-
1
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
Qin SJ. Statistical process monitoring: basics and beyond. J Che-mom. 2003;17:480-502.
-
(2003)
J Che-mom
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
2
-
-
9744237208
-
Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
-
Lee G, Han CH, Yoon ES. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind Eng Chem Res. 2004;43:8037-8048.
-
(2004)
Ind Eng Chem Res
, vol.43
, pp. 8037-8048
-
-
Lee, G.1
Han, C.H.2
Yoon, E.S.3
-
3
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee JM, Yoo CK. Lee IB. Statistical process monitoring with independent component analysis, J Process Control. 2004;14:467-485.
-
(2004)
J Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
5
-
-
0029267381
-
Statistical process control of multivariate processes
-
MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Practice. 1995;3:403-414.
-
(1995)
Control Eng Practice
, vol.3
, pp. 403-414
-
-
MacGregor, J.F.1
Kourti, T.2
-
7
-
-
0036466502
-
Dynamic process fault monitoring based on neural network and PCA
-
Chen JH. Liao CM. Dynamic process fault monitoring based on neural network and PCA. J Process Control. 2002;12:277-289.
-
(2002)
J Process Control
, vol.12
, pp. 277-289
-
-
Chen, J.H.1
Liao, C.M.2
-
8
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong D, McAvoy TJ. Nonlinear principal component analysis-based on principal curves and neural networks. Comput Chem Eng. 1996; 20:65-78.
-
(1996)
Comput Chem Eng
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
9
-
-
0000588327
-
Non-linear principal component analysis for process fault detection
-
Jia F, Martin EB, Morris AJ. Non-linear principal component analysis for process fault detection. Comput Chem Eng. 1998;22:S851-S854.
-
(1998)
Comput Chem Eng
, vol.22
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
10
-
-
0026113980
-
Non-linear principal component analysis using autoassociative neural networks
-
Kramer MA. Non-linear principal component analysis using autoassociative neural networks. AIChE J. 1991;37:233-243.
-
(1991)
AIChE J
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
11
-
-
0029322882
-
Reducing data dimensionality through optimizing neural networks inputs
-
Tan S, Mavrovouniotis ML. Reducing data dimensionality through optimizing neural networks inputs. AIChE J. 1995;41:1471-1480.
-
(1995)
AIChE J
, vol.41
, pp. 1471-1480
-
-
Tan, S.1
Mavrovouniotis, M.L.2
-
12
-
-
19844367402
-
Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring
-
Geng ZQ, Zhu QX, Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring. Ind Eng Chem Res. 2005;44:3585-3593.
-
(2005)
Ind Eng Chem Res
, vol.44
, pp. 3585-3593
-
-
Geng, Z.Q.1
Zhu, Q.X.2
-
13
-
-
2342512223
-
Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN)
-
Kulkarni SG, Chaudhary AK. Nandi S, Tambe SS. Kulkarni BD. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN). Biochern Eng J. 2004:18:193-210.
-
(2004)
Biochern Eng J
, vol.18
, pp. 193-210
-
-
Kulkarni, S.G.1
Chaudhary, A.K.2
Nandi, S.3
Tambe, S.S.4
Kulkarni, B.D.5
-
14
-
-
0034642825
-
Local odeling with radial basis function networks
-
Walczak B. Massart DL. Local odeling with radial basis function networks. Chem Intell Lab Syst. 2000;50:179-198.
-
(2000)
Chem Intell Lab Syst
, vol.50
, pp. 179-198
-
-
Walczak, B.1
Massart, D.L.2
-
15
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Schölkopf B. Sung KK, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process. 1997;45:2758-2765.
-
(1997)
IEEE Trans Signal Process
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.K.2
Burges, C.J.C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
17
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B, Smola AJ, Mjuller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998; 10:1299- 1399.
-
(1998)
Neural Comput
, vol.10
, pp. 1299-1399
-
-
Schölkopf, B.1
Smola, A.J.2
Mjuller, K.3
-
18
-
-
10244238854
-
Fault identification for process monitoring using kernel principal component analysis
-
Cho JH, Lee JM, Choi SW, Lee D, Lee IB. Fault identification for process monitoring using kernel principal component analysis. Chem Eng Sci. 2005;60:279-288.
-
(2005)
Chem Eng Sci
, vol.60
, pp. 279-288
-
-
Cho, J.H.1
Lee, J.M.2
Choi, S.W.3
Lee, D.4
Lee, I.B.5
-
19
-
-
11144331636
-
Fault detection and identification of nonlinear processes based on KPCA
-
Choi SW, Lee C, Lee JM, Park JH, Lee IB. Fault detection and identification of nonlinear processes based on KPCA. Chem Intell Lab Syst. 2005;75:55-67.
-
(2005)
Chem Intell Lab Syst
, vol.75
, pp. 55-67
-
-
Choi, S.W.1
Lee, C.2
Lee, J.M.3
Park, J.H.4
Lee, I.B.5
-
20
-
-
84898970836
-
KPCA and de-noising in feature spaces
-
Mika S, Schölkopf B, Smola AJ, Mjuller KR, Scholz M, Rjatsch G. KPCA and de-noising in feature spaces. Adv Neural Inf Process Syst. 1999;11:536-542.
-
(1999)
Adv Neural Inf Process Syst
, vol.11
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Mjuller, K.R.4
Scholz, M.5
Rjatsch, G.6
-
21
-
-
57049096136
-
-
Romdhani S, Gong S, Psarrou A. A multi-view nonlinear active shape model using KPCA. In Proceedings of BMVC, Nottingham, UK. 1999:483-492.
-
Romdhani S, Gong S, Psarrou A. A multi-view nonlinear active shape model using KPCA. In Proceedings of BMVC, Nottingham, UK. 1999:483-492.
-
-
-
-
22
-
-
0037394190
-
Monitoring independent components for fault detection
-
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE J. 2003;49:969-976.
-
(2003)
AIChE J
, vol.49
, pp. 969-976
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
23
-
-
0042123781
-
New monitoring technique with ICA algorithm in wastewater treatment process
-
Lee JM, Yoo CK, Lee IB. New monitoring technique with ICA algorithm in wastewater treatment process. Water Sci Technol, 2003;47:49-56.
-
(2003)
Water Sci Technol
, vol.47
, pp. 49-56
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
24
-
-
1942468131
-
Evolution of multivariate statistical process control: Independent component analysis and external analysis
-
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control: independent component analysis and external analysis. Comput Chem Eng. 2004;28:1157-1166.
-
(2004)
Comput Chem Eng
, vol.28
, pp. 1157-1166
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
25
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
Lee JM, Yoo CK, Lee IB. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem Eng Sci. 2004;59:2995-3006.
-
(2004)
Chem Eng Sci
, vol.59
, pp. 2995-3006
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
26
-
-
2342615505
-
On-line monitoring of batch processes using multiway independent component analysis
-
Yoo CK, Lee JM, Vanrolleghem PA, Lee IB. On-line monitoring of batch processes using multiway independent component analysis. Chem Intell Lab Syst. 2004;71:151-163.
-
(2004)
Chem Intell Lab Syst
, vol.71
, pp. 151-163
-
-
Yoo, C.K.1
Lee, J.M.2
Vanrolleghem, P.A.3
Lee, I.B.4
-
27
-
-
4944253785
-
Statistical process control charts for batch operations based on independent component analysis
-
Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004;43:6731-6741.
-
(2004)
Ind Eng Chem Res
, vol.43
, pp. 6731-6741
-
-
Albazzaz, H.1
Wang, X.Z.2
-
29
-
-
33749473097
-
Fault detection and diagnosis of multivariate processes based on modified independent component analysis
-
Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis of multivariate processes based on modified independent component analysis. AIChE J. 2006;52:3501-3514.
-
(2006)
AIChE J
, vol.52
, pp. 3501-3514
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
30
-
-
34548593553
-
Fault detection of nonlinear processes using Kernel independent component analysis
-
Lee JM, Qin SJ, Lee IB. Fault detection of nonlinear processes using Kernel independent component analysis. Can J Chem Eng. 2007;85:526-536.
-
(2007)
Can J Chem Eng
, vol.85
, pp. 526-536
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
31
-
-
36348941124
-
Fault detection of nonlinear processes using multiway Kernel independent analysis
-
Zhang Y, Qin SJ. Fault detection of nonlinear processes using multiway Kernel independent analysis. Ind Eng Chem Res. 2007;46:7780-7787.
-
(2007)
Ind Eng Chem Res
, vol.46
, pp. 7780-7787
-
-
Zhang, Y.1
Qin, S.J.2
-
32
-
-
84950659640
-
Between-groups comparison of principal components
-
Krzanowski WJ, Between-groups comparison of principal components. J Am Stat Assoc. 1979;74:703-707.
-
(1979)
J Am Stat Assoc
, vol.74
, pp. 703-707
-
-
Krzanowski, W.J.1
|