-
1
-
-
0442323561
-
Autophagy: In sickness and in health
-
A. M. Cuervo, "Autophagy: in sickness and in health," Trends in Cell Biology, vol. 14, no. 2, pp. 70-77, 2004.
-
(2004)
Trends in Cell Biology
, vol.14
, Issue.2
, pp. 70-77
-
-
Cuervo, A.M.1
-
2
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
B. Levine and D. J. Klionsky, "Development by self-digestion: molecular mechanisms and biological functions of autophagy," Developmental Cell, vol. 6, no. 4, pp. 463-477, 2004.
-
(2004)
Developmental Cell
, vol.6
, Issue.4
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
3
-
-
74949090299
-
An overview of the molecular mechanism of autophagy
-
Z. Yang and D. J. Klionsky, "An overview of the molecular mechanism of autophagy," Current Topics in Microbiology and Immunology, vol. 335, no. 1, pp. 1-32, 2009.
-
(2009)
Current Topics in Microbiology and Immunology
, vol.335
, Issue.1
, pp. 1-32
-
-
Yang, Z.1
Klionsky, D.J.2
-
4
-
-
39149095601
-
Human skin keloid fibroblasts display bioenergetics of cancer cells
-
A. S. Vincent, T. T. Phan, A. Mukhopadhyay, H. Y. Lim, B. Halliwell, and K. P. Wong, "Human skin keloid fibroblasts display bioenergetics of cancer cells," Journal of Investigative Dermatology, vol. 128, no. 3, pp. 702-709, 2008.
-
(2008)
Journal of Investigative Dermatology
, vol.128
, Issue.3
, pp. 702-709
-
-
Vincent, A.S.1
Phan, T.T.2
Mukhopadhyay, A.3
Lim, H.Y.4
Halliwell, B.5
Wong, K.P.6
-
5
-
-
74849087878
-
The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
-
S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros et al., "The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma," Cell Cycle, vol. 8, no. 23, pp. 3984-4001, 2009.
-
(2009)
Cell Cycle
, vol.8
, Issue.23
, pp. 3984-4001
-
-
Pavlides, S.1
Whitaker-Menezes, D.2
Castello-Cros, R.3
-
6
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
T. Hara, K. Nakamura, M. Matsui et al., "Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice," Nature, vol. 441, no. 7095, pp. 885-889, 2006.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
-
7
-
-
33847404337
-
Autophagy gene-dependent clearance of apoptotic cells during embryonic development
-
X. Qu, Z. Zou, Q. Sun et al., "Autophagy gene-dependent clearance of apoptotic cells during embryonic development," Cell, vol. 128, no. 5, pp. 931-946, 2007.
-
(2007)
Cell
, vol.128
, Issue.5
, pp. 931-946
-
-
Qu, X.1
Zou, Z.2
Sun, Q.3
-
8
-
-
33645512801
-
Bcl-2 inhibition of autophagy: A new route to cancer?
-
S. Pattingre and B. Levine, "Bcl-2 inhibition of autophagy: a new route to cancer?" Cancer Research, vol. 66, no. 6, pp. 2885-2888, 2006.
-
(2006)
Cancer Research
, vol.66
, Issue.6
, pp. 2885-2888
-
-
Pattingre, S.1
Levine, B.2
-
9
-
-
8344242220
-
Autophagy in health and disease: A double-edged sword
-
T. Shintani and D. J. Klionsky, "Autophagy in health and disease: a double-edged sword," Science, vol. 306, no. 5698, pp. 990-995, 2004.
-
(2004)
Science
, vol.306
, Issue.5698
, pp. 990-995
-
-
Shintani, T.1
Klionsky, D.J.2
-
10
-
-
23344446037
-
Autophagy
-
D. J. Klionsky, "Autophagy," Current Biology, vol. 15, no. 8, pp. 282-283, 2005.
-
(2005)
Current Biology
, vol.15
, Issue.8
, pp. 282-283
-
-
Klionsky, D.J.1
-
11
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
D. J. Klionsky and S. D. Emr, "Autophagy as a regulated pathway of cellular degradation," Science, vol. 290, no. 5497, pp. 1717-1721, 2000.
-
(2000)
Science
, vol.290
, Issue.5497
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
12
-
-
27644493346
-
The pleiotropic role of autophagy: From protein metabolism to bactericide
-
N. Mizushima, "The pleiotropic role of autophagy: from protein metabolism to bactericide," Cell Death & Differentiation, vol. 12, no. 2, pp. 1535-1541, 2005.
-
(2005)
Cell Death & Differentiation
, vol.12
, Issue.2
, pp. 1535-1541
-
-
Mizushima, N.1
-
13
-
-
10744225487
-
A unified nomenclature for yeast autophagy-related genes
-
D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., "A unified nomenclature for yeast autophagy-related genes," Developmental Cell, vol. 5, no. 4, pp. 539-545, 2003.
-
(2003)
Developmental Cell
, vol.5
, Issue.4
, pp. 539-545
-
-
Klionsky, D.J.1
Cregg, J.M.2
Dunn, W.A.3
-
14
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
X. H. Liang, S. Jackson, M. Seaman et al., "Induction of autophagy and inhibition of tumorigenesis by beclin 1," Nature, vol. 402, no. 6762, pp. 672-676, 1999.
-
(1999)
Nature
, vol.402
, Issue.6762
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
-
15
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
S. Pattingre, A. Tassa, X. Qu et al., "Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy," Cell, vol. 122, no. 6, pp. 927-939, 2005.
-
(2005)
Cell
, vol.122
, Issue.6
, pp. 927-939
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
-
16
-
-
33745751085
-
Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG
-
C. Liang, P. Feng, B. Ku et al., "Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG," Nature Cell Biology, vol. 8, no. 7, pp. 688-698, 2006.
-
(2006)
Nature Cell Biology
, vol.8
, Issue.7
, pp. 688-698
-
-
Liang, C.1
Feng, P.2
Ku, B.3
-
17
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae
-
A. Kihara, T. Noda, N. Ishihara, and Y. Ohsumi, "Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae," Journal of Cell Biology, vol. 153, no. 3, pp. 519-530, 2001.
-
(2001)
Journal of Cell Biology
, vol.153
, Issue.3
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
18
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
C. He and D. J. Klionsky, "Regulation mechanisms and signaling pathways of autophagy," Annual Review of Genetics, vol. 43, pp. 67-93, 2009.
-
(2009)
Annual Review of Genetics
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
19
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
E. Itakura and N. Mizushima, "Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins," Autophagy, vol. 6, no. 6, pp. 764-776, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
20
-
-
41449102022
-
A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy
-
M. I. Vaccaro, A. Ropolo, D. Grasso, and J. L. Iovanna, "A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy," Autophagy, vol. 4, no. 3, pp. 388-390, 2008.
-
(2008)
Autophagy
, vol.4
, Issue.3
, pp. 388-390
-
-
Vaccaro, M.I.1
Ropolo, A.2
Grasso, D.3
Iovanna, J.L.4
-
21
-
-
77951214016
-
Mammalian autophagy: Core molecular machinery and signaling regulation
-
Z. Yang and D. J. Klionsky, "Mammalian autophagy: core molecular machinery and signaling regulation," Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124-131, 2010.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
22
-
-
34250891313
-
AMP-activated protein kinase: A universal regulator of autophagy?
-
M. Høyer-Hansen and M. Jäättelä, "AMP-activated protein kinase: a universal regulator of autophagy?" Autophagy, vol. 3, pp. 381-383, 2007.
-
(2007)
Autophagy
, vol.3
, pp. 381-383
-
-
Høyer-Hansen, M.1
Jäättelä, M.2
-
23
-
-
79952281400
-
Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1
-
M. Zheng, Y. Wang, X. Wu et al., "Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1," Nature Cell Biology, vol. 13, no. 3, pp. 263-272, 2011.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.3
, pp. 263-272
-
-
Zheng, M.1
Wang, Y.2
Wu, X.3
-
24
-
-
26444575415
-
Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
T. Nobukuni, M. Joaquin, M. Roccio et al., "Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14238-14243, 2005.
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.40
, pp. 14238-14243
-
-
Nobukuni, T.1
Joaquin, M.2
Roccio, M.3
-
25
-
-
32044465506
-
TOR signaling in growth and metabolism
-
S. Wullschleger, R. Loewith, and M. N. Hall, "TOR signaling in growth and metabolism," Cell, vol. 124, no. 3, pp. 471-484, 2006.
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
26
-
-
77951768486
-
Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Y. Sancak, L. Bar-Peled, R. Zoncu, A. L. Markhard, S. Nada, and D. M. Sabatini, "Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids," Cell, vol. 141, no. 2, pp. 290-303, 2010.
-
(2010)
Cell
, vol.141
, Issue.2
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
27
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., "AMPK phosphorylation of raptor mediates a metabolic checkpoint," Molecular Cell, vol. 30, no. 2, pp. 214-226, 2008.
-
(2008)
Molecular Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
28
-
-
48249092267
-
Bcl-2 family members: Dual regulators of apoptosis and autophagy
-
B. Levine, S. Sinha, and G. Kroemer, "Bcl-2 family members: dual regulators of apoptosis and autophagy," Autophagy, vol. 4, no. 5, pp. 600-606, 2008.
-
(2008)
Autophagy
, vol.4
, Issue.5
, pp. 600-606
-
-
Levine, B.1
Sinha, S.2
Kroemer, G.3
-
29
-
-
33645520907
-
Autophagy signaling and the cogwheels of cancer
-
J. Botti, M. Djavaheri-Mergny, Y. Pilatte, and P. Codogno, "Autophagy signaling and the cogwheels of cancer," Autophagy, vol. 2, no. 2, pp. 67-73, 2006.
-
(2006)
Autophagy
, vol.2
, Issue.2
, pp. 67-73
-
-
Botti, J.1
Djavaheri-Mergny, M.2
Pilatte, Y.3
Codogno, P.4
-
30
-
-
77955015772
-
Calcium and energy: Making the cake and eating it too?
-
D. R. Green and R. Wang, "Calcium and energy: making the cake and eating it too?" Cell, vol. 142, no. 2, pp. 200-202, 2010.
-
(2010)
Cell
, vol.142
, Issue.2
, pp. 200-202
-
-
Green, D.R.1
Wang, R.2
-
31
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
K. Tracy, B. C. Dibling, B. T. Spike, J. R. Knabb, P. Schumacker, and K. F. Macleod, "BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy," Molecular and Cellular Biology, vol. 27, no. 17, pp. 6229-6242, 2007.
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.17
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
32
-
-
33646503655
-
Autophagy by ARF: A Short Story
-
C. J. Sherr, "Autophagy by ARF: a Short Story," Molecular Cell, vol. 22, no. 4, pp. 436-437, 2006.
-
(2006)
Molecular Cell
, vol.22
, Issue.4
, pp. 436-437
-
-
Sherr, C.J.1
-
33
-
-
33846260837
-
DRAM links autophagy to p53 and programmed cell death
-
D. Crighton, S. Wilkinson, and K. M. Ryan, "DRAM links autophagy to p53 and programmed cell death," Autophagy, vol. 3, no. 1, pp. 72-74, 2007.
-
(2007)
Autophagy
, vol.3
, Issue.1
, pp. 72-74
-
-
Crighton, D.1
Wilkinson, S.2
Ryan, K.M.3
-
34
-
-
75149171923
-
Control of basal autophagy by calpain1 mediated cleavage of ATG5
-
H. G. Xia, L. Zhang, G. Chen et al., "Control of basal autophagy by calpain1 mediated cleavage of ATG5," Autophagy, vol. 6, no. 1, pp. 61-66, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.1
, pp. 61-66
-
-
Xia, H.G.1
Zhang, L.2
Chen, G.3
-
35
-
-
1542513774
-
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro
-
K. R. Mills, M. Reginato, J. Debnath, B. Queenan, and J. S. Brugge, "Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3438-3443, 2004.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.10
, pp. 3438-3443
-
-
Mills, K.R.1
Reginato, M.2
Debnath, J.3
Queenan, B.4
Brugge, J.S.5
-
36
-
-
20144381544
-
Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death
-
J. O. Pyo, M. H. Jang, Y. K. Kwon et al., "Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death," The Journal of Biological Chemistry, vol. 280, no. 21, pp. 20722-20729, 2005.
-
(2005)
The Journal of Biological Chemistry
, vol.280
, Issue.21
, pp. 20722-20729
-
-
Pyo, J.O.1
Jang, M.H.2
Kwon, Y.K.3
-
37
-
-
33645916698
-
Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations
-
S. Sarkar and D. C. Rubinsztein, "Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations," Autophagy, vol. 2, no. 2, pp. 132-134, 2006.
-
(2006)
Autophagy
, vol.2
, Issue.2
, pp. 132-134
-
-
Sarkar, S.1
Rubinsztein, D.C.2
-
38
-
-
34248994604
-
Small molecules enhance autophagy and reduce toxicity in Huntington's disease models
-
S. Sarkar, E. O. Perlstein, S. Imarisio et al., "Small molecules enhance autophagy and reduce toxicity in Huntington's disease models," Nature Chemical Biology, vol. 3, no. 6, pp. 331-338, 2007.
-
(2007)
Nature Chemical Biology
, vol.3
, Issue.6
, pp. 331-338
-
-
Sarkar, S.1
Perlstein, E.O.2
Imarisio, S.3
-
39
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation
-
N. Mizushima, "The role of the Atg1/ULK1 complex in autophagy regulation," Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132-139, 2010.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 132-139
-
-
Mizushima, N.1
-
40
-
-
37549012209
-
The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells
-
A. Ropolo, D. Grasso, R. Pardo et al., "The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells," Journal of Biological Chemistry, vol. 282, no. 51, pp. 37124-37133, 2007.
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.51
, pp. 37124-37133
-
-
Ropolo, A.1
Grasso, D.2
Pardo, R.3
-
41
-
-
79953144994
-
Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death
-
D. Grasso, A. Ropolo, A. Lo Ré et al., "Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death," Journal of Biological Chemistry, vol. 286, no. 10, pp. 8308-8324, 2011.
-
(2011)
Journal of Biological Chemistry
, vol.286
, Issue.10
, pp. 8308-8324
-
-
Grasso, D.1
Ropolo, A.2
Lo Ré, A.3
-
42
-
-
84864108090
-
Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells
-
A. E. Lo Ré, M. G. Fernández-Barrena, L. L. Almada et al., "Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells," The Journal of Biological Chemistry, vol. 287, no. 30, pp. 25325-25334, 2012.
-
(2012)
The Journal of Biological Chemistry
, vol.287
, Issue.30
, pp. 25325-25334
-
-
Lo Ré, A.E.1
Fernández-Barrena, M.G.2
Almada, L.L.3
-
43
-
-
84872799206
-
The VMP1-Beclin 1 interaction regulates autophagy induction
-
M. I. Molejon, A. Ropolo, A. L. Re, V. Boggio, and M. I. Vaccaro, "The VMP1-Beclin 1 interaction regulates autophagy induction," Scientific Reports, vol. 3, article 1055, 2013.
-
(2013)
Scientific Reports
, vol.3
-
-
Molejon, M.I.1
Ropolo, A.2
Re, A.L.3
Boggio, V.4
Vaccaro, M.I.5
-
44
-
-
77953713630
-
C. elegans screen identifies autophagy genes specific to multicellular organisms
-
Y. Tian, Z. Li, W. Hu et al., "C. elegans screen identifies autophagy genes specific to multicellular organisms," Cell, vol. 141, no. 6, pp. 1042-1055, 2010.
-
(2010)
Cell
, vol.141
, Issue.6
, pp. 1042-1055
-
-
Tian, Y.1
Li, Z.2
Hu, W.3
-
45
-
-
75149186608
-
Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1
-
J. Calvo-Garrido and R. Escalante, "Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1," Autophagy, vol. 6, no. 1, pp. 100-109, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.1
, pp. 100-109
-
-
Calvo-Garrido, J.1
Escalante, R.2
-
46
-
-
77951476722
-
Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells
-
R. Pardo, A. Lo Ré, C. Archange et al., "Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells," Pancreatology, vol. 10, no. 1, pp. 19-26, 2010.
-
(2010)
Pancreatology
, vol.10
, Issue.1
, pp. 19-26
-
-
Pardo, R.1
Lo Ré, A.2
Archange, C.3
-
47
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, "Autophagy fights disease through cellular self-digestion," Nature, vol. 451, no. 7182, pp. 1069-1075, 2008.
-
(2008)
Nature
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
48
-
-
48249156591
-
Autophagy: An emerging target for cancer therapy
-
M. Høyer-Hansen and M. Jäättelä, "Autophagy: an emerging target for cancer therapy," Autophagy, vol. 4, pp. 574-580, 2008.
-
(2008)
Autophagy
, vol.4
, pp. 574-580
-
-
Høyer-Hansen, M.1
Jäättelä, M.2
-
49
-
-
0036036626
-
Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas: Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation
-
S. Tóth, K. Nagy, Z. Pálfia, and G. Réz, "Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas: up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation," Cell and Tissue Research, vol. 309, no. 3, pp. 409-416, 2002.
-
(2002)
Cell and Tissue Research
, vol.309
, Issue.3
, pp. 409-416
-
-
Tóth, S.1
Nagy, K.2
Pálfia, Z.3
Réz, G.4
-
50
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
X. Qu, J. Yu, G. Bhagat et al., "Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene," Journal of Clinical Investigation, vol. 112, no. 12, pp. 1809-1820, 2003.
-
(2003)
Journal of Clinical Investigation
, vol.112
, Issue.12
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
-
51
-
-
34147193472
-
Cell biology: Autophagy and cancer
-
B. Levine, "Cell biology: autophagy and cancer," Nature, vol. 446, pp. 745-747, 2007.
-
(2007)
Nature
, vol.446
, pp. 745-747
-
-
Levine, B.1
-
52
-
-
36448943299
-
Role of autophagy in cancer
-
R. Mathew, V. Karantza-Wadsworth, and E. White, "Role of autophagy in cancer," Nature Reviews Cancer, vol. 7, no. 12, pp. 961-967, 2007.
-
(2007)
Nature Reviews Cancer
, vol.7
, Issue.12
, pp. 961-967
-
-
Mathew, R.1
Karantza-Wadsworth, V.2
White, E.3
-
53
-
-
33644643603
-
Oxidative stress and autophagy
-
R. Kiffin, U. Bandyopadhyay, and A. M. Cuervo, "Oxidative stress and autophagy," Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 152-162, 2006.
-
(2006)
Antioxidants and Redox Signaling
, vol.8
, Issue.1-2
, pp. 152-162
-
-
Kiffin, R.1
Bandyopadhyay, U.2
Cuervo, A.M.3
-
54
-
-
80052589806
-
High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress
-
D. Tang, R. Kang, K. M. Livesey, H. J. Zeh III, and M. T. Lotze, "High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress," Antioxidants & Redox Signaling, vol. 15, no. 8, pp. 2185-2195, 2011.
-
(2011)
Antioxidants & Redox Signaling
, vol.15
, Issue.8
, pp. 2185-2195
-
-
Tang, D.1
Kang, R.2
Livesey, K.M.3
Zeh, H.J.4
Lotze, M.T.5
-
55
-
-
77956386515
-
Endogenous HMGB1 regulates autophagy
-
D. Tang, R. Kang, K. M. Livesey et al., "Endogenous HMGB1 regulates autophagy," Journal of Cell Biology, vol. 190, no. 5, pp. 881-892, 2010.
-
(2010)
Journal of Cell Biology
, vol.190
, Issue.5
, pp. 881-892
-
-
Tang, D.1
Kang, R.2
Livesey, K.M.3
-
56
-
-
80052590666
-
The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury
-
R. Kang, D. Tang, K. M. Livesey, N. E. Schapiro, M. T. Lotze, and H. J. Zeh, "The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury," Antioxidants and Redox Signaling, vol. 15, no. 8, pp. 2175-2184, 2011.
-
(2011)
Antioxidants and Redox Signaling
, vol.15
, Issue.8
, pp. 2175-2184
-
-
Kang, R.1
Tang, D.2
Livesey, K.M.3
Schapiro, N.E.4
Lotze, M.T.5
Zeh, H.J.6
-
57
-
-
74549157124
-
Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer
-
J. Du, S. M. Martin, M. Levine et al., "Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer," Clinical Cancer Research, vol. 16, no. 2, pp. 509-520, 2010.
-
(2010)
Clinical Cancer Research
, vol.16
, Issue.2
, pp. 509-520
-
-
Du, J.1
Martin, S.M.2
Levine, M.3
-
58
-
-
79959956124
-
Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism
-
M. Donadelli, I. Dando, T. Zaniboni et al., "Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism," Cell Death and Disease, vol. 2, no. 4, article e152, 2011.
-
(2011)
Cell Death and Disease
, vol.2
, Issue.4
-
-
Donadelli, M.1
Dando, I.2
Zaniboni, T.3
-
59
-
-
3042561471
-
Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model
-
P. Büchler, H. A. Reber, R. S. Lavey et al., "Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model," Journal of Surgical Research, vol. 120, no. 2, pp. 295-303, 2004.
-
(2004)
Journal of Surgical Research
, vol.120
, Issue.2
, pp. 295-303
-
-
Büchler, P.1
Reber, H.A.2
Lavey, R.S.3
-
60
-
-
0034327361
-
Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy
-
K. Izuishi, K. Kato, T. Ogura, T. Kinoshita, and H. Esumi, "Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy," Cancer Research, vol. 60, no. 21, pp. 6201-6207, 2000.
-
(2000)
Cancer Research
, vol.60
, Issue.21
, pp. 6201-6207
-
-
Izuishi, K.1
Kato, K.2
Ogura, T.3
Kinoshita, T.4
Esumi, H.5
-
61
-
-
0037031895
-
Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5′-AMP-activated protein kinase-dependent manner
-
H. Esumi, K. Izuishi, K. Kato et al., "Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5′-AMP-activated protein kinase-dependent manner," Journal of Biological Chemistry, vol. 277, no. 36, pp. 32791-32798, 2002.
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.36
, pp. 32791-32798
-
-
Esumi, H.1
Izuishi, K.2
Kato, K.3
-
62
-
-
50149095124
-
Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome
-
S. Fujii, S. Mitsunaga, M. Yamazaki et al., "Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome," Cancer Science, vol. 99, no. 9, pp. 1813-1819, 2008.
-
(2008)
Cancer Science
, vol.99
, Issue.9
, pp. 1813-1819
-
-
Fujii, S.1
Mitsunaga, S.2
Yamazaki, M.3
-
63
-
-
45849100530
-
Inflaming gastrointestinal oncogenic programming
-
D. G. DeNardo, M. Johansson, and L. M. Coussens, "Inflaming gastrointestinal oncogenic programming," Cancer Cell, vol. 14, no. 1, pp. 7-9, 2008.
-
(2008)
Cancer Cell
, vol.14
, Issue.1
, pp. 7-9
-
-
DeNardo, D.G.1
Johansson, M.2
Coussens, L.M.3
-
64
-
-
44449097168
-
AGE-RAGE systemand carcinogenesis
-
R. Abe and S. Yamagishi, "AGE-RAGE systemand carcinogenesis," Current Pharmaceutical Design, vol. 14, no. 10, pp. 940-945, 2008.
-
(2008)
Current Pharmaceutical Design
, vol.14
, Issue.10
, pp. 940-945
-
-
Abe, R.1
Yamagishi, S.2
-
65
-
-
23044491967
-
S100P promotes pancreatic cancer growth, survival, and invasion
-
T. Arumugam, D. M. Simeone, K. Van Golen, and C. D. Logsdon, "S100P promotes pancreatic cancer growth, survival, and invasion," Clinical Cancer Research, vol. 11, no. 15, pp. 5356-5364, 2005.
-
(2005)
Clinical Cancer Research
, vol.11
, Issue.15
, pp. 5356-5364
-
-
Arumugam, T.1
Simeone, D.M.2
Van Golen, K.3
Logsdon, C.D.4
-
66
-
-
77949542302
-
The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival
-
R. Kang, D. Tang, N. E. Schapiro et al., "The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival," Cell Death and Differentiation, vol. 17, no. 4, pp. 666-676, 2010.
-
(2010)
Cell Death and Differentiation
, vol.17
, Issue.4
, pp. 666-676
-
-
Kang, R.1
Tang, D.2
Schapiro, N.E.3
-
67
-
-
0345708353
-
The mammalian basic helix-loop-helix/PAS family of transcriptional regulators
-
R. J. Kewley, M. L. Whitelaw, and A. Chapman-Smith, "The mammalian basic helix-loop-helix/PAS family of transcriptional regulators," The International Journal of Biochemistry & Cell Biology, vol. 36, no. 2, pp. 189-204, 2004.
-
(2004)
The International Journal of Biochemistry & Cell Biology
, vol.36
, Issue.2
, pp. 189-204
-
-
Kewley, R.J.1
Whitelaw, M.L.2
Chapman-Smith, A.3
-
68
-
-
38949119423
-
Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
-
M. B. Azad, Y. Chen, E. S. Henson et al., "Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3," Autophagy, vol. 4, no. 2, pp. 195-204, 2008.
-
(2008)
Autophagy
, vol.4
, Issue.2
, pp. 195-204
-
-
Azad, M.B.1
Chen, Y.2
Henson, E.S.3
-
69
-
-
62849105988
-
The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death
-
T. R. Burton and S. B. Gibson, "The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death," Cell Death and Differentiation, vol. 16, no. 4, pp. 515-523, 2009.
-
(2009)
Cell Death and Differentiation
, vol.16
, Issue.4
, pp. 515-523
-
-
Burton, T.R.1
Gibson, S.B.2
-
70
-
-
3442888541
-
Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer
-
J. Okami, D. M. Simeone, and C. D. Logsdon, "Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer," Cancer Research, vol. 64, no. 15, pp. 5338-5346, 2004.
-
(2004)
Cancer Research
, vol.64
, Issue.15
, pp. 5338-5346
-
-
Okami, J.1
Simeone, D.M.2
Logsdon, C.D.3
-
71
-
-
34547120221
-
S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer
-
P. C. Mahon, P. Baril, V. Bhakta et al., "S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer," Cancer Research, vol. 67, no. 14, pp. 6786-6795, 2007.
-
(2007)
Cancer Research
, vol.67
, Issue.14
, pp. 6786-6795
-
-
Mahon, P.C.1
Baril, P.2
Bhakta, V.3
-
72
-
-
20444437669
-
Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death
-
T. Abe, M. Toyota, H. Suzuki et al., "Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death," Journal of Gastroenterology, vol. 40, no. 5, pp. 504-510, 2005.
-
(2005)
Journal of Gastroenterology
, vol.40
, Issue.5
, pp. 504-510
-
-
Abe, T.1
Toyota, M.2
Suzuki, H.3
-
73
-
-
0035661648
-
Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
-
J. Guan, P. E. Stromhaug, M. D. George et al., "Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris," Molecular Biology of the Cell, vol. 12, no. 12, pp. 3821-3838, 2001.
-
(2001)
Molecular Biology of the Cell
, vol.12
, Issue.12
, pp. 3821-3838
-
-
Guan, J.1
Stromhaug, P.E.2
George, M.D.3
-
74
-
-
11244289333
-
WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy
-
T. Proikas-Cezanne, S. Waddell, A. Gaugel, T. Frickey, A. Lupas, and A. Nordheim, "WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy," Oncogene, vol. 23, no. 58, pp. 9314-9325, 2004.
-
(2004)
Oncogene
, vol.23
, Issue.58
, pp. 9314-9325
-
-
Proikas-Cezanne, T.1
Waddell, S.2
Gaugel, A.3
Frickey, T.4
Lupas, A.5
Nordheim, A.6
-
75
-
-
12444279265
-
On the origin of cancer cells
-
O. Warburg, "On the origin of cancer cells," Science, vol. 123, no. 3191, pp. 309-314, 1956.
-
(1956)
Science
, vol.123
, Issue.3191
, pp. 309-314
-
-
Warburg, O.1
-
76
-
-
0004026407
-
-
chapter 14, WH Freeman and Co., New York, NY, USA
-
D. Nelson and D. Cox, Lehninger Principles of Biochemistry, chapter 14, WH Freeman and Co., New York, NY, USA, 2008.
-
(2008)
Lehninger Principles of Biochemistry
-
-
Nelson, D.1
Cox, D.2
-
77
-
-
35448982216
-
Hypoxia, glucose metabolism and the Warburg's effect
-
R. Bartrons and J. Caro, "Hypoxia, glucose metabolism and the Warburg's effect," Journal of Bioenergetics and Biomembranes, vol. 39, no. 3, pp. 223-229, 2007.
-
(2007)
Journal of Bioenergetics and Biomembranes
, vol.39
, Issue.3
, pp. 223-229
-
-
Bartrons, R.1
Caro, J.2
-
78
-
-
77649187905
-
The Warburg effect and mitochondrial stability in cancer cells
-
V. Gogvadze, B. Zhivotovsky, and S. Orrenius, "The Warburg effect and mitochondrial stability in cancer cells," Molecular Aspects of Medicine, vol. 31, no. 1, pp. 60-74, 2010.
-
(2010)
Molecular Aspects of Medicine
, vol.31
, Issue.1
, pp. 60-74
-
-
Gogvadze, V.1
Zhivotovsky, B.2
Orrenius, S.3
-
79
-
-
83455228966
-
Cancer: A de-repression of a default survival program common to all cells?
-
M. Vincent, "Cancer: a de-repression of a default survival program common to all cells?" BioEssays, vol. 34, no. 1, pp. 72-82, 2012.
-
(2012)
BioEssays
, vol.34
, Issue.1
, pp. 72-82
-
-
Vincent, M.1
-
80
-
-
84861964103
-
New aspects of the Warburg effect in cancer cell biology
-
S. J. Bensinger and H. R. Christofk, "New aspects of the Warburg effect in cancer cell biology," Seminars in Cell and Developmental Biology, vol. 23, no. 4, pp. 352-361, 2012.
-
(2012)
Seminars in Cell and Developmental Biology
, vol.23
, Issue.4
, pp. 352-361
-
-
Bensinger, S.J.1
Christofk, H.R.2
-
81
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
K. Bensaad, A. Tsuruta, M. A. Selak et al., "TIGAR, a p53-inducible regulator of glycolysis and apoptosis," Cell, vol. 126, no. 1, pp. 107-120, 2006.
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
-
82
-
-
84859261025
-
Mouse genetics suggests cell-context dependency for myc-regulated metabolic enzymes during tumorigenesis
-
L. M. Nilsson, T. Z. Plym Forshell, S. Rimpi et al., "Mouse genetics suggests cell-context dependency for myc-regulated metabolic enzymes during tumorigenesis," PLoS Genetics, vol. 8, no. 3, Article ID e1002573, 2012.
-
(2012)
PLoS Genetics
, vol.8
, Issue.3
-
-
Nilsson, L.M.1
Plym Forshell, T.Z.2
Rimpi, S.3
-
83
-
-
77954165461
-
Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors
-
U. E. Martinez-Outschoorn, S. Pavlides, D. Whitaker-Menezes et al., "Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors," Cell Cycle, vol. 9, no. 12, pp. 2423-2433, 2010.
-
(2010)
Cell Cycle
, vol.9
, Issue.12
, pp. 2423-2433
-
-
Martinez-Outschoorn, U.E.1
Pavlides, S.2
Whitaker-Menezes, D.3
-
84
-
-
77957138161
-
Understanding the "lethal" drivers of tumor-stroma coevolution: Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment
-
M. P. Lisanti, U. E. Martinez-Outschoorn, B. Chiavarina et al., "Understanding the "lethal" drivers of tumor-stroma coevolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment," Cancer Biology and Therapy, vol. 10, no. 6, pp. 537-542, 2010.
-
(2010)
Cancer Biology and Therapy
, vol.10
, Issue.6
, pp. 537-542
-
-
Lisanti, M.P.1
Martinez-Outschoorn, U.E.2
Chiavarina, B.3
-
85
-
-
84873448216
-
A report of the James Watson lecture at Yale University
-
T. Smith-Vikos, "A report of the James Watson lecture at Yale University," The Yale Journal of Biology and Medicine, vol. 85, no. 3, pp. 417-419, 2012.
-
(2012)
The Yale Journal of Biology and Medicine
, vol.85
, Issue.3
, pp. 417-419
-
-
Smith-Vikos, T.1
-
86
-
-
84857975015
-
Metformin: Multi-faceted protection against cancer
-
S. del Barco, A. Vazquez-Martin, S. Cufí et al., "Metformin: multi-faceted protection against cancer," Oncotarget, vol. 2, no. 12, pp. 896-917, 2011.
-
(2011)
Oncotarget
, vol.2
, Issue.12
, pp. 896-917
-
-
Del Barco, S.1
Vazquez-Martin, A.2
Cufí, S.3
-
87
-
-
84055199818
-
Pyruvate kinase expression (PKM1 and PKM2) in cancer associated fibroblasts drives stromal nutrient production and tumor growth
-
B. Chiavarina, D. Whitaker-Menezes, U. E. Martinez-Outschoorn et al., "Pyruvate kinase expression (PKM1 and PKM2) in cancer associated fibroblasts drives stromal nutrient production and tumor growth," Cancer Biology and Therapy, vol. 12,no. 12, pp. 1101-1113, 2011.
-
(2011)
Cancer Biology and Therapy
, vol.12
, Issue.12
, pp. 1101-1113
-
-
Chiavarina, B.1
Whitaker-Menezes, D.2
Martinez-Outschoorn, U.E.3
-
88
-
-
84873624215
-
+-ATP synthase and the lipogenic switch: New core components of metabolic reprogramming in induced pluripotent stem (iPS) cells
-
+-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells," Cell Cycle, vol. 12, no. 2, pp. 207-218, 2013.
-
(2013)
Cell Cycle
, vol.12
, Issue.2
, pp. 207-218
-
-
Vazquez-Martin, A.1
Corominas-Faja, B.2
Cufi, S.3
-
89
-
-
84862014301
-
Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment
-
V. Rausch, L. Liu, A. Apel et al., "Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment," The Journal of Pathology, vol. 227, no. 3,pp. 325-335, 2012.
-
(2012)
The Journal of Pathology
, vol.227
, Issue.3
, pp. 325-335
-
-
Rausch, V.1
Liu, L.2
Apel, A.3
-
90
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
R. K. Amaravadi, J. Lippincott-Schwartz, X. Yin et al., "Principles and current strategies for targeting autophagy for cancer treatment," Clinical Cancer Research, vol. 17, no. 4, pp. 654-666, 2011.
-
(2011)
Clinical Cancer Research
, vol.17
, Issue.4
, pp. 654-666
-
-
Amaravadi, R.K.1
Lippincott-Schwartz, J.2
Yin, X.3
-
91
-
-
84883613147
-
Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype
-
J. Choi, H. Kim do, W. H. Jung, and J. S. Koo, "Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype," Breast Cancer Research, vol. 15, no. 5, article R78, 2013.
-
(2013)
Breast Cancer Research
, vol.15
, Issue.5
-
-
Choi, J.1
Kim Do, H.2
Jung, W.H.3
Koo, J.S.4
-
92
-
-
84859562694
-
Targeting autophagy addiction in cancer
-
J. D. Mancias and A. C. Kimmelman, "Targeting autophagy addiction in cancer," Oncotarget, vol. 2, no. 12, pp. 1302-1306, 2011.
-
(2011)
Oncotarget
, vol.2
, Issue.12
, pp. 1302-1306
-
-
Mancias, J.D.1
Kimmelman, A.C.2
-
93
-
-
54949098894
-
Nucleoside analogs: Molecular mechanisms signaling cell death
-
B. Ewald, D. Sampath, and W. Plunkett, "Nucleoside analogs: molecular mechanisms signaling cell death," Oncogene, vol. 27, no. 50, pp. 6522-6537, 2008.
-
(2008)
Oncogene
, vol.27
, Issue.50
, pp. 6522-6537
-
-
Ewald, B.1
Sampath, D.2
Plunkett, W.3
-
94
-
-
0036632368
-
The phosphatidylinositol 3-kinase-AKT pathway in human cancer
-
I. Vivanco and C. L. Sawyers, "The phosphatidylinositol 3-kinase-AKT pathway in human cancer," Nature Reviews Cancer, vol. 2, no. 7, pp. 489-501, 2002.
-
(2002)
Nature Reviews Cancer
, vol.2
, Issue.7
, pp. 489-501
-
-
Vivanco, I.1
Sawyers, C.L.2
-
95
-
-
77955661981
-
Efficacy and tolerability of limited field radiotherapy with concurrent capecitabine in local advanced pancreatic cancer
-
A. S. N. Jackson, P. Jain, G. R. Watkins et al., "Efficacy and tolerability of limited field radiotherapy with concurrent capecitabine in local advanced pancreatic cancer," Clinical Oncology, vol. 22, no. 7, pp. 570-577, 2010.
-
(2010)
Clinical Oncology
, vol.22
, Issue.7
, pp. 570-577
-
-
Jackson, A.S.N.1
Jain, P.2
Watkins, G.R.3
-
96
-
-
77958056938
-
Challenges of drug resistance in the management of pancreatic cancer
-
R. Sheikh, N. Walsh, M. Clynes, R. O'connor, and R. McDermott, "Challenges of drug resistance in the management of pancreatic cancer," Expert Review of Anticancer Therapy, vol. 10, no. 10, pp. 1647-1661, 2010.
-
(2010)
Expert Review of Anticancer Therapy
, vol.10
, Issue.10
, pp. 1647-1661
-
-
Sheikh, R.1
Walsh, N.2
Clynes, M.3
O'Connor, R.4
McDermott, R.5
-
97
-
-
77954771890
-
Randomized phase III trial comparing FOLFIRINOX (F: 5FU/leucovorin [LV], irinotecan [I], and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA): Preplanned interim analysis results of the PRODIGE 4/ACCORD 11 trial
-
abstract 4010
-
T. Conroy, F. Desseigne, M. Ychoy et al., "Randomized phase III trial comparing FOLFIRINOX (F: 5FU/leucovorin [LV], irinotecan [I], and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA): preplanned interim analysis results of the PRODIGE 4/ACCORD 11 trial," Journal of Clinical Oncology, vol. 28, supplement 15s, abstract 4010, 2010.
-
(2010)
Journal of Clinical Oncology
, vol.28
-
-
Conroy, T.1
Desseigne, F.2
Ychoy, M.3
-
98
-
-
79953688703
-
Use of irinotecan for treatment of small cell carcinoma of the prostate
-
W. Tung, Y. Wang, P. W. Gout, D. M. Liu, and M. Gleave, "Use of irinotecan for treatment of small cell carcinoma of the prostate," Prostate, vol. 71, no. 7, pp. 675-681, 2011.
-
(2011)
Prostate
, vol.71
, Issue.7
, pp. 675-681
-
-
Tung, W.1
Wang, Y.2
Gout, P.W.3
Liu, D.M.4
Gleave, M.5
-
99
-
-
84907387158
-
Modulating autophagy and the 'reverse warburg effect'
-
S. Kanner, Ed., Springer, New York, NY, USA
-
M. I. Vaccaro, C. D. Gonzalez, S. Alvarez, and A. Ropolo, "Modulating autophagy and the 'reverse warburg effect'," in Tumor Metabolome Targeting and Drug Development, Cancer Drug Discovery and Development, S. Kanner, Ed., Springer, New York, NY, USA, 2014.
-
(2014)
Tumor Metabolome Targeting and Drug Development, Cancer Drug Discovery and Development
-
-
Vaccaro, M.I.1
Gonzalez, C.D.2
Alvarez, S.3
Ropolo, A.4
|