메뉴 건너뛰기




Volumn 23, Issue 8, 2013, Pages 1090-1096

Bagging support vector data description model for batch process monitoring

Author keywords

Bagging; Batch process monitoring; Bayesian combination; Ensemble learning; Support vector data description

Indexed keywords

BAGGING; BATCH PROCESS MONITORING; BAYESIAN COMBINATION; ENSEMBLE LEARNING; SUPPORT VECTOR DATA DESCRIPTION;

EID: 84880905980     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.06.010     Document Type: Article
Times cited : (54)

References (20)
  • 1
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, and J.F. MacGregor Monitoring batch processes using multiway principal component analysis AIChE Journal 44 1994 1361 1375
    • (1994) AIChE Journal , vol.44 , pp. 1361-1375
    • Nomikos, P.1    Macgregor, J.F.2
  • 3
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Fault detection of batch processes using multiway kernel principal component analysis Computers & Chemical Engineering 28 2004 1837 1847
    • (2004) Computers & Chemical Engineering , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 5
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • DOI 10.1016/j.ces.2007.09.046, PII S0009250907007518
    • S.W. Choi, A.J. Morris, and I.B. Lee Dynamic model-based batch process monitoring Chemical Engineering Science 63 2008 622 636 (Pubitemid 350235405)
    • (2008) Chemical Engineering Science , vol.63 , Issue.3 , pp. 622-636
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 6
    • 78149285529 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
    • Y. Yao, T. Chen, and F. Gao Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information Journal of Process Control 20 2010 1188 1197
    • (2010) Journal of Process Control , vol.20 , pp. 1188-1197
    • Yao, Y.1    Chen, T.2    Gao, F.3
  • 7
    • 76849101069 scopus 로고    scopus 로고
    • Semiconductor manufacturing process monitoring based on Adaptive sub-statistical PCA
    • Z.Q. Ge, and Z.H. Song Semiconductor manufacturing process monitoring based on Adaptive sub-statistical PCA IEEE Transactions on Semiconductor Manufacturing 23 2010 99 108
    • (2010) IEEE Transactions on Semiconductor Manufacturing , vol.23 , pp. 99-108
    • Ge, Z.Q.1    Song, Z.H.2
  • 8
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Z.Q. Ge, C.J. Yang, and Z.H. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chemical Engineering Science 64 2009 2245 2255
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 9
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
    • J. Yu Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis Industrial & Engineering Chemistry Research 50 2011 3390 3402
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 10
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • M.X. Jia, F. Chu, F.L. Wang, and W. Wang On-line batch process monitoring using batch dynamic kernel principal component analysis Chemometrics and Intelligent Laboratory Systems 101 2010 110 122
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.101 , pp. 110-122
    • Jia, M.X.1    Chu, F.2    Wang, F.L.3    Wang, W.4
  • 11
    • 77951997626 scopus 로고    scopus 로고
    • Large-scale semiconductor process fault detection using a fast pattern recognition-based method
    • Q.P. He, and J. Wang Large-scale semiconductor process fault detection using a fast pattern recognition-based method Semiconductor Manufacturing - IEEE 23 2010 194 200
    • (2010) Semiconductor Manufacturing - IEEE , vol.23 , pp. 194-200
    • He, Q.P.1    Wang, J.2
  • 12
    • 79958136331 scopus 로고    scopus 로고
    • Batch process monitoring based on support vector data description method
    • Z.Q. Ge, F.R. Gao, and Z.H. Song Batch process monitoring based on support vector data description method Journal of Process Control 21 2011 949 959
    • (2011) Journal of Process Control , vol.21 , pp. 949-959
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 13
    • 84866759786 scopus 로고    scopus 로고
    • Improved Two-dimensional Dynamic Batch Process Monitoring with Support Vector Data Description
    • Z.Q. Ge, F.R. Gao, and Z.H. Song Improved Two-dimensional Dynamic Batch Process Monitoring with Support Vector Data Description 18th IFAC world congress 2011 13133 13138
    • (2011) 18th IFAC World Congress , pp. 13133-13138
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 14
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
    • J.B. Yu, and L.F. Xi A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes Expert Systems with Applications 36 2009 909 921
    • (2009) Expert Systems with Applications , vol.36 , pp. 909-921
    • Yu, J.B.1    Xi, L.F.2
  • 15
    • 77249092144 scopus 로고    scopus 로고
    • A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes
    • B. Wu, and J.B. Yu A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes Expert Systems with Applications 37 2010 4058 4065
    • (2010) Expert Systems with Applications , vol.37 , pp. 4058-4065
    • Wu, B.1    Yu, J.B.2
  • 16
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Z.Q. Ge, M.G. Zhang, and Z.H. Song Nonlinear process monitoring based on linear subspace and Bayesian inference Journal of Process Control 20 2010 676 688
    • (2010) Journal of Process Control , vol.20 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3
  • 17
    • 84874770366 scopus 로고    scopus 로고
    • Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
    • Z.Q. Ge, and Z.H. Song Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring Chemometrics and Intelligent Laboratory Systems 123 2013 1 8
    • (2013) Chemometrics and Intelligent Laboratory Systems , vol.123 , pp. 1-8
    • Ge, Z.Q.1    Song, Z.H.2
  • 18
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R.P.W. Duin Support vector data description Machine Learning 54 2004 45 66
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 19
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Z.Q. Ge, and Z.H. Song Multimode process monitoring based on Bayesian method Journal of Chemometrics 23 2009 636 650
    • (2009) Journal of Chemometrics , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 20
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • B.M. Wise, N.B. Gallagher, S.W. Butler, D.D. White Jr., and G.G. Barna A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process Journal of Chemometrics 13 1999 379 396
    • (1999) Journal of Chemometrics , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White, Jr.D.D.4    Barna, G.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.