메뉴 건너뛰기




Volumn 110, Issue 1, 2012, Pages 144-155

Process monitoring based on mode identification for multi-mode process with transitions

Author keywords

Mathematical modeling; Mode identification; Multi mode continuous process; Process monitoring

Indexed keywords

ALGORITHM; ANNEALING; ARTICLE; AUTOMATION; CLUSTERING ALGORITHM; CONTINUOUS PROCESS; FURNACE; HEAT TREATMENT; INDUSTRIAL PRODUCTION; MATHEMATICAL MODEL; MODE TRANSFORMATION PROBABILITY; MULTIMODE CONTINUOUS PROCESS; MULTIVARIATE ANALYSIS; ONLINE MONITORING; PRIORITY JOURNAL; PROCESS MONITORING; TEMPERATURE;

EID: 83655201159     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.10.013     Document Type: Article
Times cited : (83)

References (37)
  • 3
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AICHE Journal 1994, 40:1361-1375.
    • (1994) AICHE Journal , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 4
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 8
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.-H., Han C. Real-time monitoring for a process with multiple operating modes. Control Engineering Practice 1999, 7:891-902.
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.-H.1    Han, C.2
  • 9
    • 0035255106 scopus 로고    scopus 로고
    • Performance monitoring of a multi-product semi-batch process
    • Lane S., Martin E.B., Kooijmans R., Morris A.J. Performance monitoring of a multi-product semi-batch process. Process Control 2001, 11:1-11.
    • (2001) Process Control , vol.11 , pp. 1-11
    • Lane, S.1    Martin, E.B.2    Kooijmans, R.3    Morris, A.J.4
  • 12
    • 67349090576 scopus 로고    scopus 로고
    • An adjoined multi-model approach for monitoring batch and transient operations
    • Nga Y.S., Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations. Computers and Chemical Engineering 2009, 33:887-902.
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 887-902
    • Nga, Y.S.1    Srinivasan, R.2
  • 13
    • 35648993555 scopus 로고    scopus 로고
    • Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control
    • Doan X.-T., Srinivasan R. Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Computers and Chemical Engineering 2008, 32:230-243.
    • (2008) Computers and Chemical Engineering , vol.32 , pp. 230-243
    • Doan, X.-T.1    Srinivasan, R.2
  • 14
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J., Liu J. Mixture principal component analysis models for process monitoring. Industrial and Engineering Chemistry Research 1999, 38:1478-1488.
    • (1999) Industrial and Engineering Chemistry Research , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 15
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Industrial and Engineering Chemistry Research 2004, 43:7025-7035.
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 16
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Computers and Chemical Engineering 2004, 28:1377-1387.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.-B.3
  • 18
    • 33645311553 scopus 로고    scopus 로고
    • Multi-phase principal component analysis for batch processes modeling
    • Camacho J., Pico J. Multi-phase principal component analysis for batch processes modeling. Chemometrics and Intelligent Laboratory Systems 2006, 81:127-136.
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.81 , pp. 127-136
    • Camacho, J.1    Pico, J.2
  • 20
    • 0030327833 scopus 로고    scopus 로고
    • Computing and graphing highest density regions
    • Hyndman R.J. Computing and graphing highest density regions. The American Statistician 1996, 50:120-126.
    • (1996) The American Statistician , vol.50 , pp. 120-126
    • Hyndman, R.J.1
  • 21
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Jie Y., Joe Qin S. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
    • (2008) AICHE Journal , vol.54 , pp. 1811-1829
    • Jie, Y.1    Joe Qin, S.2
  • 22
    • 1042268071 scopus 로고    scopus 로고
    • A sub-PCA modeling and on-line monitoring strategy for batch processes
    • Lu N.Y., Gao F.R., Wang F.L. A sub-PCA modeling and on-line monitoring strategy for batch processes. AICHE Journal 2004, 50:255-259.
    • (2004) AICHE Journal , vol.50 , pp. 255-259
    • Lu, N.Y.1    Gao, F.R.2    Wang, F.L.3
  • 23
    • 35148823629 scopus 로고    scopus 로고
    • Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
    • Zhao C.H., Wang F.L., Lu N.Y., Jia M.X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Process Control 2007, 17:728-741.
    • (2007) Process Control , vol.17 , pp. 728-741
    • Zhao, C.H.1    Wang, F.L.2    Lu, N.Y.3    Jia, M.X.4
  • 24
    • 64849096132 scopus 로고    scopus 로고
    • Phase and transition based batch process modeling and online monitoring
    • Yao Y., Gao F. Phase and transition based batch process modeling and online monitoring. Journal of Process Control 2009, 19:816-826.
    • (2009) Journal of Process Control , vol.19 , pp. 816-826
    • Yao, Y.1    Gao, F.2
  • 25
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. Intelligent Fuzzy Systems 1994, 2:267-278.
    • (1994) Intelligent Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 26
    • 33144480517 scopus 로고    scopus 로고
    • Comparison of clustering algorithms for analog modulation classification
    • Guldemir H., Sengur A. Comparison of clustering algorithms for analog modulation classification. Expert Systems with Applications 2006, 30:642-649.
    • (2006) Expert Systems with Applications , vol.30 , pp. 642-649
    • Guldemir, H.1    Sengur, A.2
  • 28
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000, 13:411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 29
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Mnabau K., Tannaka S., Hasebe S., Hashimoto I. Monitoring independent components for fault detection. AICHE Journal 2003, 49:969-976.
    • (2003) AICHE Journal , vol.49 , pp. 969-976
    • Mnabau, K.1    Tannaka, S.2    Hasebe, S.3    Hashimoto, I.4
  • 33
    • 77957355948 scopus 로고    scopus 로고
    • Statistical analysis and online monitoring for multimode processes with between-mode transitions
    • Zhao C., Yao Y., Gao F., Wang F. Statistical analysis and online monitoring for multimode processes with between-mode transitions. Chemical Engineering Science 2010, 65:5961-5975.
    • (2010) Chemical Engineering Science , vol.65 , pp. 5961-5975
    • Zhao, C.1    Yao, Y.2    Gao, F.3    Wang, F.4
  • 34
    • 41449090841 scopus 로고    scopus 로고
    • Postgraduate Seminar Series, Mathematics (School of Physical Sciences), The University of Queensland
    • Botev Z.I. A novel nonparametric density estimator 2006, Postgraduate Seminar Series, Mathematics (School of Physical Sciences), The University of Queensland.
    • (2006) A novel nonparametric density estimator
    • Botev, Z.I.1
  • 35
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • Chen Q., Wynne R.J., Goulding P., Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Engineering Practice 2000, 8(5):531-543.
    • (2000) Control Engineering Practice , vol.8 , Issue.5 , pp. 531-543
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 36
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 1996, 6(6):349-358.
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.