-
1
-
-
67650539331
-
Data driven fault diagnosis and fault tolerant control: Some advances and possible new directions
-
H. Wang, T.-Y. Chai, J.-L. Ding, and M. Brown Data driven fault diagnosis and fault tolerant control: some advances and possible new directions Acta Autom. Sin. 35 2009 739 747
-
(2009)
Acta Autom. Sin.
, vol.35
, pp. 739-747
-
-
Wang, H.1
Chai, T.-Y.2
Ding, J.-L.3
Brown, M.4
-
2
-
-
0026108818
-
Multivariate statistical monitoring of process operating performance
-
J.V. Kresta, J.F. Macgregor, and T.E. Marlin Multivariate statistical monitoring of process operating performance Can. J. Chem. Eng. 69 1991 35 47
-
(1991)
Can. J. Chem. Eng.
, vol.69
, pp. 35-47
-
-
Kresta, J.V.1
MacGregor, J.F.2
Marlin, T.E.3
-
3
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
DOI 10.1016/j.ces.2003.09.012
-
J.-M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.-B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234 (Pubitemid 38034007)
-
(2004)
Chemical Engineering Science
, vol.59
, Issue.1
, pp. 223-234
-
-
Lee, J.-M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.-B.5
-
4
-
-
74549175278
-
Multivariate statistical diagnosis using triangular representation of fault patterns in principal component space
-
H.-W. Cho, K.-J. Kim, and M.K. Jeong Multivariate statistical diagnosis using triangular representation of fault patterns in principal component space Int. J. Prod. Res. 43 2005 5181 5198
-
(2005)
Int. J. Prod. Res.
, vol.43
, pp. 5181-5198
-
-
Cho, H.-W.1
Kim, K.-J.2
Jeong, M.K.3
-
5
-
-
35348893320
-
Monitoring feedback-controlled processes using adaptive T2 schemes
-
DOI 10.1080/00207540701325488, PII 780763728, Quality Engineering
-
K. Wang, and F. Tsung Monitoring feedback-controlled processes using adaptive T2 schemes Int. J. Prod. Res. 45 2007 5601 5619 (Pubitemid 47583699)
-
(2007)
International Journal of Production Research
, vol.45
, Issue.23
, pp. 5601-5619
-
-
Wang, K.1
Tsung, F.2
-
6
-
-
34247109083
-
Process monitoring based on independent Component Analysis-Principal Component Analysis (ICA-PCA) and similarity factors
-
DOI 10.1021/ie061083g
-
Z. Ge, and Z. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063 (Pubitemid 46588079)
-
(2007)
Industrial and Engineering Chemistry Research
, vol.46
, Issue.7
, pp. 2054-2063
-
-
Ge, Z.1
Song, Z.2
-
7
-
-
0030525683
-
Non-parametric confidence bounds for process performance monitoring charts
-
DOI 10.1016/0959-1524(96)00010-8, PII S0959152496000108
-
E.B. Martin, and A.J. Morris Non-parametric confidence bounds for process performance monitoring charts J. Process Control 6 1996 349 358 (Pubitemid 126375553)
-
(1996)
Journal of Process Control
, vol.6
, Issue.6
, pp. 349-358
-
-
Martin, E.B.1
Morris, A.J.2
-
8
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
-
DOI 10.1016/j.compchemeng.2007.07.005, PII S0098135407001986, Process Systems Engineering: Contributions on the State-of-the-Art Selected extended Papers from ESCAPE '16/PSE 2006.
-
M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 32 2008 12 24 (Pubitemid 350016270)
-
(2008)
Computers and Chemical Engineering
, vol.32
, Issue.1-2
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
9
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
-
A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430 (Pubitemid 30447427)
-
(2000)
Neural Networks
, vol.13
, Issue.4-5
, pp. 411-430
-
-
Hyvarinen, A.1
Oja, E.2
-
10
-
-
33749473097
-
Fault detection and diagnosis based on modified independent component analysis
-
DOI 10.1002/aic.10978
-
J.-M. Lee, S.J. Qin, and I.-B. Lee Fault detection and diagnosis based on modified independent component analysis AlChE J. 52 2006 3501 3514 (Pubitemid 44519578)
-
(2006)
AIChE Journal
, vol.52
, Issue.10
, pp. 3501-3514
-
-
Lee, J.-M.1
Qin, S.J.2
Lee, I.-B.3
-
11
-
-
0037394190
-
Monitoring independent components for fault detection
-
DOI 10.1002/aic.690490414
-
M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and H. Ohno Monitoring independent components for fault detection AIChE J. 49 2003 969 976 (Pubitemid 36504561)
-
(2003)
AIChE Journal
, vol.49
, Issue.4
, pp. 969-976
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
12
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
DOI 10.1016/j.ces.2004.04.031, PII S0009250904002660
-
J.-M. Lee, C. Yoo, and I.-B. Lee Statistical monitoring of dynamic processes based on dynamic independent component analysis Chem. Eng. Sci. 59 2004 2995 3006 (Pubitemid 38814612)
-
(2004)
Chemical Engineering Science
, vol.59
, Issue.14
, pp. 2995-3006
-
-
Lee, J.-M.1
Yoo, C.K.2
Lee, I.-B.3
-
13
-
-
34548593553
-
Fault detection of non-linear processes using kernel independent component analysis
-
J. Lee, S. Qin, and I. Lee Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 85 2007 526 536 (Pubitemid 47389017)
-
(2007)
Canadian Journal of Chemical Engineering
, vol.85
, Issue.4
, pp. 526-536
-
-
Lee, J.-M.1
Joe Qin, S.2
Lee, I.-B.3
-
14
-
-
71349084565
-
Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring
-
C. Hsu, M. Chen, and L. Chen Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring Expert Syst. Appl. 37 2009 3264 3273
-
(2009)
Expert Syst. Appl.
, vol.37
, pp. 3264-3273
-
-
Hsu, C.1
Chen, M.2
Chen, L.3
-
15
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Z. Ge, and Z. Song Multimode process monitoring based on Bayesian method J. Chemometr. 23 2009 636 650
-
(2009)
J. Chemometr.
, vol.23
, pp. 636-650
-
-
Ge, Z.1
Song, Z.2
-
16
-
-
52649119206
-
Statistical-based monitoring of multivariate non-Gaussian systems
-
X. Liu, L. Xie, U. Kruger, T. Littler, and S. Wang Statistical-based monitoring of multivariate non-Gaussian systems AlChE J. 54 2008 2379 2391
-
(2008)
AlChE J.
, vol.54
, pp. 2379-2391
-
-
Liu, X.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.5
-
17
-
-
74549172041
-
A process monitoring scheme based on independent component analysis and adjusted outliers
-
C.C. Hsu, L.S. Chen, and C.H. Liu A process monitoring scheme based on independent component analysis and adjusted outliers Int. J. Prod. Res. 48 2010 1727 1743
-
(2010)
Int. J. Prod. Res.
, vol.48
, pp. 1727-1743
-
-
Hsu, C.C.1
Chen, L.S.2
Liu, C.H.3
-
18
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
J.-M. Lee, C. Yoo, and I.-B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
19
-
-
33750148078
-
Introduction of dynamics to approach for batch process monitoring using independent component analysis
-
DOI 10.1080/00986440600829739, PII T684547774176214
-
H. Albazzaz, and X. Wang Introduction of dynamics to an approach for batch process monitoring using independent component analysis Chem. Eng. Process. 194 2007 218 233 (Pubitemid 44597019)
-
(2007)
Chemical Engineering Communications
, vol.194
, Issue.2
, pp. 218-233
-
-
Albazzaz, H.1
Wang, X.Z.2
-
20
-
-
75149115338
-
Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
-
J. Yu Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring J. Process Control 20 2010 344 359
-
(2010)
J. Process Control
, vol.20
, pp. 344-359
-
-
Yu, J.1
-
21
-
-
77955305868
-
Nonlinear process monitoring based on linear subspace and Bayesian inference
-
Z. Ge, M. Zhang, and Z. Song Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 20 2010 676 688
-
(2010)
J. Process Control
, vol.20
, pp. 676-688
-
-
Ge, Z.1
Zhang, M.2
Song, Z.3
-
23
-
-
32344452166
-
A comparative study of anomaly detection schemes in network intrusion detection
-
A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava A comparative study of anomaly detection schemes in network intrusion detection In: Proceedings of Third SIAM Conference on Data Mining 2003 25 36
-
(2003)
Proceedings of Third SIAM Conference on Data Mining
, pp. 25-36
-
-
Lazarevic, A.1
Ertoz, L.2
Kumar, V.3
Ozgur, A.4
Srivastava, J.5
-
24
-
-
34548752457
-
Incremental local outlier detection for data streams
-
DOI 10.1109/CIDM.2007.368917, 4221341, Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007
-
D. Pokrajac, A. Lazarevic, and L.J. Latecki Incremental local outlier detection for data streams in: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining 769 2007 504 515 (Pubitemid 47431481)
-
(2007)
Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007
, pp. 504-515
-
-
Pokrajac, D.1
Lazarevic, A.2
Latecki, L.J.3
-
25
-
-
71749107907
-
A comparison of outlier detection algorithms for ITS data
-
S. Chen, W. Wang, and H. van Zuylen A comparison of outlier detection algorithms for ITS data Expert Syst. Appl. 37 2010 1169 1178
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 1169-1178
-
-
Chen, S.1
Wang, W.2
Van Zuylen, H.3
-
27
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemometr. Intell. Lab. 30 1995 179 196
-
(1995)
Chemometr. Intell. Lab.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
28
-
-
34347333289
-
A local-density based spatial clustering algorithm with noise
-
DOI 10.1016/j.is.2006.10.006, PII S0306437906000871
-
L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan A local-density based spatial clustering algorithm with noise Inform. Syst. 32 2007 978 986 (Pubitemid 47017576)
-
(2007)
Information Systems
, vol.32
, Issue.7
, pp. 978-986
-
-
Duan, L.1
Xu, L.2
Guo, F.3
Lee, J.4
Yan, B.5
-
29
-
-
0034130478
-
The application of principal component analysis and kernel density estimation to enhance process monitoring
-
DOI 10.1016/S0967-0661(99)00191-4, PII S0967066199001914
-
Q. Chen, R.J. Wynne, P. Goulding, and D. Sandoz The application of principal component analysis and kernel density estimation to enhance process monitoring Control Eng. Pract. 8 2000 531 543 (Pubitemid 30354904)
-
(2000)
Control Engineering Practice
, vol.8
, Issue.5
, pp. 531-543
-
-
Chen, Q.1
Wynne, R.J.2
Goulding, P.3
Sandoz, D.4
-
30
-
-
0027561446
-
A plant-wide industrial process control problem
-
J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
31
-
-
10744228203
-
Dynamic optimization of the Tennessee Eastman process using the OptControlCentre
-
DOI 10.1016/S0098-1354(03)00113-3
-
T. Jockenhövel, L.T. Biegler, and A. Wächter Dynamic optimization of the Tennessee Eastman process using the OptControlCentre Comput. Chem. Eng. 27 2003 1513 1531 (Pubitemid 37267510)
-
(2003)
Computers and Chemical Engineering
, vol.27
, Issue.11
, pp. 1513-1531
-
-
Jockenhovel, T.1
Biegler, L.T.2
Wachter, A.3
|