메뉴 건너뛰기




Volumn 21, Issue 7, 2011, Pages 1011-1021

Integrating independent component analysis and local outlier factor for plant-wide process monitoring

Author keywords

Fault detection; Independent component analysis; Local outlier factor; Multivariate statistical process control; Process monitoring; Tennessee Eastman process

Indexed keywords

CALCULATION METHODS; CONTROL LIMITS; DATA DISTRIBUTION; DATA SETS; DENSITY-BASED; INDEPENDENT COMPONENTS; LOCAL OUTLIER FACTOR; LOCAL OUTLIER FACTORS; MIXTURE OF GAUSSIANS; MONITORING TIME; MULTIVARIATE PROCESS; MULTIVARIATE STATISTICAL PROCESS CONTROL; NON-GAUSSIAN; NON-GAUSSIAN DISTRIBUTION; NORMAL OPERATING CONDITIONS; OUTLIER DETECTION; TENNESSEE EASTMAN PROCESS;

EID: 79960836522     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2011.06.004     Document Type: Article
Times cited : (103)

References (32)
  • 1
    • 67650539331 scopus 로고    scopus 로고
    • Data driven fault diagnosis and fault tolerant control: Some advances and possible new directions
    • H. Wang, T.-Y. Chai, J.-L. Ding, and M. Brown Data driven fault diagnosis and fault tolerant control: some advances and possible new directions Acta Autom. Sin. 35 2009 739 747
    • (2009) Acta Autom. Sin. , vol.35 , pp. 739-747
    • Wang, H.1    Chai, T.-Y.2    Ding, J.-L.3    Brown, M.4
  • 2
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • J.V. Kresta, J.F. Macgregor, and T.E. Marlin Multivariate statistical monitoring of process operating performance Can. J. Chem. Eng. 69 1991 35 47
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 3
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2003.09.012
    • J.-M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.-B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234 (Pubitemid 38034007)
    • (2004) Chemical Engineering Science , vol.59 , Issue.1 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 4
    • 74549175278 scopus 로고    scopus 로고
    • Multivariate statistical diagnosis using triangular representation of fault patterns in principal component space
    • H.-W. Cho, K.-J. Kim, and M.K. Jeong Multivariate statistical diagnosis using triangular representation of fault patterns in principal component space Int. J. Prod. Res. 43 2005 5181 5198
    • (2005) Int. J. Prod. Res. , vol.43 , pp. 5181-5198
    • Cho, H.-W.1    Kim, K.-J.2    Jeong, M.K.3
  • 5
    • 35348893320 scopus 로고    scopus 로고
    • Monitoring feedback-controlled processes using adaptive T2 schemes
    • DOI 10.1080/00207540701325488, PII 780763728, Quality Engineering
    • K. Wang, and F. Tsung Monitoring feedback-controlled processes using adaptive T2 schemes Int. J. Prod. Res. 45 2007 5601 5619 (Pubitemid 47583699)
    • (2007) International Journal of Production Research , vol.45 , Issue.23 , pp. 5601-5619
    • Wang, K.1    Tsung, F.2
  • 6
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent Component Analysis-Principal Component Analysis (ICA-PCA) and similarity factors
    • DOI 10.1021/ie061083g
    • Z. Ge, and Z. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063 (Pubitemid 46588079)
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , Issue.7 , pp. 2054-2063
    • Ge, Z.1    Song, Z.2
  • 7
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • DOI 10.1016/0959-1524(96)00010-8, PII S0959152496000108
    • E.B. Martin, and A.J. Morris Non-parametric confidence bounds for process performance monitoring charts J. Process Control 6 1996 349 358 (Pubitemid 126375553)
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 8
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • DOI 10.1016/j.compchemeng.2007.07.005, PII S0098135407001986, Process Systems Engineering: Contributions on the State-of-the-Art Selected extended Papers from ESCAPE '16/PSE 2006.
    • M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 32 2008 12 24 (Pubitemid 350016270)
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.1-2 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 9
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430 (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 10
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • DOI 10.1002/aic.10978
    • J.-M. Lee, S.J. Qin, and I.-B. Lee Fault detection and diagnosis based on modified independent component analysis AlChE J. 52 2006 3501 3514 (Pubitemid 44519578)
    • (2006) AIChE Journal , vol.52 , Issue.10 , pp. 3501-3514
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 11
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • DOI 10.1002/aic.690490414
    • M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and H. Ohno Monitoring independent components for fault detection AIChE J. 49 2003 969 976 (Pubitemid 36504561)
    • (2003) AIChE Journal , vol.49 , Issue.4 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 12
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • DOI 10.1016/j.ces.2004.04.031, PII S0009250904002660
    • J.-M. Lee, C. Yoo, and I.-B. Lee Statistical monitoring of dynamic processes based on dynamic independent component analysis Chem. Eng. Sci. 59 2004 2995 3006 (Pubitemid 38814612)
    • (2004) Chemical Engineering Science , vol.59 , Issue.14 , pp. 2995-3006
    • Lee, J.-M.1    Yoo, C.K.2    Lee, I.-B.3
  • 13
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • J. Lee, S. Qin, and I. Lee Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 85 2007 526 536 (Pubitemid 47389017)
    • (2007) Canadian Journal of Chemical Engineering , vol.85 , Issue.4 , pp. 526-536
    • Lee, J.-M.1    Joe Qin, S.2    Lee, I.-B.3
  • 14
    • 71349084565 scopus 로고    scopus 로고
    • Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring
    • C. Hsu, M. Chen, and L. Chen Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring Expert Syst. Appl. 37 2009 3264 3273
    • (2009) Expert Syst. Appl. , vol.37 , pp. 3264-3273
    • Hsu, C.1    Chen, M.2    Chen, L.3
  • 15
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Z. Ge, and Z. Song Multimode process monitoring based on Bayesian method J. Chemometr. 23 2009 636 650
    • (2009) J. Chemometr. , vol.23 , pp. 636-650
    • Ge, Z.1    Song, Z.2
  • 16
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • X. Liu, L. Xie, U. Kruger, T. Littler, and S. Wang Statistical-based monitoring of multivariate non-Gaussian systems AlChE J. 54 2008 2379 2391
    • (2008) AlChE J. , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 17
    • 74549172041 scopus 로고    scopus 로고
    • A process monitoring scheme based on independent component analysis and adjusted outliers
    • C.C. Hsu, L.S. Chen, and C.H. Liu A process monitoring scheme based on independent component analysis and adjusted outliers Int. J. Prod. Res. 48 2010 1727 1743
    • (2010) Int. J. Prod. Res. , vol.48 , pp. 1727-1743
    • Hsu, C.C.1    Chen, L.S.2    Liu, C.H.3
  • 18
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.-M. Lee, C. Yoo, and I.-B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 19
    • 33750148078 scopus 로고    scopus 로고
    • Introduction of dynamics to approach for batch process monitoring using independent component analysis
    • DOI 10.1080/00986440600829739, PII T684547774176214
    • H. Albazzaz, and X. Wang Introduction of dynamics to an approach for batch process monitoring using independent component analysis Chem. Eng. Process. 194 2007 218 233 (Pubitemid 44597019)
    • (2007) Chemical Engineering Communications , vol.194 , Issue.2 , pp. 218-233
    • Albazzaz, H.1    Wang, X.Z.2
  • 20
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • J. Yu Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring J. Process Control 20 2010 344 359
    • (2010) J. Process Control , vol.20 , pp. 344-359
    • Yu, J.1
  • 21
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Z. Ge, M. Zhang, and Z. Song Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 20 2010 676 688
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.1    Zhang, M.2    Song, Z.3
  • 25
    • 71749107907 scopus 로고    scopus 로고
    • A comparison of outlier detection algorithms for ITS data
    • S. Chen, W. Wang, and H. van Zuylen A comparison of outlier detection algorithms for ITS data Expert Syst. Appl. 37 2010 1169 1178
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1169-1178
    • Chen, S.1    Wang, W.2    Van Zuylen, H.3
  • 27
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemometr. Intell. Lab. 30 1995 179 196
    • (1995) Chemometr. Intell. Lab. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 28
    • 34347333289 scopus 로고    scopus 로고
    • A local-density based spatial clustering algorithm with noise
    • DOI 10.1016/j.is.2006.10.006, PII S0306437906000871
    • L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan A local-density based spatial clustering algorithm with noise Inform. Syst. 32 2007 978 986 (Pubitemid 47017576)
    • (2007) Information Systems , vol.32 , Issue.7 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Lee, J.4    Yan, B.5
  • 29
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • DOI 10.1016/S0967-0661(99)00191-4, PII S0967066199001914
    • Q. Chen, R.J. Wynne, P. Goulding, and D. Sandoz The application of principal component analysis and kernel density estimation to enhance process monitoring Control Eng. Pract. 8 2000 531 543 (Pubitemid 30354904)
    • (2000) Control Engineering Practice , vol.8 , Issue.5 , pp. 531-543
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 30
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 31
    • 10744228203 scopus 로고    scopus 로고
    • Dynamic optimization of the Tennessee Eastman process using the OptControlCentre
    • DOI 10.1016/S0098-1354(03)00113-3
    • T. Jockenhövel, L.T. Biegler, and A. Wächter Dynamic optimization of the Tennessee Eastman process using the OptControlCentre Comput. Chem. Eng. 27 2003 1513 1531 (Pubitemid 37267510)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.11 , pp. 1513-1531
    • Jockenhovel, T.1    Biegler, L.T.2    Wachter, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.