메뉴 건너뛰기




Volumn 131, Issue , 2014, Pages 37-50

Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects

Author keywords

Compression; Cross validation; Missing data; Number of components; Principal component analysis

Indexed keywords

ANALYTIC METHOD; ANALYTICAL PARAMETERS; ARTICLE; CHEMOMETRICS; CLASSIFICATION ALGORITHM; COMPUTER PROGRAM; ELEMENT WISE K FOLD; INFORMATION PROCESSING; MATHEMATICAL COMPUTING; MATHEMATICAL VARIABLE; MEASUREMENT ERROR; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; TAXONOMY; VALIDATION STUDY;

EID: 84891960044     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.12.003     Document Type: Article
Times cited : (43)

References (30)
  • 1
    • 84863778202 scopus 로고    scopus 로고
    • Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects
    • Camacho J., Ferrer A. Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. J. Chemom. 2012, 26:361-373.
    • (2012) J. Chemom. , vol.26 , pp. 361-373
    • Camacho, J.1    Ferrer, A.2
  • 2
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components. Technometrics 1978, 20(4):397-405.
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 3
    • 39949083755 scopus 로고    scopus 로고
    • Cross-validation of component models: a critical look at current methods
    • Bro R., Kjeldahl K., Smilde A., Kiers H. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem. 2008, 390:1241-1251.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 1241-1251
    • Bro, R.1    Kjeldahl, K.2    Smilde, A.3    Kiers, H.4
  • 5
    • 21144472438 scopus 로고
    • Model selection via multifold crossvalidation
    • Zhang P. Model selection via multifold crossvalidation. Ann. Stat. 1993, 21:299-313.
    • (1993) Ann. Stat. , vol.21 , pp. 299-313
    • Zhang, P.1
  • 6
    • 52649131888 scopus 로고    scopus 로고
    • Cross-validation methods in principal component analysis: a comparison
    • Giancarlo D., Tommasi C. Cross-validation methods in principal component analysis: a comparison. JISS 2002, 11:71-82.
    • (2002) JISS , vol.11 , pp. 71-82
    • Giancarlo, D.1    Tommasi, C.2
  • 7
    • 0020089191 scopus 로고
    • Cross-validatory choice of the number of components from a principal component analysis
    • Eastment H., Krzanowski W. Cross-validatory choice of the number of components from a principal component analysis. Technometrics 1982, 24(1):73-77.
    • (1982) Technometrics , vol.24 , Issue.1 , pp. 73-77
    • Eastment, H.1    Krzanowski, W.2
  • 10
    • 30144433168 scopus 로고    scopus 로고
    • The impact of missing measurements on PCA and PLS prediction and monitoring applications
    • Nelson P., MacGregor J., Taylor P. The impact of missing measurements on PCA and PLS prediction and monitoring applications. Chemom. Intell. Lab. Syst. 2006, 80:1-12.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , pp. 1-12
    • Nelson, P.1    MacGregor, J.2    Taylor, P.3
  • 11
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Song Y., Nie F., Zhang C., Xiang S. A unified framework for semi-supervised dimensionality reduction. Pattern Recogn. 2008, 41:2789-2799.
    • (2008) Pattern Recogn. , vol.41 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 12
    • 42749093371 scopus 로고    scopus 로고
    • Generative tracking of 3D human motion by hierarchical annealed genetic algorithm
    • Zhao X., Liu Y. Generative tracking of 3D human motion by hierarchical annealed genetic algorithm. Pattern Recogn. 2008, 41:2470-2483.
    • (2008) Pattern Recogn. , vol.41 , pp. 2470-2483
    • Zhao, X.1    Liu, Y.2
  • 13
    • 25144434258 scopus 로고    scopus 로고
    • Face Recognition System Based on PCA and Feedforward Neural Networks
    • (ISSN 0302-9743)
    • Alaa E., Hasan D. Face Recognition System Based on PCA and Feedforward Neural Networks. Lecture notes in computer science 2005, 935-942. (ISSN 0302-9743).
    • (2005) Lecture notes in computer science , pp. 935-942
    • Alaa, E.1    Hasan, D.2
  • 14
    • 33645019430 scopus 로고    scopus 로고
    • A Comparison of PCA/ICA for Data Preprocessing in Remote Sensing Imagery Classification
    • D. Li, H. Ma (Eds.) MIPPR 2005: Image Analysis Techniques
    • He H., Yu X. A Comparison of PCA/ICA for Data Preprocessing in Remote Sensing Imagery Classification. Proceedings of the SPIE 2005, vol. 6044:60-65. D. Li, H. Ma (Eds.).
    • (2005) Proceedings of the SPIE , vol.6044 , pp. 60-65
    • He, H.1    Yu, X.2
  • 15
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: score calculations with incomplete observations
    • Nelson P., Taylor P., MacGregor J. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom. Intell. Lab. Syst. 1996, 35:45-65.
    • (1996) Chemom. Intell. Lab. Syst. , vol.35 , pp. 45-65
    • Nelson, P.1    Taylor, P.2    MacGregor, J.3
  • 16
    • 0030770001 scopus 로고    scopus 로고
    • Applications of maximum likelihood principal component analysis: incomplete data sets and calibration transfer
    • Andrews D., Wentzell P. Applications of maximum likelihood principal component analysis: incomplete data sets and calibration transfer. Anal. Chim. Acta. 1997, 350:341-352.
    • (1997) Anal. Chim. Acta. , vol.350 , pp. 341-352
    • Andrews, D.1    Wentzell, P.2
  • 18
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in mspc: several methods, different interpretations, some examples
    • Arteaga F., Ferrer A. Dealing with missing data in mspc: several methods, different interpretations, some examples. J. Chemom. 2002, 16:408-418.
    • (2002) J. Chemom. , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 19
    • 33644535120 scopus 로고    scopus 로고
    • Framework for regression-based missing data imputation methods in on-line MSPC
    • Arteaga F., Ferrer A. Framework for regression-based missing data imputation methods in on-line MSPC. J. Chemom. 2005, 19:439-447.
    • (2005) J. Chemom. , vol.19 , pp. 439-447
    • Arteaga, F.1    Ferrer, A.2
  • 20
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component analysis
    • Kosanovich K., Dahl K., Piovoso M. Improved process understanding using multiway principal component analysis. Eng. Chem. Res. 1996, 35:138-146.
    • (1996) Eng. Chem. Res. , vol.35 , pp. 138-146
    • Kosanovich, K.1    Dahl, K.2    Piovoso, M.3
  • 21
    • 71549150279 scopus 로고    scopus 로고
    • Data understanding with PCA: structural and variance information plots
    • Camacho J., Picó J., Ferrer A. Data understanding with PCA: structural and variance information plots. Chemom. Intell. Lab. Syst. 2010, 100(1):48-56.
    • (2010) Chemom. Intell. Lab. Syst. , vol.100 , Issue.1 , pp. 48-56
    • Camacho, J.1    Picó, J.2    Ferrer, A.3
  • 22
    • 77954689842 scopus 로고    scopus 로고
    • Missing-data theory in the context of exploratory data analysis
    • Camacho J. Missing-data theory in the context of exploratory data analysis. Chemom. Intell. Lab. Syst. 2010, 103:8-18.
    • (2010) Chemom. Intell. Lab. Syst. , vol.103 , pp. 8-18
    • Camacho, J.1
  • 23
    • 82255192499 scopus 로고    scopus 로고
    • Observation-based missing data methods for exploratory data analysis to unveil the connection between observations and variables in latent subspace models
    • Camacho J. Observation-based missing data methods for exploratory data analysis to unveil the connection between observations and variables in latent subspace models. Journal of Chemometrics 2011, 25(11):592-600.
    • (2011) Journal of Chemometrics , vol.25 , Issue.11 , pp. 592-600
    • Camacho, J.1
  • 24
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate spc methods for process and product monitoring
    • Kourti T., MacGregor J. Multivariate spc methods for process and product monitoring. Journal of Quality Technology 1996, 28(4).
    • (1996) Journal of Quality Technology , vol.28 , Issue.4
    • Kourti, T.1    MacGregor, J.2
  • 25
    • 57149111273 scopus 로고    scopus 로고
    • Multivariate statistical process control based on principal component analysis (MSPC-PCA): some reflections and a case study in an autobody assembly process
    • Ferrer A. Multivariate statistical process control based on principal component analysis (MSPC-PCA): some reflections and a case study in an autobody assembly process. Qual. Eng. 2007, 19(4):311-325.
    • (2007) Qual. Eng. , vol.19 , Issue.4 , pp. 311-325
    • Ferrer, A.1
  • 26
    • 0001925804 scopus 로고
    • Multivariate control charts for individual observations
    • Tracy N., Young J., Mason R. Multivariate control charts for individual observations. J. Qual. Technol. 1992, 24(2):88-95.
    • (1992) J. Qual. Technol. , vol.24 , Issue.2 , pp. 88-95
    • Tracy, N.1    Young, J.2    Mason, R.3
  • 27
    • 84954812215 scopus 로고
    • Characterization of some liquid phases
    • McReynolds W. Characterization of some liquid phases. J. Chromatogr. Sci. 1970, 8:685-691.
    • (1970) J. Chromatogr. Sci. , vol.8 , pp. 685-691
    • McReynolds, W.1
  • 28
    • 0038441073 scopus 로고
    • Major components influencing retention indices in gas chromatography
    • Wold S., Andersson K. Major components influencing retention indices in gas chromatography. J. Chromatogr. 1973, 80:43-59.
    • (1973) J. Chromatogr. , vol.80 , pp. 43-59
    • Wold, S.1    Andersson, K.2
  • 30
    • 33845705297 scopus 로고    scopus 로고
    • Cauchy's interlace theorem and lower bounds for the spectral radius
    • Mercer M., Mercer R. Cauchy's interlace theorem and lower bounds for the spectral radius. Int. J. Math. Math. Sci. 1998, 23:563-566.
    • (1998) Int. J. Math. Math. Sci. , vol.23 , pp. 563-566
    • Mercer, M.1    Mercer, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.