-
1
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
2
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
3
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956; 123: 309-14.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
4
-
-
0000459772
-
Über den stoffwechsel der carcinomzelle
-
Warburg O, Posener KEN. Über den stoffwechsel der carcinomzelle. Biochem Zeitschr 1924; 152: 309-44.
-
(1924)
Biochem Zeitschr
, vol.152
, pp. 309-344
-
-
Warburg, O.1
Posener, K.E.N.2
-
5
-
-
75149139032
-
18F-FDG avidity in lymphoma readdressed: A study of 766 patients
-
Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 2010; 51: 25-30.
-
(2010)
J Nucl Med
, vol.51
, pp. 25-30
-
-
Weiler-Sagie, M.1
Bushelev, O.2
Epelbaum, R.3
Dann, E.J.4
Haim, N.5
Avivi, I.6
-
6
-
-
84900389739
-
Beyond Warburg effect-dual metabolic nature of cancer cells
-
Xie J, Wu H, Dai C, Pan Q, Ding Z, Hu D, et al. Beyond Warburg effect-dual metabolic nature of cancer cells. Sci Rep 2014; 4: 4927.
-
(2014)
Sci Rep
, vol.4
, pp. 4927
-
-
Xie, J.1
Wu, H.2
Dai, C.3
Pan, Q.4
Ding, Z.5
Hu, D.6
-
7
-
-
8144228566
-
Why do cancers have high aerobic glycolysis
-
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4: 891-9.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
8
-
-
45149112158
-
Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate
-
Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkfaer-Larsen JH, Zandt RI, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453: 940-3.
-
(2008)
Nature
, vol.453
, pp. 940-943
-
-
Gallagher, F.A.1
Kettunen, M.I.2
Day, S.E.3
Hu, D.E.4
Ardenkfaer-Larsen, J.H.5
Zandt, R.I.6
-
10
-
-
0032942766
-
In vivo imaging of extracellular pH using 1HMRSI
-
van Sluis R, Bhulwalla ZM, Raohunand N, Ballesteros P, Alvarez J, Cerdan S, et al. In vivo imaging of extracellular pH using 1HMRSI. Magn Reson Med 1999; 41: 743-50.
-
(1999)
Magn Reson Med
, vol.41
, pp. 743-750
-
-
Van Sluis, R.1
Bhulwalla, Z.M.2
Raohunand, N.3
Ballesteros, P.4
Alvarez, J.5
Cerdan, S.6
-
11
-
-
84862800709
-
Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death
-
Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 2012; 227: 189-99.
-
(2012)
J Pathol
, vol.227
, pp. 189-199
-
-
Wu, H.1
Ding, Z.2
Hu, D.3
Sun, F.4
Dai, C.5
Xie, J.6
-
12
-
-
82855167795
-
Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment
-
Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, MP L. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 2011; 13: 213.
-
(2011)
Breast Cancer Res
, vol.13
, pp. 213
-
-
Sotgia, F.1
Martinez-Outschoorn, U.E.2
Pavlides, S.3
Howell, A.4
Pestell, R.G.5
-
13
-
-
74849087878
-
The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
-
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009; 8: 3984-4001.
-
(2009)
Cell Cycle
, vol.8
, pp. 3984-4001
-
-
Pavlides, S.1
Whitaker-Menezes, D.2
Castello-Cros, R.3
Flomenberg, N.4
Witkiewicz, A.K.5
Frank, P.G.6
-
14
-
-
39149095601
-
Human skin keloid fibroblasts display bioenergetics of cancer cells
-
Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP. Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 2008; 128: 702-9.
-
(2008)
J Invest Dermatol
, vol.128
, pp. 702-709
-
-
Vincent, A.S.1
Phan, T.T.2
Mukhopadhyay, A.3
Lim, H.Y.4
Halliwell, B.5
Wong, K.P.6
-
15
-
-
67349275453
-
Metabolic acidosis and the importance of balanced equations
-
Lane AN, Fan TW, Higashi RM. Metabolic acidosis and the importance of balanced equations. Metabolomics 2008; 5: 163-5.
-
(2008)
Metabolomics
, vol.5
, pp. 163-165
-
-
Lane, A.N.1
Fan, T.W.2
Higashi, R.M.3
-
16
-
-
53949106060
-
Expression of SGLT1 Bcl-2 and p53 in primary pancreatic cancer related to survival
-
Casneuf VF, Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, et al. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest 2008; 26: 852-9.
-
(2008)
Cancer Invest
, vol.26
, pp. 852-859
-
-
Casneuf, V.F.1
Casneuf, V.F.2
Fonteyne, P.3
Van Damme, N.4
Demetter, P.5
Pauwels, P.6
-
17
-
-
0022553922
-
The regulatory properties of yeast pyruvate kinase Effect of pH
-
Kinderlerer J, Ainsworth S, Morris CN, Rhodes N. The regulatory properties of yeast pyruvate kinase. Effect of pH. Biochem J 1986; 234: 699-703.
-
(1986)
Biochem J
, vol.234
, pp. 699-703
-
-
Kinderlerer, J.1
Ainsworth, S.2
Morris, C.N.3
Rhodes, N.4
-
18
-
-
0015359795
-
Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies
-
Imamura K, Tanaka T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem 1972; 71: 1043-51.
-
(1972)
J Biochem
, vol.71
, pp. 1043-1051
-
-
Imamura, K.1
Tanaka, T.2
-
19
-
-
84867140008
-
Emerging roles of PKM2 in cell metabolism and cancer progression
-
Luo W, Semenza GL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 2012; 23: 560-6.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 560-566
-
-
Luo, W.1
Semenza, G.L.2
-
20
-
-
77953551959
-
The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts
-
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 2010; 9: 1960-71.
-
(2010)
Cell Cycle
, vol.9
, pp. 1960-1971
-
-
Bonuccelli, G.1
Whitaker-Menezes, D.2
Castello-Cros, R.3
Pavlides, S.4
Pestell, R.G.5
Fatatis, A.6
-
22
-
-
84886704519
-
Nuclear PKM2 regulates the Warburg effect
-
Yang W, Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle 2013; 12: 3154-8.
-
(2013)
Cell Cycle
, vol.12
, pp. 3154-3158
-
-
Yang, W.1
Lu, Z.2
-
23
-
-
78649891511
-
Balancing biosynthesis and bioenergetics: Metabolic programs in oncogenesis
-
Barger JF, Plas DR. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocr Relat Cancer 2010; 17: R287-304.
-
(2010)
Endocr Relat Cancer
, vol.17
, pp. R287-304
-
-
Barger, J.F.1
Plas, D.R.2
-
24
-
-
40749099894
-
Pyruvate kinase M2 is a phosphotyrosine binding protein
-
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine binding protein. Nature 2008; 452: 181-6.
-
(2008)
Nature
, vol.452
, pp. 181-186
-
-
Christofk, H.R.1
Vander Heiden, M.G.2
Wu, N.3
Asara, J.M.4
Cantley, L.C.5
-
25
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk HR, Vander HM, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230-3.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
Vander, H.M.2
Harris, M.H.3
Ramanathan, A.4
Gerszten, R.E.5
Wei, R.6
-
26
-
-
2542561169
-
Akt stimulates aerobic glycolysis in cancer cells
-
Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004; 64: 3892-9.
-
(2004)
Cancer Res
, vol.64
, pp. 3892-3899
-
-
Elstrom, R.L.1
Bauer, D.E.2
Buzzai, M.3
Karnauskas, R.4
Harris, M.H.5
Plas, D.R.6
-
27
-
-
0034983918
-
Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase
-
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406-18.
-
(2001)
Genes Dev
, vol.15
, pp. 1406-1418
-
-
Gottlob, K.1
Majewski, N.2
Kennedy, S.3
Kandel, E.4
Robey, R.B.5
Hay, N.6
-
28
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15: 406-16.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
Bordi, M.6
-
29
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339: 1323-8.
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
30
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, Hotamisligil GS, et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014; 513: 440-3.
-
(2014)
Nature
, vol.513
, pp. 440-443
-
-
Zhang, Y.1
Nicholatos, J.2
Dreier, J.R.3
Ricoult, S.J.4
Widenmaier, S.B.5
Hotamisligil, G.S.6
-
31
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 2005; 28: 26089-93.
-
(2005)
J Biol Chem
, vol.28
, pp. 26089-26093
-
-
Holz, M.K.1
Blenis, J.2
-
32
-
-
84871721552
-
MTOR: Ontarget for novel therapeutic strategies in the nervous system
-
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: ontarget for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19: 51-60.
-
(2013)
Trends Mol Med
, vol.19
, pp. 51-60
-
-
Maiese, K.1
Chong, Z.Z.2
Shang, Y.C.3
Wang, S.4
-
33
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098-101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
34
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. Embo J 2008; 27: 1932-43.
-
(2008)
Embo J
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
Ouyang, W.2
Wei, H.3
Soto, N.4
Lazorchak, A.5
Gould, C.6
-
35
-
-
0034983918
-
Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase
-
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406-18.
-
(2001)
Genes Dev
, vol.15
, pp. 1406-1418
-
-
Gottlob, K.1
Majewski, N.2
Kennedy, S.3
Kandel, E.4
Robey, R.B.5
Hay, N.6
-
36
-
-
0029908016
-
Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
-
Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372-8.
-
(1996)
J Biol Chem
, vol.271
, pp. 31372-31378
-
-
Kohn, A.D.1
Summers, S.A.2
Birnbaum, M.J.3
Roth, R.A.4
-
37
-
-
84887430714
-
MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
-
Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 2013; 18: 726-39.
-
(2013)
Cell Metab
, vol.18
, pp. 726-739
-
-
Masui, K.1
Tanaka, K.2
Akhavan, D.3
Babic, I.4
Gini, B.5
Matsutani, T.6
-
38
-
-
70350728803
-
MYC-induced cancer cell energy metabolism and therapeutic opportunities
-
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479-83.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 6479-6483
-
-
Dang, C.V.1
Le Gao A, P.2
-
39
-
-
0029087937
-
Evidence from transgenic mice that myc regulates hepatic glycolysis
-
Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. Faseb J 1995; 9: 1067-78.
-
(1995)
Faseb J
, vol.9
, pp. 1067-1078
-
-
Valera, A.1
Pujol, A.2
Gregori, X.3
Riu, E.4
Visa, J.5
Bosch, F.6
-
40
-
-
0030794277
-
Identification of putative c-Myc-responsive genes: Characterization of rcl, a novel growth-related gene
-
Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, et al. Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell 1997; 17: 4967-78.
-
(1997)
Mol Cell
, vol.17
, pp. 4967-4978
-
-
Lewis, B.C.1
Shim, H.2
Li, Q.3
Wu, C.S.4
Lee, L.A.5
Maity, A.6
-
41
-
-
0030921103
-
C-Myc transactivation of LDH-A: Implications for tumor metabolism and growth
-
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997; 94: 6658-63.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 6658-6663
-
-
Shim, H.1
Dolde, C.2
Lewis, B.C.3
Wu, C.S.4
Dang, G.5
Jungmann, R.A.6
-
42
-
-
35649014840
-
Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1
-
Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 2007; 27: 7381-93.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7381-7393
-
-
Kim, J.W.1
Gao, P.2
Liu, Y.C.3
Semenza, G.L.4
Dang, C.V.5
-
43
-
-
0034698178
-
Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc
-
Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275: 21797-800.
-
(2000)
J Biol Chem
, vol.275
, pp. 21797-21800
-
-
Osthus, R.C.1
Shim, H.2
Kim, S.3
Li, Q.4
Reddy, R.5
Mukherjee, M.6
-
44
-
-
68549136915
-
Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells
-
Liao SH, Zhao XY, Han YH, Zhang J, Wang LS, Xia L, et al. Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics 2009; 9: 3901-12.
-
(2009)
Proteomics
, vol.9
, pp. 3901-3912
-
-
Liao, S.H.1
Zhao, X.Y.2
Han, Y.H.3
Zhang, J.4
Wang, L.S.5
Xia, L.6
-
45
-
-
0033587146
-
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
-
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271-5.
-
(1999)
Nature
, vol.399
, pp. 271-275
-
-
Maxwell, P.H.1
Wiesener, M.S.2
Chang, G.W.3
Clifford, S.C.4
Vaux, E.C.5
Cockman, M.E.6
-
46
-
-
43649093915
-
Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway
-
Kaelin WJ, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393-402.
-
(2008)
Mol Cell
, vol.30
, pp. 393-402
-
-
Kaelin, W.J.1
Ratcliffe, P.J.2
-
47
-
-
84891273707
-
Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect
-
Velpula KK, Bhasin A, Asuthkar S, Tsung AJ. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect. Cancer Res 2013; 73: 7277-89.
-
(2013)
Cancer Res
, vol.73
, pp. 7277-7289
-
-
Velpula, K.K.1
Bhasin, A.2
Asuthkar, S.3
Tsung, A.J.4
-
48
-
-
33847699250
-
Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death
-
Stetak A, Veress R, Ovadi J, Csermely P, Keri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 2007; 67: 1602-8.
-
(2007)
Cancer Res
, vol.67
, pp. 1602-1608
-
-
Stetak, A.1
Veress, R.2
Ovadi, J.3
Csermely, P.4
Keri, G.5
Ullrich, A.6
-
49
-
-
82555170271
-
Nuclear PKM2 regulates-catenin transactivation upon EGFR activation
-
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates ?-catenin transactivation upon EGFR activation. Nature 2011; 480: 118-22.
-
(2011)
Nature
, vol.480
, pp. 118-122
-
-
Yang, W.1
Xia, Y.2
Ji, H.3
Zheng, Y.4
Liang, J.5
Huang, W.6
-
50
-
-
84870598190
-
ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
-
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 2012; 14: 1295-304.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1295-1304
-
-
Yang, W.1
Zheng, Y.2
Xia, Y.3
Ji, H.4
Chen, X.5
Guo, F.6
-
51
-
-
84865266173
-
PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis
-
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150: 685-96.
-
(2012)
Cell
, vol.150
, pp. 685-696
-
-
Yang, W.1
Xia, Y.2
Hawke, D.3
Li, X.4
Liang, J.5
Xing, D.6
-
52
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
-
Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-85.
-
(2006)
Cell Metab
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
53
-
-
77954310492
-
The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
-
Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 2010; 20: 427-34.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 427-434
-
-
Feng, Z.1
Levine, A.J.2
-
54
-
-
84861964103
-
New aspects of the Warburg effect in cancer cell biology
-
Bensinger SJ, HR C. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 2012; 23: 352-61.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 352-361
-
-
Bensinger, S.J.1
-
55
-
-
84907380852
-
Autophagy warburg and warburg reverse effects in human cancer
-
Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int 2014; 2014: 926729.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 926729
-
-
Gonzalez, C.D.1
Alvarez, S.2
Ropolo, A.3
Rosenzvit, C.4
Bagnes, M.F.5
Vaccaro, M.I.6
-
56
-
-
33749478922
-
Cancer's molecular sweet tooth and the Warburg effect
-
Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927-30.
-
(2006)
Cancer Res
, vol.66
, pp. 8927-8930
-
-
Kim, J.W.1
Dang, C.V.2
-
57
-
-
0000715405
-
Glucose-6-phosphatase activity in normal, pre-cancerous, and neoplastic tissues
-
Weber G, Cantero A. Glucose-6-phosphatase activity in normal, pre-cancerous, and neoplastic tissues. Cancer Res 1955; 15: 105-8.
-
(1955)
Cancer Res
, vol.15
, pp. 105-108
-
-
Weber, G.1
Cantero, A.2
-
58
-
-
0014449791
-
Glucose-6-phosphatase activity in primary rat liver tumors induced by high doses of 4-dimethylaminoazo-benzene
-
Hadjiolov D. Glucose-6-phosphatase activity in primary rat liver tumors induced by high doses of 4-dimethylaminoazo-benzene. Zeit für Krebs 1969; 72: 43-6.
-
(1969)
Zeit für Krebs
, vol.72
, pp. 43-46
-
-
Hadjiolov, D.1
-
59
-
-
7344255198
-
Modulating effect of lonidamine on response to doxorubicin in metastatic breast cancer patients: Results from a multicenter prospective randomized trial
-
Amadori D, Frassineti GL, De Matteis A, Mustacchi G, Santoro A, Cariello S, et al. Modulating effect of lonidamine on response to doxorubicin in metastatic breast cancer patients: results from a multicenter prospective randomized trial. Breast Cancer Res Treat 1998; 49: 209-17.
-
(1998)
Breast Cancer Res Treat
, vol.49
, pp. 209-217
-
-
Amadori, D.1
Frassineti, G.L.2
De Matteis, A.3
Mustacchi, G.4
Santoro, A.5
Cariello, S.6
-
60
-
-
84924064231
-
Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin
-
Nath K, Nelson DS, Heitjan DF, Leeper DB, Zhou R, Glickson JD. Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. Nmr Biomed 2015; 28: 281-90.
-
(2015)
Nmr Biomed
, vol.28
, pp. 281-290
-
-
Nath, K.1
Nelson, D.S.2
Heitjan, D.F.3
Leeper, D.B.4
Zhou, R.5
Glickson, J.D.6
-
61
-
-
84958092781
-
Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/mTOR signaling
-
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, et al. Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/mTOR signaling. Oncotarget 2015; 7: 5521-37.
-
(2015)
Oncotarget
, vol.7
, pp. 5521-5537
-
-
Mediani, L.1
Gibellini, F.2
Bertacchini, J.3
Frasson, C.4
Bosco, R.5
Accordi, B.6
-
62
-
-
38349183620
-
Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008; 7: 110-20.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 110-120
-
-
Clem, B.1
Telang, S.2
Clem, A.3
Yalcin, A.4
Meier, J.5
Simmons, A.6
-
63
-
-
84882239565
-
Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer
-
Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DN, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 2013; 12: 1461-70.
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 1461-1470
-
-
Clem, B.F.1
O'Neal, J.2
Tapolsky, G.3
Clem, A.L.4
Imbert-Fernandez, Y.5
Kerr, D.N.6
-
64
-
-
77249150369
-
Identification of small molecule inhibitors of pyruvate kinase M2
-
Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 2010; 79: 1118-24.
-
(2010)
Biochem Pharmacol
, vol.79
, pp. 1118-1124
-
-
Vander Heiden, M.G.1
Christofk, H.R.2
Schuman, E.3
Subtelny, A.O.4
Sharfi, H.5
Harlow, E.E.6
-
65
-
-
84898736291
-
Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms
-
Liu J, Wu N, Ma L, Liu M, Liu G, Zhang Y, et al. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS One 2014; 9: e91606.
-
(2014)
PLoS One
, vol.9
, pp. e91606
-
-
Liu, J.1
Wu, N.2
Ma, L.3
Liu, M.4
Liu, G.5
Zhang, Y.6
-
66
-
-
84943391216
-
Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism
-
Chen GQ, Tang CF, Shi XK, Lin CY, Fatima S, Pan XH, et al. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget 2015; 6: 24148-62.
-
(2015)
Oncotarget
, vol.6
, pp. 24148-24162
-
-
Chen, G.Q.1
Tang, C.F.2
Shi, X.K.3
Lin, C.Y.4
Fatima, S.5
Pan, X.H.6
-
67
-
-
84968677749
-
EEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis
-
May 16
-
Cheng Y, Ren X, Yuan Y, Shan Y, Li L, Chen X, et al. eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. Oncogene 2016 May 16. doi: 10.1038/onc.2016.166.
-
(2016)
Oncogene
-
-
Cheng, Y.1
Ren, X.2
Yuan, Y.3
Shan, Y.4
Li, L.5
Chen, X.6
-
68
-
-
79961118758
-
Understanding the metabolic basis of drug resistance: Therapeutic induction of the Warburg effect kills cancer cells
-
Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, et al. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 2011; 10: 2521-8.
-
(2011)
Cell Cycle
, vol.10
, pp. 2521-2528
-
-
Martinez-Outschoorn, U.E.1
Lin, Z.2
Ko, Y.H.3
Goldberg, A.F.4
Flomenberg, N.5
Wang, C.6
|