메뉴 건너뛰기




Volumn 122, Issue , 2015, Pages 573-584

Robust supervised probabilistic principal component analysis model for soft sensing of key process variables

Author keywords

Outliers; Process data modeling; Robust modeling; Soft sensor; Supervised probabilistic model

Indexed keywords

ALGORITHMS; IMAGE SEGMENTATION; ITERATIVE METHODS; MAXIMUM PRINCIPLE; MIXTURES; STATISTICS;

EID: 84910026328     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2014.10.029     Document Type: Article
Times cited : (46)

References (40)
  • 1
    • 84866497004 scopus 로고    scopus 로고
    • Approximate inference in state-space models with heavy-tailed noise
    • Agamennoni G., Nieto J.I., Nebot E.M. Approximate inference in state-space models with heavy-tailed noise. IEEE Trans. Signal Process. 2012, 60:5024-5037.
    • (2012) IEEE Trans. Signal Process. , vol.60 , pp. 5024-5037
    • Agamennoni, G.1    Nieto, J.I.2    Nebot, E.M.3
  • 2
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 3
    • 34250712895 scopus 로고    scopus 로고
    • Robust probabilistic projections
    • Proceedings of the 23rd International Conference on Machine Learning, ACM
    • Archambeau, C., Delannay, N., Verleysen, M., 2006. Robust probabilistic projections. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 33-40.
    • (2006) , pp. 33-40
    • Archambeau, C.1    Delannay, N.2    Verleysen, M.3
  • 4
    • 40649094216 scopus 로고    scopus 로고
    • Mixtures of robust probabilistic principal component analyzers
    • Archambeau C., Delannay N., Verleysen M. Mixtures of robust probabilistic principal component analyzers. Neurocomputing 2008, 71:1274-1282.
    • (2008) Neurocomputing , vol.71 , pp. 1274-1282
    • Archambeau, C.1    Delannay, N.2    Verleysen, M.3
  • 5
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference understanding AIC and BIC in model selection
    • Burnham K.P., Anderson D.R. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods Res. 2004, 33:261-304.
    • (2004) Sociological Methods Res. , vol.33 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 7
    • 0032179443 scopus 로고    scopus 로고
    • Software sensor design using Bayesian automatic classification and back-propagation neural networks
    • Chen F., Wang X. Software sensor design using Bayesian automatic classification and back-propagation neural networks. Ind. Eng. Chem. Res. 1998, 37:3985-3991.
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 3985-3991
    • Chen, F.1    Wang, X.2
  • 9
    • 84867229655 scopus 로고    scopus 로고
    • Identification of nonlinear parameter varying systems with missing output data
    • Deng J., Huang B. Identification of nonlinear parameter varying systems with missing output data. AlChE J. 2012, 58:3454-3467.
    • (2012) AlChE J. , vol.58 , pp. 3454-3467
    • Deng, J.1    Huang, B.2
  • 10
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco P., Doplicher F., Bezzo F., Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. J. Process Control 2009, 19:520-529.
    • (2009) J. Process Control , vol.19 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 11
    • 55149103958 scopus 로고    scopus 로고
    • Robust probabilistic multivariate calibration model
    • Fang Y., Jeong M.K. Robust probabilistic multivariate calibration model. Technometrics 2008, 50:305-316.
    • (2008) Technometrics , vol.50 , pp. 305-316
    • Fang, Y.1    Jeong, M.K.2
  • 12
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Fortuna L., Graziani S., Xibilia M.G. Soft sensors for product quality monitoring in debutanizer distillation columns. Control Eng. Pract. 2005, 13:499-508.
    • (2005) Control Eng. Pract. , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 13
    • 84857190023 scopus 로고    scopus 로고
    • Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design
    • Fujiwara K., Kano M., Hasebe S. Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design. Control Eng. Pract. 2012, 20:371-378.
    • (2012) Control Eng. Pract. , vol.20 , pp. 371-378
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 14
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic PCR model for soft sensing of multimode processes
    • Ge Z., Gao F., Song Z. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemom. Intell. Lab. Syst. 2011, 105:91-105.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 91-105
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 15
    • 85015538480 scopus 로고    scopus 로고
    • Mixture semisupervised principal component regression model and soft sensor application
    • Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. AlChE J. 2013.
    • (2013) AlChE J.
    • Ge, Z.1    Huang, B.2    Song, Z.3
  • 16
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AlChE J. 2010, 56:2838-2849.
    • (2010) AlChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 17
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 18
    • 0342397620 scopus 로고    scopus 로고
    • On robust partial least squares (PLS) methods
    • Gil J.A., Romera R. On robust partial least squares (PLS) methods. J. Chemom. 1998, 12:365-378.
    • (1998) J. Chemom. , vol.12 , pp. 365-378
    • Gil, J.A.1    Romera, R.2
  • 19
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V.J., Austin J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22:85-126.
    • (2004) Artif. Intell. Rev. , vol.22 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 20
    • 0344982260 scopus 로고    scopus 로고
    • Robust methods for partial least squares regression
    • Hubert M., Branden K.V. Robust methods for partial least squares regression. J. Chemom. 2003, 17:537-549.
    • (2003) J. Chemom. , vol.17 , pp. 537-549
    • Hubert, M.1    Branden, K.V.2
  • 21
    • 0242322774 scopus 로고    scopus 로고
    • A robust PCR method for high-dimensional regressors
    • Hubert M., Verboven S. A robust PCR method for high-dimensional regressors. J. Chemom. 2003, 17:438-452.
    • (2003) J. Chemom. , vol.17 , pp. 438-452
    • Hubert, M.1    Verboven, S.2
  • 22
    • 54949104972 scopus 로고    scopus 로고
    • Treatment of missing values in process data analysis
    • Imtiaz S., Shah S. Treatment of missing values in process data analysis. Can. J. Chem. Eng. 2008, 86:838-858.
    • (2008) Can. J. Chem. Eng. , vol.86 , pp. 838-858
    • Imtiaz, S.1    Shah, S.2
  • 23
    • 84855386927 scopus 로고    scopus 로고
    • Robust Gaussian process regression with a Student-t likelihood
    • Jylänki P., Vanhatalo J., Vehtari A. Robust Gaussian process regression with a Student-t likelihood. J. Mach. Learn. Res. 2011, 12:3227-3257.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3227-3257
    • Jylänki, P.1    Vanhatalo, J.2    Vehtari, A.3
  • 24
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 25
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AlChE J. 2009, 55:87-98.
    • (2009) AlChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 26
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khatibisepehr S., Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47:8713-8723.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 27
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: a review of Bayesian methods
    • Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
    • (2013) J. Process Control , vol.23 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.2    Khare, S.3
  • 28
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim D., Lee I.-B. Process monitoring based on probabilistic PCA. Chemom. Intell. Lab. Syst. 2003, 67:109-123.
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.-B.2
  • 32
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer J.L., Graham J.W. Missing data: our view of the state of the art. Psychol. Methods 2002, 7:147.
    • (2002) Psychol. Methods , vol.7 , pp. 147
    • Schafer, J.L.1    Graham, J.W.2
  • 33
    • 15844362098 scopus 로고    scopus 로고
    • Robust Bayesian mixture modelling
    • Svensén M., Bishop C.M. Robust Bayesian mixture modelling. Neurocomputing 2005, 64:235-252.
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svensén, M.1    Bishop, C.M.2
  • 35
    • 80052303923 scopus 로고    scopus 로고
    • The infinite Student's t-mixture for robust modeling
    • Wei X., Li C. The infinite Student's t-mixture for robust modeling. Signal Process. 2012, 92:224-234.
    • (2012) Signal Process. , vol.92 , pp. 224-234
    • Wei, X.1    Li, C.2
  • 36
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 37
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses.
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 38
    • 33749566317 scopus 로고    scopus 로고
    • Supervised probabilistic principal component analysis
    • Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
    • Yu, S., Yu, K., Tresp, V., Kriegel, H.-P., Wu, M., 2006. Supervised probabilistic principal component analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 464-473.
    • (2006) , pp. 464-473
    • Yu, S.1    Yu, K.2    Tresp, V.3    Kriegel, H.-P.4    Wu, M.5
  • 39
    • 84882799294 scopus 로고    scopus 로고
    • Dynamic process monitoring based on probabilistic principle component regression
    • 2013 25th Chinese, IEEE
    • Zhou, L., Song, Z., Ge, Z., Miao, A., 2013. Dynamic process monitoring based on probabilistic principle component regression. In: Control and Decision Conference (CCDC), 2013 25th Chinese, IEEE, pp. 4763-4767.
    • (2013) Control and Decision Conference (CCDC) , pp. 4763-4767
    • Zhou, L.1    Song, Z.2    Ge, Z.3    Miao, A.4
  • 40
    • 84899658776 scopus 로고    scopus 로고
    • Robust modeling of mixture probabilistic principal component analysis and process monitoring application
    • Zhu J., Ge Z., Song Z. Robust modeling of mixture probabilistic principal component analysis and process monitoring application. AlChE J. 2014, 60:2143-2157.
    • (2014) AlChE J. , vol.60 , pp. 2143-2157
    • Zhu, J.1    Ge, Z.2    Song, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.