메뉴 건너뛰기




Volumn 56, Issue 11, 2010, Pages 2838-2849

Mixture Bayesian regularization method of PPCA for multimode process monitoring

Author keywords

Bayesian regularization; Model localization; Multimode process monitoring; Principal component analysis

Indexed keywords

BAYESIAN REGULARIZATION; LATENT VARIABLE; MODE LOCALIZATION; MONITORING METHODS; MONITORING PERFORMANCE; MONITORING PROCESS; MULTIMODES; MULTIPLE OPERATIONS; NON-PROBABILISTIC; NUMERICAL EXAMPLE; OPERATION MODE; PERFORMANCE IMPROVEMENTS; PRINCIPAL COMPONENTS; PROBABILISTIC PCA; PROBABILISTIC STRATEGY; RESULT COMBINATIONS;

EID: 78650358993     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.12200     Document Type: Article
Times cited : (160)

References (16)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin SJ. Statistical process monitoring: basics and beyond. J Chemometrics. 2003; 17: 480-502.
    • (2003) J Chemometrics. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 2
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Contr Eng Prac. 2003; 11: 613-632.
    • (2003) Contr Eng Prac. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 3
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger U, Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 2008; 54: 2581-2596.
    • (2008) AIChE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 4
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao CH, Wang FL, Mao ZH, Lu NY, Jia MX. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008; 54: 693-705.
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.H.3    Lu, N.Y.4    Jia, M.X.5
  • 5
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Zhang YW, Qin SJ. Improved nonlinear fault detection technique and statistical analysis. AIChE J. 2008; 54: 3207-3220.
    • (2008) AIChE J. , vol.54 , pp. 3207-3220
    • Zhang, Y.W.1    Qin, S.J.2
  • 6
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • AlGhazzawi A, Lennox B. Monitoring a complex refining process using multivariate statistics. Control Eng Pract. 2008; 16: 294-307.
    • (2008) Control Eng Pract. , vol.16 , pp. 294-307
    • AlGhazzawi, A.1    Lennox, B.2
  • 7
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping ME, Bishop CM. Probabilistic principal component analysis. J Royal Stat Soc. 1999; 61: 611-622.
    • (1999) J Royal Stat Soc. , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 8
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim DS, Lee IB. Process monitoring based on probabilistic PCA. Chem Intell Lab Syst. 2003; 67: 109-123.
    • (2003) Chem Intell Lab Syst. , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 9
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysis
    • Tipping ME, Bishop CM. Mixtures of probabilistic principal component analysis. Neural Comput. 1999; 11: 443-482.
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 10
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen JH, Liu JL. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999; 38: 1478-1488.
    • (1999) Ind Eng Chem Res. , vol.38 , pp. 1478-1488
    • Chen, J.H.1    Liu, J.L.2
  • 11
    • 0034235548 scopus 로고    scopus 로고
    • Using mixture principal component analysis networks to extract fuzzy rules from data
    • Chen JH, Liu JL. Using mixture principal component analysis networks to extract fuzzy rules from data. Ind Eng Chem Res. 2000; 39: 2355-2367.
    • (2000) Ind Eng Chem Res. , vol.39 , pp. 2355-2367
    • Chen, J.H.1    Liu, J.L.2
  • 12
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004; 28: 1377-1387.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 13
    • 15944370634 scopus 로고    scopus 로고
    • Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
    • Choi SW, Martim EB, Morris AJ. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture. Ind Eng Chem Res. 2005; 44: 2316-2327.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 2316-2327
    • Choi, S.W.1    Martim, E.B.2    Morris, A.J.3
  • 16
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • Springle,
    • Bishop CM. Pattern Recognition and Machine Learning. Springle, 2006; 559-603.
    • (2006) , pp. 559-603
    • Bishop, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.