-
1
-
-
34247186766
-
Animal models of human disease: zebrafish swim into view
-
Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007;8:353-67.
-
(2007)
Nat Rev Genet
, vol.8
, pp. 353-367
-
-
Lieschke, G.J.1
Currie, P.D.2
-
2
-
-
0028387996
-
Largescale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate
-
Mullins MC, Hammerschmidt M, Haffter P, et al. Largescale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 1994;4:189-202.
-
(1994)
Curr Biol
, vol.4
, pp. 189-202
-
-
Mullins, M.C.1
Hammerschmidt, M.2
Haffter, P.3
-
3
-
-
0035657098
-
The art and design of genetic screens: zebrafish
-
Patton EE, Zon LI. The art and design of genetic screens: zebrafish. Nat Rev Genet 2001;2:956-66.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 956-966
-
-
Patton, E.E.1
Zon, L.I.2
-
4
-
-
84877931272
-
Zebrafish as a genetic model in pre-clinical drug testing and screening
-
Gibert Y, Trengove MC, Ward AC. Zebrafish as a genetic model in pre-clinical drug testing and screening. Curr Med Chem 2013;20:2458-66.
-
(2013)
Curr Med Chem
, vol.20
, pp. 2458-2466
-
-
Gibert, Y.1
Trengove, M.C.2
Ward, A.C.3
-
5
-
-
65349149376
-
A primer for morpholino use in zebrafish
-
Bill BR, Petzold AM, Clark KJ, et al. A primer for morpholino use in zebrafish. Zebrafish 2009;6:69-77.
-
(2009)
Zebrafish
, vol.6
, pp. 69-77
-
-
Bill, B.R.1
Petzold, A.M.2
Clark, K.J.3
-
6
-
-
80052786773
-
High-throughput target-selected gene inactivation in zebrafish
-
Kettleborough RN, Bruijn E, Eeden F, et al. High-throughput target-selected gene inactivation in zebrafish. Methods Cell Biol 2011;104:121-7.
-
(2011)
Methods Cell Biol
, vol.104
, pp. 121-127
-
-
Kettleborough, R.N.1
Bruijn, E.2
Eeden, F.3
-
7
-
-
59249098600
-
Manipulation of gene expression during zebrafish embryonic development using transient approaches
-
Hogan BM, Verkade H, Lieschke GJ, et al. Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods Mol Biol 2008;469: 273-300.
-
(2008)
Methods Mol Biol
, vol.469
, pp. 273-300
-
-
Hogan, B.M.1
Verkade, H.2
Lieschke, G.J.3
-
8
-
-
80052809389
-
Advanced zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments
-
Mosimann C, Zon LI. Advanced zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol 2011;104:173-94.
-
(2011)
Methods Cell Biol
, vol.104
, pp. 173-194
-
-
Mosimann, C.1
Zon, L.I.2
-
9
-
-
34447319080
-
An improved zinc-finger nuclease architecture for highly specific genome editing
-
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007;25:778-85.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 778-785
-
-
Miller, J.C.1
Holmes, M.C.2
Wang, J.3
-
10
-
-
0038523969
-
Chimeric nucleases stimulate gene targeting in human cells
-
Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science 2003;300:763.
-
(2003)
Science
, vol.300
, pp. 763
-
-
Porteus, M.H.1
Baltimore, D.2
-
11
-
-
78951479577
-
Targeting DNA doublestrand breaks with TAL effector nucleases
-
Christian M, Cermak T, Doyle EL, et al. Targeting DNA doublestrand breaks with TAL effector nucleases. Genetics 2010;186:757-61.
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
Cermak, T.2
Doyle, E.L.3
-
12
-
-
79960558872
-
Targeted genome editing across species using ZFNs and TALENs
-
Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science 2011;333:307.
-
(2011)
Science
, vol.333
, pp. 307
-
-
Wood, A.J.1
Lo, T.W.2
Zeitler, B.3
-
13
-
-
84866072998
-
Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs
-
Cade L, Reyon D, Hwang WY, et al. Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs. Nucleic Acids Res 2012;40:8001-10.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 8001-8010
-
-
Cade, L.1
Reyon, D.2
Hwang, W.Y.3
-
14
-
-
77957935381
-
CRISPR/Cas system and its role in phage-bacteria interactions
-
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Ann Rev Microbio 2010;64:475-93.
-
(2010)
Ann Rev Microbio
, vol.64
, pp. 475-493
-
-
Deveau, H.1
Garneau, J.E.2
Moineau, S.3
-
15
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010;327:167-70.
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
16
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227-9.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
-
17
-
-
0030032063
-
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
-
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996;93:1156-60.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
19
-
-
44949155482
-
Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases
-
Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008;26:702-8.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 702-708
-
-
Doyon, Y.1
McCammon, J.M.2
Miller, J.C.3
-
20
-
-
44949162060
-
Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases
-
Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008;26:695-701.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 695-701
-
-
Meng, X.1
Noyes, M.B.2
Zhu, L.J.3
-
21
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010;11:636-46.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
-
22
-
-
84879264708
-
ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering
-
Gaj T, Gersbach CA, Barbas CF, III. ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends Biotech 2013;31:397-405.
-
(2013)
Trends Biotech
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
23
-
-
80052926619
-
Inducing high rates of targeted mutagenesis in zebrafish using Zinc Finger Nucleases (ZFNs)
-
McCammon JM, Doyon Y, Amacher SL. Inducing high rates of targeted mutagenesis in zebrafish using Zinc Finger Nucleases (ZFNs). Meth Mol Biol 2011;770:505-27.
-
(2011)
Meth Mol Biol
, vol.770
, pp. 505-527
-
-
McCammon, J.M.1
Doyon, Y.2
Amacher, S.L.3
-
24
-
-
34347265280
-
Design, construction and in vitro testing of zinc finger nucleases
-
Carroll D, Morton JJ, Beumer KJ, et al. Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 2006;1:1329-41.
-
(2006)
Nat Protoc
, vol.1
, pp. 1329-1341
-
-
Carroll, D.1
Morton, J.J.2
Beumer, K.J.3
-
25
-
-
84874344182
-
Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs
-
Sood R, Carrington B, Bishop K, et al. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs. PLoS One 2013;8:e57239.
-
(2013)
PLoS One
, vol.8
-
-
Sood, R.1
Carrington, B.2
Bishop, K.3
-
26
-
-
77954295352
-
ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool
-
Sander JD, Maeder ML, Reyon D, et al. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 2010;38:W462-8.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. W462-W468
-
-
Sander, J.D.1
Maeder, M.L.2
Reyon, D.3
-
27
-
-
78650863981
-
Selection-free zincfinger-nuclease engineering by context-dependent assembly (CoDA)
-
Sander JD, Dahlborg EJ, Goodwin MJ, et al. Selection-free zincfinger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 2011;8:67-9.
-
(2011)
Nat Methods
, vol.8
, pp. 67-69
-
-
Sander, J.D.1
Dahlborg, E.J.2
Goodwin, M.J.3
-
28
-
-
70349146995
-
Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays
-
Maeder ML, Thibodeau-Beganny S, Sander JD, et al. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 2009;4:1471-501.
-
(2009)
Nat Protoc
, vol.4
, pp. 1471-1501
-
-
Maeder, M.L.1
Thibodeau-Beganny, S.2
Sander, J.D.3
-
29
-
-
80053069040
-
Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish
-
Zhu C, Smith T, McNulty J, et al. Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development 2011;138:4555-64.
-
(2011)
Development
, vol.138
, pp. 4555-4564
-
-
Zhu, C.1
Smith, T.2
McNulty, J.3
-
30
-
-
84904008863
-
Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function
-
Liu Y, Kretz CA, Maeder ML, et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood 2014;124:142-50.
-
(2014)
Blood
, vol.124
, pp. 142-150
-
-
Liu, Y.1
Kretz, C.A.2
Maeder, M.L.3
-
31
-
-
42949083192
-
Unexpected failure rates for modular assembly of engineered zinc fingers
-
Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 2008;5:374-5.
-
(2008)
Nat Methods
, vol.5
, pp. 374-375
-
-
Ramirez, C.L.1
Foley, J.E.2
Wright, D.A.3
-
33
-
-
74949084393
-
Targeted mutagenesis in zebrafish using customized zinc-finger nucleases
-
Foley JE, Maeder ML, Pearlberg J, et al. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 2009;4:1855-67.
-
(2009)
Nat Protoc
, vol.4
, pp. 1855-1867
-
-
Foley, J.E.1
Maeder, M.L.2
Pearlberg, J.3
-
34
-
-
84871519181
-
TALENs: a widely applicable technology for targeted genome editing
-
Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2012;14:49-55.
-
(2012)
Nat Rev Mol Cell Biol
, vol.14
, pp. 49-55
-
-
Joung, J.K.1
Sander, J.D.2
-
35
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009;326:1509-12.
-
(2009)
Science
, vol.326
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
-
36
-
-
80053343092
-
TAL effectors: customizable proteins for DNA targeting
-
Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science 2011;333:1843-6.
-
(2011)
Science
, vol.333
, pp. 1843-1846
-
-
Bogdanove, A.J.1
Voytas, D.F.2
-
37
-
-
84857032466
-
Structural basis for sequencespecific recognition of DNA by TAL effectors
-
Deng D, Yan C, Pan X, et al. Structural basis for sequencespecific recognition of DNA by TAL effectors. Science 2012;335:720-3.
-
(2012)
Science
, vol.335
, pp. 720-723
-
-
Deng, D.1
Yan, C.2
Pan, X.3
-
38
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011;29:143-8.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
Tan, S.2
Qiao, G.3
-
39
-
-
84868342049
-
In vivo genome editing using a high-efficiency TALEN system
-
Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012;491:114-18.
-
(2012)
Nature
, vol.491
, pp. 114-118
-
-
Bedell, V.M.1
Wang, Y.2
Campbell, J.M.3
-
40
-
-
84864475122
-
TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
-
Doyle EL, Booher NJ, Standage DS, et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 2012;40:W117-22.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. W117-W122
-
-
Doyle, E.L.1
Booher, N.J.2
Standage, D.S.3
-
41
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting
-
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting. Nucleic Acids Res 2011;39:e82.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Cermak, T.1
Doyle, E.L.2
Christian, M.3
-
42
-
-
84889597147
-
Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity
-
Sakuma T, Ochiai H, Kaneko T, et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 2013;3:3379.
-
(2013)
Sci Rep
, vol.3
, pp. 3379
-
-
Sakuma, T.1
Ochiai, H.2
Kaneko, T.3
-
43
-
-
79961192836
-
Targeted gene disruption in somatic zebrafish cells using engineered TALENs
-
Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011;29:697-8.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 697-698
-
-
Sander, J.D.1
Cade, L.2
Khayter, C.3
-
44
-
-
79961185942
-
Heritable gene targeting in zebrafish using customized TALENs
-
Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011;29:699-700.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 699-700
-
-
Huang, P.1
Xiao, A.2
Zhou, M.3
-
45
-
-
84875712361
-
TALEN-mediated precise genome modification by homologous recombination in zebrafish
-
Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 2013;10:329-31.
-
(2013)
Nat Methods
, vol.10
, pp. 329-331
-
-
Zu, Y.1
Tong, X.2
Wang, Z.3
-
46
-
-
84915750077
-
TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development
-
Tatsumi Y, Takeda M, Matsuda M, et al. TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development. FEBS Lett 2014;588:4543-50.
-
(2014)
FEBS Lett
, vol.588
, pp. 4543-4550
-
-
Tatsumi, Y.1
Takeda, M.2
Matsuda, M.3
-
47
-
-
84866156176
-
Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome
-
Dahlem TJ, Hoshijima K, Jurynec MJ, et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 2012;8:e1002861.
-
(2012)
PLoS Genet
, vol.8
-
-
Dahlem, T.J.1
Hoshijima, K.2
Jurynec, M.J.3
-
48
-
-
80053039555
-
A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
-
Mussolino C, Morbitzer R, Lutge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucl Acids Res 2011;39:9283-93.
-
(2011)
Nucl Acids Res
, vol.39
, pp. 9283-9293
-
-
Mussolino, C.1
Morbitzer, R.2
Lutge, F.3
-
49
-
-
84915776623
-
A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles
-
Talbot JC, Amacher SL. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 2014;11:583-5.
-
(2014)
Zebrafish
, vol.11
, pp. 583-585
-
-
Talbot, J.C.1
Amacher, S.L.2
-
50
-
-
84876278422
-
The CRISPR system-keeping zebrafish gene targeting fresh
-
Blackburn PR, Campbell JM, Clark KJ, et al. The CRISPR system-keeping zebrafish gene targeting fresh. Zebrafish 2013;10:116-18.
-
(2013)
Zebrafish
, vol.10
, pp. 116-118
-
-
Blackburn, P.R.1
Campbell, J.M.2
Clark, K.J.3
-
51
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010;468:67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
-
52
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012;109:E2579-E86.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
-
53
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
-
54
-
-
84925351121
-
A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish
-
Ablain J, Durand EM, Yang S, et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 2015;32:756-64.
-
(2015)
Dev Cell
, vol.32
, pp. 756-764
-
-
Ablain, J.1
Durand, E.M.2
Yang, S.3
-
55
-
-
84882788354
-
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
-
Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 2013;110:13904-9.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13904-13909
-
-
Jao, L.E.1
Wente, S.R.2
Chen, W.3
-
56
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281-308.
-
(2013)
Nat Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
-
57
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347-55.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
58
-
-
54849404458
-
MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
-
McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 2008;24:529-38.
-
(2008)
Trends Genet
, vol.24
, pp. 529-538
-
-
McVey, M.1
Lee, S.E.2
-
59
-
-
84903516238
-
Microhomology-based choice of Cas9 nuclease target sites
-
Bae S, Kweon J, Kim HS, et al. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 2014;11:705-6.
-
(2014)
Nat Methods
, vol.11
, pp. 705-706
-
-
Bae, S.1
Kweon, J.2
Kim, H.S.3
-
60
-
-
84891722219
-
Highly efficient CRISPR/ Cas9-mediated knock-in in zebrafish by homologyindependent DNA repair
-
Auer TO, Duroure K, De Cian A, et al. Highly efficient CRISPR/ Cas9-mediated knock-in in zebrafish by homologyindependent DNA repair. Genome Res 2014;24:142-53.
-
(2014)
Genome Res
, vol.24
, pp. 142-153
-
-
Auer, T.O.1
Duroure, K.2
De Cian, A.3
-
62
-
-
84911465736
-
CRISPR/Cas9-mediated conversion of eGFP-into Gal4-transgenic lines in zebrafish
-
Auer TO, Duroure K, Concordet JP, et al. CRISPR/Cas9-mediated conversion of eGFP-into Gal4-transgenic lines in zebrafish. Nat Protoc 2014;9:2823-40.
-
(2014)
Nat Protoc
, vol.9
, pp. 2823-2840
-
-
Auer, T.O.1
Duroure, K.2
Concordet, J.P.3
-
64
-
-
77955803979
-
Application of high-resolution melting to large-scale, high-throughput SNP genotyping: a comparison with the TaqMan method
-
Martino A, Mancuso T, Rossi AM. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: a comparison with the TaqMan method. J Biomol Screen 2010;15:623-9.
-
(2010)
J Biomol Screen
, vol.15
, pp. 623-629
-
-
Martino, A.1
Mancuso, T.2
Rossi, A.M.3
-
65
-
-
70949104150
-
A rapid and efficient method of genotyping zebrafish mutants
-
Parant JM, George SA, Pryor R, et al. A rapid and efficient method of genotyping zebrafish mutants. Dev Dyn 2009;238:3168-74.
-
(2009)
Dev Dyn
, vol.238
, pp. 3168-3174
-
-
Parant, J.M.1
George, S.A.2
Pryor, R.3
-
66
-
-
84902440389
-
A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish
-
Yu C, Zhang Y, Yao S, et al. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One 2014;9:e98282.
-
(2014)
PLoS One
, vol.9
-
-
Yu, C.1
Zhang, Y.2
Yao, S.3
-
67
-
-
84902141229
-
Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs
-
Gagnon JA, Valen E, Thyme SB, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 2014;9:e98186.
-
(2014)
PLoS One
, vol.9
-
-
Gagnon, J.A.1
Valen, E.2
Thyme, S.B.3
-
68
-
-
34447323568
-
Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases
-
Szczepek M, Brondani V, Buchel J, et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007;25:786-93.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 786-793
-
-
Szczepek, M.1
Brondani, V.2
Buchel, J.3
-
69
-
-
77953702888
-
III Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases
-
Guo J, Gaj T, Barbas CF, III Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 2010;400:96-107.
-
(2010)
J Mol Biol
, vol.400
, pp. 96-107
-
-
Guo, J.1
Gaj, T.2
Barbas, C.F.3
-
70
-
-
0027429846
-
Single amino acid substitutions uncouple the DNA binding and strand scission activities of Fok I endonuclease
-
Waugh DS, Sauer RT. Single amino acid substitutions uncouple the DNA binding and strand scission activities of Fok I endonuclease. Proc Natl Acad Sci USA 1993;90:9596-600.
-
(1993)
Proc Natl Acad Sci USA
, vol.90
, pp. 9596-9600
-
-
Waugh, D.S.1
Sauer, R.T.2
-
72
-
-
84861960685
-
Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects
-
Ramirez CL, Certo MT, Mussolino C, et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 2012;40:5560-8.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 5560-5568
-
-
Ramirez, C.L.1
Certo, M.T.2
Mussolino, C.3
-
73
-
-
84861990434
-
Precision genome engineering with programmable DNA-nicking enzymes
-
Kim E, Kim S, Kim DH, et al. Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 2012;22:1327-33.
-
(2012)
Genome Res
, vol.22
, pp. 1327-1333
-
-
Kim, E.1
Kim, S.2
Kim, D.H.3
-
75
-
-
84938739634
-
Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9
-
Koo T, Lee J, Kim JS. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 2015;38:475-81.
-
(2015)
Mol Cells
, vol.38
, pp. 475-481
-
-
Koo, T.1
Lee, J.2
Kim, J.S.3
-
76
-
-
84959123021
-
CRISPRscan: designing highly efficient sgRNAs for CRISPRCas9 targeting in vivo
-
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPRCas9 targeting in vivo. Nat Methods 2015;12:982-8.
-
(2015)
Nat Methods
, vol.12
, pp. 982-988
-
-
Moreno-Mateos, M.A.1
Vejnar, C.E.2
Beaudoin, J.D.3
-
77
-
-
84931315589
-
Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs
-
Yin L, Maddison LA, Li M, et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics 2015;200:431-41.
-
(2015)
Genetics
, vol.200
, pp. 431-441
-
-
Yin, L.1
Maddison, L.A.2
Li, M.3
-
78
-
-
84937908208
-
Engineered CRISPRCas9 nucleases with altered PAM specificities
-
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPRCas9 nucleases with altered PAM specificities. Nature 2015;523:481-5.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
-
79
-
-
84891704542
-
Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases
-
Sung YH, Kim JM, Kim HT, et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 2014;24:125-31.
-
(2014)
Genome Res
, vol.24
, pp. 125-131
-
-
Sung, Y.H.1
Kim, J.M.2
Kim, H.T.3
-
80
-
-
84893651502
-
Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect
-
Liu D, Wang Z, Xiao A, et al. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 2014;41:43-6.
-
(2014)
J Genet Genomics
, vol.41
, pp. 43-46
-
-
Liu, D.1
Wang, Z.2
Xiao, A.3
-
81
-
-
84943558107
-
Targeted mutagenesis in zebrafish by TALENs
-
Huang P, Xiao A, Tong X, et al. Targeted mutagenesis in zebrafish by TALENs. Methods Mol Biol 2016;1338:191-206.
-
(2016)
Methods Mol Biol
, vol.1338
, pp. 191-206
-
-
Huang, P.1
Xiao, A.2
Tong, X.3
-
82
-
-
84921755345
-
Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases
-
Shin J, Chen J, Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 2014;141:3807-18.
-
(2014)
Development
, vol.141
, pp. 3807-3818
-
-
Shin, J.1
Chen, J.2
Solnica-Krezel, L.3
-
83
-
-
84911870422
-
Using engineered endonucleases to create knockout and knockin zebrafish models
-
Bedell VM, Ekker SC. Using engineered endonucleases to create knockout and knockin zebrafish models. Methods Mol Biol 2015;1239:291-305.
-
(2015)
Methods Mol Biol
, vol.1239
, pp. 291-305
-
-
Bedell, V.M.1
Ekker, S.C.2
-
84
-
-
84922362275
-
Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish
-
Kok FO, Shin M, Ni CW, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 2015;32:97-108.
-
(2015)
Dev Cell
, vol.32
, pp. 97-108
-
-
Kok, F.O.1
Shin, M.2
Ni, C.W.3
-
85
-
-
84939482880
-
Genetic compensation induced by deleterious mutations but not gene knockdowns
-
Rossi A, Kontarakis Z, Gerri C, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015;524:230-3.
-
(2015)
Nature
, vol.524
, pp. 230-233
-
-
Rossi, A.1
Kontarakis, Z.2
Gerri, C.3
|