeo, Y.K.3
-
3
-
-
34250712895
-
Robust probabilistic projections
-
Proceedings of the 23rd International Conference on Machine Learning, ACM
-
Archambeau, C., Delannay, N., Verleysen, M., 2006. Robust probabilistic projections. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 33-40.
-
(2006)
, pp. 33-40
-
-
Archambeau, C.1
Delannay, N.2
Verleysen, M.3
-
4
-
-
40649094216
-
Mixtures of robust probabilistic principal component analyzers
-
Archambeau C., Delannay N., Verleysen M. Mixtures of robust probabilistic principal component analyzers. Neurocomputing 2008, 71:1274-1282.
-
(2008)
Neurocomputing
, vol.71
, pp. 1274-1282
-
-
Archambeau, C.1
Delannay, N.2
Verleysen, M.3
-
5
-
-
8744307994
-
Multimodel inference understanding AIC and BIC in model selection
-
Burnham K.P., Anderson D.R. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods Res. 2004, 33:261-304.
-
(2004)
Sociological Methods Res.
, vol.33
, pp. 261-304
-
-
Burnham, K.P.1
Anderson, D.R.2
-
7
-
-
0032179443
-
Software sensor design using Bayesian automatic classification and back-propagation neural networks
-
Chen F., Wang X. Software sensor design using Bayesian automatic classification and back-propagation neural networks. Ind. Eng. Chem. Res. 1998, 37:3985-3991.
-
(1998)
Ind. Eng. Chem. Res.
, vol.37
, pp. 3985-3991
-
-
Chen, F.1
Wang, X.2
-
9
-
-
84867229655
-
Identification of nonlinear parameter varying systems with missing output data
-
Deng J., Huang B. Identification of nonlinear parameter varying systems with missing output data. AlChE J. 2012, 58:3454-3467.
-
(2012)
AlChE J.
, vol.58
, pp. 3454-3467
-
-
Deng, J.1
Huang, B.2
-
10
-
-
60649090799
-
Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
-
Facco P., Doplicher F., Bezzo F., Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. J. Process Control 2009, 19:520-529.
-
(2009)
J. Process Control
, vol.19
, pp. 520-529
-
-
Facco, P.1
Doplicher, F.2
Bezzo, F.3
Barolo, M.4
-
11
-
-
55149103958
-
Robust probabilistic multivariate calibration model
-
Fang Y., Jeong M.K. Robust probabilistic multivariate calibration model. Technometrics 2008, 50:305-316.
-
(2008)
Technometrics
, vol.50
, pp. 305-316
-
-
Fang, Y.1
Jeong, M.K.2
-
12
-
-
11144284581
-
Soft sensors for product quality monitoring in debutanizer distillation columns
-
Fortuna L., Graziani S., Xibilia M.G. Soft sensors for product quality monitoring in debutanizer distillation columns. Control Eng. Pract. 2005, 13:499-508.
-
(2005)
Control Eng. Pract.
, vol.13
, pp. 499-508
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
-
13
-
-
84857190023
-
Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design
-
Fujiwara K., Kano M., Hasebe S. Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design. Control Eng. Pract. 2012, 20:371-378.
-
(2012)
Control Eng. Pract.
, vol.20
, pp. 371-378
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
-
14
-
-
78650953042
-
Mixture probabilistic PCR model for soft sensing of multimode processes
-
Ge Z., Gao F., Song Z. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemom. Intell. Lab. Syst. 2011, 105:91-105.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 91-105
-
-
Ge, Z.1
Gao, F.2
Song, Z.3
-
15
-
-
85015538480
-
Mixture semisupervised principal component regression model and soft sensor application
-
Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. AlChE J. 2013.
-
(2013)
AlChE J.
-
-
Ge, Z.1
Huang, B.2
Song, Z.3
-
16
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AlChE J. 2010, 56:2838-2849.
-
(2010)
AlChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.1
Song, Z.2
-
17
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3543-3562
-
-
Ge, Z.1
Song, Z.2
Gao, F.3
-
18
-
-
0342397620
-
On robust partial least squares (PLS) methods
-
Gil J.A., Romera R. On robust partial least squares (PLS) methods. J. Chemom. 1998, 12:365-378.
-
(1998)
J. Chemom.
, vol.12
, pp. 365-378
-
-
Gil, J.A.1
Romera, R.2
-
19
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge V.J., Austin J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22:85-126.
-
(2004)
Artif. Intell. Rev.
, vol.22
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
20
-
-
0344982260
-
Robust methods for partial least squares regression
-
Hubert M., Branden K.V. Robust methods for partial least squares regression. J. Chemom. 2003, 17:537-549.
-
(2003)
J. Chemom.
, vol.17
, pp. 537-549
-
-
Hubert, M.1
Branden, K.V.2
-
21
-
-
0242322774
-
A robust PCR method for high-dimensional regressors
-
Hubert M., Verboven S. A robust PCR method for high-dimensional regressors. J. Chemom. 2003, 17:438-452.
-
(2003)
J. Chemom.
, vol.17
, pp. 438-452
-
-
Hubert, M.1
Verboven, S.2
-
22
-
-
54949104972
-
Treatment of missing values in process data analysis
-
Imtiaz S., Shah S. Treatment of missing values in process data analysis. Can. J. Chem. Eng. 2008, 86:838-858.
-
(2008)
Can. J. Chem. Eng.
, vol.86
, pp. 838-858
-
-
Imtiaz, S.1
Shah, S.2
-
23
-
-
84855386927
-
Robust Gaussian process regression with a Student-t likelihood
-
Jylänki P., Vanhatalo J., Vehtari A. Robust Gaussian process regression with a Student-t likelihood. J. Mach. Learn. Res. 2011, 12:3227-3257.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 3227-3257
-
-
Jylänki, P.1
Vanhatalo, J.2
Vehtari, A.3
-
24
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
25
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AlChE J. 2009, 55:87-98.
-
(2009)
AlChE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
26
-
-
57249097849
-
Dealing with irregular data in soft sensors: Bayesian method and comparative study
-
Khatibisepehr S., Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47:8713-8723.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 8713-8723
-
-
Khatibisepehr, S.1
Huang, B.2
-
27
-
-
84888306466
-
Design of inferential sensors in the process industry: a review of Bayesian methods
-
Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
-
(2013)
J. Process Control
, vol.23
, pp. 1575-1596
-
-
Khatibisepehr, S.1
Huang, B.2
Khare, S.3
-
28
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim D., Lee I.-B. Process monitoring based on probabilistic PCA. Chemom. Intell. Lab. Syst. 2003, 67:109-123.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.1
Lee, I.-B.2
-
29
-
-
33847162850
-
A systematic approach for soft sensor development
-
Lin B., Recke B., Knudsen J.K., Jørgensen S.B. A systematic approach for soft sensor development. Comput. Chem. Eng. 2007, 31:419-425.
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.3
Jørgensen, S.B.4
-
32
-
-
85047673373
-
Missing data: our view of the state of the art
-
Schafer J.L., Graham J.W. Missing data: our view of the state of the art. Psychol. Methods 2002, 7:147.
-
(2002)
Psychol. Methods
, vol.7
, pp. 147
-
-
Schafer, J.L.1
Graham, J.W.2
-
33
-
-
15844362098
-
Robust Bayesian mixture modelling
-
Svensén M., Bishop C.M. Robust Bayesian mixture modelling. Neurocomputing 2005, 64:235-252.
-
(2005)
Neurocomputing
, vol.64
, pp. 235-252
-
-
Svensén, M.1
Bishop, C.M.2
-
35
-
-
80052303923
-
The infinite Student's t-mixture for robust modeling
-
Wei X., Li C. The infinite Student's t-mixture for robust modeling. Signal Process. 2012, 92:224-234.
-
(2012)
Signal Process.
, vol.92
, pp. 224-234
-
-
Wei, X.1
Li, C.2
-
36
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
37
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses.
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
38
-
-
33749566317
-
Supervised probabilistic principal component analysis
-
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
-
Yu, S., Yu, K., Tresp, V., Kriegel, H.-P., Wu, M., 2006. Supervised probabilistic principal component analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 464-473.
-
(2006)
, pp. 464-473
-
-
Yu, S.1
Yu, K.2
Tresp, V.3
Kriegel, H.-P.4
Wu, M.5
-
39
-
-
84882799294
-
Dynamic process monitoring based on probabilistic principle component regression
-
2013 25th Chinese, IEEE
-
Zhou, L., Song, Z., Ge, Z., Miao, A., 2013. Dynamic process monitoring based on probabilistic principle component regression. In: Control and Decision Conference (CCDC), 2013 25th Chinese, IEEE, pp. 4763-4767.
-
(2013)
Control and Decision Conference (CCDC)
, pp. 4763-4767
-
-
Zhou, L.1
Song, Z.2
Ge, Z.3
Miao, A.4
-
40
-
-
84899658776
-
Robust modeling of mixture probabilistic principal component analysis and process monitoring application
-
Zhu J., Ge Z., Song Z. Robust modeling of mixture probabilistic principal component analysis and process monitoring application. AlChE J. 2014, 60:2143-2157.
-
(2014)
AlChE J.
, vol.60
, pp. 2143-2157
-
-
Zhu, J.1
Ge, Z.2
Song, Z.3
|