메뉴 건너뛰기




Volumn 133, Issue , 2014, Pages 1-16

Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring

Author keywords

Fault detection; Fault relevant principal component analysis (FPCA); Multivariate statistical analysis; Principal component analysis (PCA); Subspace decomposition

Indexed keywords


EID: 84894088611     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.01.009     Document Type: Article
Times cited : (156)

References (37)
  • 1
    • 80051861081 scopus 로고    scopus 로고
    • An adaptive forecast-based chart for non-Gaussian processes monitoring: with application to equipment malfunctions detection in a thermal power plant
    • Chun-Chin H., Chao-Ton S. An adaptive forecast-based chart for non-Gaussian processes monitoring: with application to equipment malfunctions detection in a thermal power plant. IEEE Trans. Control Syst. Technol. 2011, 19:1245-1250.
    • (2011) IEEE Trans. Control Syst. Technol. , vol.19 , pp. 1245-1250
    • Chun-Chin, H.1    Chao-Ton, S.2
  • 3
    • 84863014249 scopus 로고    scopus 로고
    • Local and non-local preserving projection for bearing defect classification and performance assessment
    • Yu J. Local and non-local preserving projection for bearing defect classification and performance assessment. IEEE Trans. Ind. Electron. 2012, 59:2363-2376.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , pp. 2363-2376
    • Yu, J.1
  • 5
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Joe Qin S. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Joe Qin, S.1
  • 6
    • 26244448876 scopus 로고    scopus 로고
    • Analysis of extended partial least squares for monitoring large-scale processes
    • Qian C., Kruger U. Analysis of extended partial least squares for monitoring large-scale processes. IEEE Trans. Control Syst. Technol. 2005, 13:807-813.
    • (2005) IEEE Trans. Control Syst. Technol. , vol.13 , pp. 807-813
    • Qian, C.1    Kruger, U.2
  • 7
    • 33747584401 scopus 로고    scopus 로고
    • Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors
    • Ayhan B., Mo-Yuen C., Myung-Hyun S. Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors. IEEE Trans. Ind. Electron. 2006, 53:1298-1308.
    • (2006) IEEE Trans. Ind. Electron. , vol.53 , pp. 1298-1308
    • Ayhan, B.1    Mo-Yuen, C.2    Myung-Hyun, S.3
  • 8
    • 34547567795 scopus 로고    scopus 로고
    • Improved principal component monitoring using the local approach
    • Kruger U., Kumar S., Littler T. Improved principal component monitoring using the local approach. Automatica 2007, 43:1532-1542.
    • (2007) Automatica , vol.43 , pp. 1532-1542
    • Kruger, U.1    Kumar, S.2    Littler, T.3
  • 9
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring. Automatica 2009, 45:1593-1600.
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 10
    • 84859698661 scopus 로고    scopus 로고
    • A PLS-based statistical approach for fault detection and isolation of robotic manipulators
    • Muradore R., Fiorini P. A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 2014, 59:3167-3175.
    • (2014) IEEE Trans. Ind. Electron. , vol.59 , pp. 3167-3175
    • Muradore, R.1    Fiorini, P.2
  • 11
    • 73049084841 scopus 로고    scopus 로고
    • Geometric properties of partial least squares for process monitoring
    • Li G., Qin S.J., Zhou D. Geometric properties of partial least squares for process monitoring. Automatica 2010, 46:204-210.
    • (2010) Automatica , vol.46 , pp. 204-210
    • Li, G.1    Qin, S.J.2    Zhou, D.3
  • 16
    • 2842581444 scopus 로고    scopus 로고
    • Frameworks for latent variable multivariate regression
    • Burnham A.J., Viveros R., MacGregor J.F. Frameworks for latent variable multivariate regression. J. Chemom. 1996, 10:31-45.
    • (1996) J. Chemom. , vol.10 , pp. 31-45
    • Burnham, A.J.1    Viveros, R.2    MacGregor, J.F.3
  • 18
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • Lee G., Han C., Yoon E.S. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind. Eng. Chem. Res. 2004, 43:8037-8048.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.2    Yoon, E.S.3
  • 19
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, J.1
  • 21
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin H.D., Lee Y.-H., Lee G., Han C. Robust recursive principal component analysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2005, 45:696-703.
    • (2005) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.-H.2    Lee, G.3    Han, C.4
  • 22
    • 33646496576 scopus 로고    scopus 로고
    • On-line process state classification for adaptive monitoring
    • Lee Y.-H., Jin H.D., Han C. On-line process state classification for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45:3095-3107.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3095-3107
    • Lee, Y.-H.1    Jin, H.D.2    Han, C.3
  • 23
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition
    • Jian Y., Frangi A.F., Jing-Yu Y., David Z., Zhong J. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern. Anal. Mach. Intell. 2005, 27:230-244.
    • (2005) IEEE Trans. Pattern. Anal. Mach. Intell. , vol.27 , pp. 230-244
    • Jian, Y.1    Frangi, A.F.2    Jing-Yu, Y.3    David, Z.4    Zhong, J.5
  • 25
    • 53649106193 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on kernel dissimilarity analysis
    • Zhao C., Wang F., Zhang Y. Nonlinear process monitoring based on kernel dissimilarity analysis. Control. Eng. Pract. 2009, 17:221-230.
    • (2009) Control. Eng. Pract. , vol.17 , pp. 221-230
    • Zhao, C.1    Wang, F.2    Zhang, Y.3
  • 26
    • 84881513093 scopus 로고    scopus 로고
    • Subspace decomposition approach of fault deviations and its application to fault reconstruction
    • Zhao C.H., Sun Y.X. Subspace decomposition approach of fault deviations and its application to fault reconstruction. Control Eng. Pract. 2013, 21:1396-1409.
    • (2013) Control Eng. Pract. , vol.21 , pp. 1396-1409
    • Zhao, C.H.1    Sun, Y.X.2
  • 27
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou D., Li G., Qin S.J. Total projection to latent structures for process monitoring. AIChE J 2010, 56:168-178.
    • (2010) AIChE J , vol.56 , pp. 168-178
    • Zhou, D.1    Li, G.2    Qin, S.J.3
  • 28
    • 80051912783 scopus 로고    scopus 로고
    • Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
    • Gang L., Alcala C.F., Qin S.J., Donghua Z. generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process. IEEE Trans. Control Syst. Technol. 2011, 19:1114-1127.
    • (2011) IEEE Trans. Control Syst. Technol. , vol.19 , pp. 1114-1127
    • Gang, L.1    Alcala, C.F.2    Qin, S.J.3    Donghua, Z.4
  • 30
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: the variance of reconstruction error criterion with a comparison to other methods
    • Valle S., Li W., Qin S.J. Selection of the number of principal components: the variance of reconstruction error criterion with a comparison to other methods. Ind. Eng. Chem. Res. 1999, 38:4389-4401.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 31
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal component models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal component models. Technometrics 1978, 4:397-405.
    • (1978) Technometrics , vol.4 , pp. 397-405
    • Wold, S.1
  • 32
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 33
    • 0029517963 scopus 로고
    • A review of multivariate control charts
    • Lowry C.A., Montgomery D.C. A review of multivariate control charts. IIE Trans. 1995, 27:800-810.
    • (1995) IIE Trans. , vol.27 , pp. 800-810
    • Lowry, C.A.1    Montgomery, D.C.2
  • 35
    • 77957561573 scopus 로고    scopus 로고
    • Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models
    • Li G., Joe Qin S., Zhou D. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models. Ind. Eng. Chem. Res. 2010, 49:9175-9183.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 9175-9183
    • Li, G.1    Joe Qin, S.2    Zhou, D.3
  • 36
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.