-
1
-
-
0028483476
-
Monitoring batch processes using multiway principal component analysis
-
P. Nomikos, and J.F. MacGregor Monitoring batch processes using multiway principal component analysis AIChE Journal 44 1994 1361 1375
-
(1994)
AIChE Journal
, vol.44
, pp. 1361-1375
-
-
Nomikos, P.1
Macgregor, J.F.2
-
3
-
-
2442495227
-
Fault detection of batch processes using multiway kernel principal component analysis
-
J.M. Lee, C.K. Yoo, and I.B. Lee Fault detection of batch processes using multiway kernel principal component analysis Computers & Chemical Engineering 28 2004 1837 1847
-
(2004)
Computers & Chemical Engineering
, vol.28
, pp. 1837-1847
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
5
-
-
36849039411
-
Dynamic model-based batch process monitoring
-
DOI 10.1016/j.ces.2007.09.046, PII S0009250907007518
-
S.W. Choi, A.J. Morris, and I.B. Lee Dynamic model-based batch process monitoring Chemical Engineering Science 63 2008 622 636 (Pubitemid 350235405)
-
(2008)
Chemical Engineering Science
, vol.63
, Issue.3
, pp. 622-636
-
-
Choi, S.W.1
Morris, J.2
Lee, I.-B.3
-
6
-
-
78149285529
-
Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
-
Y. Yao, T. Chen, and F. Gao Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information Journal of Process Control 20 2010 1188 1197
-
(2010)
Journal of Process Control
, vol.20
, pp. 1188-1197
-
-
Yao, Y.1
Chen, T.2
Gao, F.3
-
7
-
-
76849101069
-
Semiconductor manufacturing process monitoring based on Adaptive sub-statistical PCA
-
Z.Q. Ge, and Z.H. Song Semiconductor manufacturing process monitoring based on Adaptive sub-statistical PCA IEEE Transactions on Semiconductor Manufacturing 23 2010 99 108
-
(2010)
IEEE Transactions on Semiconductor Manufacturing
, vol.23
, pp. 99-108
-
-
Ge, Z.Q.1
Song, Z.H.2
-
8
-
-
63249084878
-
Improved kernel PCA-based monitoring approach for nonlinear processes
-
Z.Q. Ge, C.J. Yang, and Z.H. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chemical Engineering Science 64 2009 2245 2255
-
(2009)
Chemical Engineering Science
, vol.64
, pp. 2245-2255
-
-
Ge, Z.Q.1
Yang, C.J.2
Song, Z.H.3
-
9
-
-
79952591121
-
Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
-
J. Yu Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis Industrial & Engineering Chemistry Research 50 2011 3390 3402
-
(2011)
Industrial & Engineering Chemistry Research
, vol.50
, pp. 3390-3402
-
-
Yu, J.1
-
11
-
-
77951997626
-
Large-scale semiconductor process fault detection using a fast pattern recognition-based method
-
Q.P. He, and J. Wang Large-scale semiconductor process fault detection using a fast pattern recognition-based method Semiconductor Manufacturing - IEEE 23 2010 194 200
-
(2010)
Semiconductor Manufacturing - IEEE
, vol.23
, pp. 194-200
-
-
He, Q.P.1
Wang, J.2
-
12
-
-
79958136331
-
Batch process monitoring based on support vector data description method
-
Z.Q. Ge, F.R. Gao, and Z.H. Song Batch process monitoring based on support vector data description method Journal of Process Control 21 2011 949 959
-
(2011)
Journal of Process Control
, vol.21
, pp. 949-959
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
13
-
-
84866759786
-
Improved Two-dimensional Dynamic Batch Process Monitoring with Support Vector Data Description
-
Z.Q. Ge, F.R. Gao, and Z.H. Song Improved Two-dimensional Dynamic Batch Process Monitoring with Support Vector Data Description 18th IFAC world congress 2011 13133 13138
-
(2011)
18th IFAC World Congress
, pp. 13133-13138
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
14
-
-
53849102241
-
A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
-
J.B. Yu, and L.F. Xi A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes Expert Systems with Applications 36 2009 909 921
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 909-921
-
-
Yu, J.B.1
Xi, L.F.2
-
15
-
-
77249092144
-
A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes
-
B. Wu, and J.B. Yu A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes Expert Systems with Applications 37 2010 4058 4065
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 4058-4065
-
-
Wu, B.1
Yu, J.B.2
-
16
-
-
77955305868
-
Nonlinear process monitoring based on linear subspace and Bayesian inference
-
Z.Q. Ge, M.G. Zhang, and Z.H. Song Nonlinear process monitoring based on linear subspace and Bayesian inference Journal of Process Control 20 2010 676 688
-
(2010)
Journal of Process Control
, vol.20
, pp. 676-688
-
-
Ge, Z.Q.1
Zhang, M.G.2
Song, Z.H.3
-
17
-
-
84874770366
-
Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
-
Z.Q. Ge, and Z.H. Song Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring Chemometrics and Intelligent Laboratory Systems 123 2013 1 8
-
(2013)
Chemometrics and Intelligent Laboratory Systems
, vol.123
, pp. 1-8
-
-
Ge, Z.Q.1
Song, Z.H.2
-
18
-
-
0942266514
-
Support vector data description
-
D.M.J. Tax, and R.P.W. Duin Support vector data description Machine Learning 54 2004 45 66
-
(2004)
Machine Learning
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
19
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Z.Q. Ge, and Z.H. Song Multimode process monitoring based on Bayesian method Journal of Chemometrics 23 2009 636 650
-
(2009)
Journal of Chemometrics
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
20
-
-
0001067412
-
A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
-
B.M. Wise, N.B. Gallagher, S.W. Butler, D.D. White Jr., and G.G. Barna A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process Journal of Chemometrics 13 1999 379 396
-
(1999)
Journal of Chemometrics
, vol.13
, pp. 379-396
-
-
Wise, B.M.1
Gallagher, N.B.2
Butler, S.W.3
White, Jr.D.D.4
Barna, G.G.5
|