-
1
-
-
84925358499
-
Warburg effect or reverse Warburg effect? A review of cancer metabolism
-
Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat. 2015; 38: 117-22.
-
(2015)
Oncol Res Treat
, vol.38
, pp. 117-122
-
-
Xu, X.D.1
Shao, S.X.2
Jiang, H.P.3
Cao, Y.W.4
Wang, Y.H.5
Yang, X.C.6
Wang, Y.L.7
Wang, X.S.8
Niu, H.T.9
-
2
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev. 2012; 26: 877-90.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
3
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012; 21: 297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
4
-
-
84874462054
-
Cancer metabolism: key players in metabolic reprogramming
-
Soga T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci. 2013; 104: 275-81.
-
(2013)
Cancer Sci
, vol.104
, pp. 275-281
-
-
Soga, T.1
-
6
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011; 11: 325-37.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
7
-
-
84925819422
-
Glucose Metabolism in NSCLC Is Histology-Specific and Diverges the Prognostic Potential of 18FDG-PET for Adenocarcinoma and Squamous Cell Carcinoma
-
Schuurbiers OC, Meijer TW, Kaanders JH, Looijen-Salamon MG, de Geus-Oei LF, van der Drift MA, van der Heijden EH, Oyen WJ, Visser EP, Span PN, Bussink J. Glucose Metabolism in NSCLC Is Histology-Specific and Diverges the Prognostic Potential of 18FDG-PET for Adenocarcinoma and Squamous Cell Carcinoma. J Thorac Oncol. 2014; 9: 1485-93.
-
(2014)
J Thorac Oncol
, vol.9
, pp. 1485-1493
-
-
Schuurbiers, O.C.1
Meijer, T.W.2
Kaanders, J.H.3
Looijen-Salamon, M.G.4
de Geus-Oei, L.F.5
van der Drift, M.A.6
van der Heijden, E.H.7
Oyen, W.J.8
Visser, E.P.9
Span, P.N.10
Bussink, J.11
-
8
-
-
84873030699
-
Glucose and lipid metabolism in patients with advanced pancreatic cancer receiving palliative chemotherapy
-
Zeiss K, Parhofer KG, Heinemann V, Haas M, Laubender RP, Holdenrieder S, Schulz C, Boeck S. Glucose and lipid metabolism in patients with advanced pancreatic cancer receiving palliative chemotherapy. Anticancer Res. 2013; 33: 287-92.
-
(2013)
Anticancer Res
, vol.33
, pp. 287-292
-
-
Zeiss, K.1
Parhofer, K.G.2
Heinemann, V.3
Haas, M.4
Laubender, R.P.5
Holdenrieder, S.6
Schulz, C.7
Boeck, S.8
-
9
-
-
84923223260
-
The Warburg Effect: Evolving Interpretations Of An Established Concept
-
Chen X, Qian Y, Wu S. The Warburg Effect: Evolving Interpretations Of An Established Concept. Free Radic Biol Med. 2015; 79: 253-63.
-
(2015)
Free Radic Biol Med
, vol.79
, pp. 253-263
-
-
Chen, X.1
Qian, Y.2
Wu, S.3
-
11
-
-
84921410978
-
Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells
-
Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, Zarif JC, Epstein T, Gatenby R, McCartney A, Elisseeff JH, Mooney SM, An SS, Pienta KJ. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget. 2015; 6: 130-43. doi: 10.18632/oncotarget.2766.
-
(2015)
Oncotarget
, vol.6
, pp. 130-143
-
-
Shiraishi, T.1
Verdone, J.E.2
Huang, J.3
Kahlert, U.D.4
Hernandez, J.R.5
Torga, G.6
Zarif, J.C.7
Epstein, T.8
Gatenby, R.9
McCartney, A.10
Elisseeff, J.H.11
Mooney, S.M.12
An, S.S.13
Pienta, K.J.14
-
12
-
-
84905096091
-
Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy
-
Peppicelli S, Bianchini F, Calorini L. Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 2014; 33: 823-32.
-
(2014)
Cancer Metastasis Rev
, vol.33
, pp. 823-832
-
-
Peppicelli, S.1
Bianchini, F.2
Calorini, L.3
-
13
-
-
84864040884
-
Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells
-
Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012; 1826: 370-84.
-
(2012)
Biochim Biophys Acta
, vol.1826
, pp. 370-384
-
-
Chen, J.Q.1
Russo, J.2
-
14
-
-
84867424108
-
Therapeutic targeting of Myc-reprogrammed cancer cell metabolism
-
Dang CV. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011; 76: 369-74.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 369-374
-
-
Dang, C.V.1
-
15
-
-
84940523524
-
NF-κB, an active player in human cancers
-
Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014; 2: 823-30.
-
(2014)
Cancer Immunol Res
, vol.2
, pp. 823-830
-
-
Xia, Y.1
Shen, S.2
Verma, I.M.3
-
16
-
-
84876513141
-
Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway
-
Lai L, Yan L, Gao S, Hu CL, Ge H, Davidow A, Park M, Bravo C, Iwatsubo K, Ishikawa Y, Auwerx J, Sinclair DA, Vatner SF, Vatner DE. Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation. 2013; 127: 1692-701.
-
(2013)
Circulation
, vol.127
, pp. 1692-1701
-
-
Lai, L.1
Yan, L.2
Gao, S.3
Hu, C.L.4
Ge, H.5
Davidow, A.6
Park, M.7
Bravo, C.8
Iwatsubo, K.9
Ishikawa, Y.10
Auwerx, J.11
Sinclair, D.A.12
Vatner, S.F.13
Vatner, D.E.14
-
17
-
-
84893637033
-
Hepatic oxidative stress activates the Gadd45b gene via degradation of the transcriptional repressor STAT3
-
Kim JH, Qu A, Reddy JK, Gao B, Gonzalez FJ. Hepatic oxidative stress activates the Gadd45b gene via degradation of the transcriptional repressor STAT3. Hepatology. 2014; 59: 695-704.
-
(2014)
Hepatology
, vol.59
, pp. 695-704
-
-
Kim, J.H.1
Qu, A.2
Reddy, J.K.3
Gao, B.4
Gonzalez, F.J.5
-
18
-
-
84869888609
-
SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions
-
Keller KE, Tan IS, Lee YS. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 2012; 338: 1069-72.
-
(2012)
Science
, vol.338
, pp. 1069-1072
-
-
Keller, K.E.1
Tan, I.S.2
Lee, Y.S.3
-
19
-
-
84907854322
-
p53 Family and Cellular Stress Responses in Cancer
-
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol. 2014; 4: 285.
-
(2014)
Front Oncol
, vol.4
, pp. 285
-
-
Pflaum, J.1
Schlosser, S.2
Müller, M.3
-
20
-
-
78650152988
-
p53, ROS and senescence in the control of aging
-
Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY). 2010; 2: 471-4.
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 471-474
-
-
Vigneron, A.1
Vousden, K.H.2
-
22
-
-
84868101237
-
Tumor suppression by p53 without apoptosis and senescence: conundrum or rapalog-like gerosuppression?
-
Blagosklonny MV. Tumor suppression by p53 without apoptosis and senescence: conundrum or rapalog-like gerosuppression? Aging (Albany NY). 2012; 4: 450-5.
-
(2012)
Aging (Albany NY)
, vol.4
, pp. 450-455
-
-
Blagosklonny, M.V.1
-
23
-
-
84888132393
-
Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence in response to DNA damage
-
Guo H, Liu Z, Xu B, Hu H, Wei Z, Liu Q, Zhang X, Ding X, Wang Y, Zhao M, Gong Y, Shao C. Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence in response to DNA damage. Aging Cell. 2013; 12: 1110-21.
-
(2013)
Aging Cell
, vol.12
, pp. 1110-1121
-
-
Guo, H.1
Liu, Z.2
Xu, B.3
Hu, H.4
Wei, Z.5
Liu, Q.6
Zhang, X.7
Ding, X.8
Wang, Y.9
Zhao, M.10
Gong, Y.11
Shao, C.12
-
24
-
-
84864292987
-
Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect
-
Johnson RF, Perkins ND. Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci. 2012; 37: 317-24.
-
(2012)
Trends Biochem Sci
, vol.37
, pp. 317-324
-
-
Johnson, R.F.1
Perkins, N.D.2
-
25
-
-
84941744367
-
The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, crosstalk, and therapies
-
Broek RV, Mohan S, Eytan DF, Chen Z, Van Waes C. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, crosstalk, and therapies. Oral Dis. 2015; 21: 815-25.
-
(2015)
Oral Dis
, vol.21
, pp. 815-825
-
-
Broek, R.V.1
Mohan, S.2
Eytan, D.F.3
Chen, Z.4
Van Waes, C.5
-
26
-
-
84901697814
-
New insights into p53 functions through its target microRNAs
-
Liao JM, Cao B, Zhou X, Lu H. New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 2014; 6: 206-13.
-
(2014)
J Mol Cell Biol
, vol.6
, pp. 206-213
-
-
Liao, J.M.1
Cao, B.2
Zhou, X.3
Lu, H.4
-
27
-
-
84890548423
-
To be, or not to be: functional dilemma of p53 metabolic regulation
-
Wang SJ, Gu W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol. 2014; 26: 78-85.
-
(2014)
Curr Opin Oncol
, vol.26
, pp. 78-85
-
-
Wang, S.J.1
Gu, W.2
-
28
-
-
84862977182
-
Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor
-
Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011; 2: 948-57. doi: 10.18632/oncotarget.389.
-
(2011)
Oncotarget
, vol.2
, pp. 948-957
-
-
Madan, E.1
Gogna, R.2
Bhatt, M.3
Pati, U.4
Kuppusamy, P.5
Mahdi, A.A.6
-
30
-
-
84906237532
-
Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD
-
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, Chan CS, Hu W, Feng Z. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget. 2014; 5: 5535-46. doi: 10.18632/oncotarget.2137.
-
(2014)
Oncotarget
, vol.5
, pp. 5535-5546
-
-
Zhang, C.1
Liu, J.2
Wu, R.3
Liang, Y.4
Lin, M.5
Liu, J.6
Chan, C.S.7
Hu, W.8
Feng, Z.9
-
31
-
-
84871320315
-
p53 orchestrates the PGC-1a-mediated antioxidant response upon mild redox and metabolic imbalance
-
Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR. p53 orchestrates the PGC-1a-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 2013; 18: 386-99.
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 386-399
-
-
Aquilano, K.1
Baldelli, S.2
Pagliei, B.3
Cannata, S.M.4
Rotilio, G.5
Ciriolo, M.R.6
-
32
-
-
84942782924
-
Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function
-
Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, Dang CV, Gillies RJ, Maitra A. Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function. Cancer Res. 2015; 75: 3355-64.
-
(2015)
Cancer Res
, vol.75
, pp. 3355-3364
-
-
Rajeshkumar, N.V.1
Dutta, P.2
Yabuuchi, S.3
de Wilde, R.F.4
Martinez, G.V.5
Le, A.6
Kamphorst, J.J.7
Rabinowitz, J.D.8
Jain, S.K.9
Hidalgo, M.10
Dang, C.V.11
Gillies, R.J.12
Maitra, A.13
-
33
-
-
84888315343
-
Reactive Oxygen Species-Dependent Down-Regulation of Tumor Suppressor Genes PTEN, USP28, DRAM, TIGAR, and CYLD Under Oxidative Stress
-
Kim SJ, Jung HJ, Lim CJ. Reactive Oxygen Species-Dependent Down-Regulation of Tumor Suppressor Genes PTEN, USP28, DRAM, TIGAR, and CYLD Under Oxidative Stress. Biochem Genet. 2013; 51: 901-15.
-
(2013)
Biochem Genet
, vol.51
, pp. 901-915
-
-
Kim, S.J.1
Jung, H.J.2
Lim, C.J.3
-
34
-
-
84920136325
-
Mitochondrial dysfunctions in cancer: Genetic defects and oncogenic signaling impinging on TCA cycle activity
-
Desideri E, Vegliante R, Ciriolo MR. Mitochondrial dysfunctions in cancer: Genetic defects and oncogenic signaling impinging on TCA cycle activity. Cancer Lett. 2015; 356: 217-23.
-
(2015)
Cancer Lett
, vol.356
, pp. 217-223
-
-
Desideri, E.1
Vegliante, R.2
Ciriolo, M.R.3
-
35
-
-
84901218395
-
Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma
-
Liu J, Zhang C, Lin M, Zhu W, Liang Y, Hong X, Zhao Y, Young KH, Hu W, Feng Z. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget. 2014; 5: 2635-47. doi: 10.18632/oncotarget.1862.
-
(2014)
Oncotarget
, vol.5
, pp. 2635-2647
-
-
Liu, J.1
Zhang, C.2
Lin, M.3
Zhu, W.4
Liang, Y.5
Hong, X.6
Zhao, Y.7
Young, K.H.8
Hu, W.9
Feng, Z.10
-
36
-
-
84862877433
-
Effects of hypoxia and HIFs on cancer metabolism
-
Mucaj V, Shay JE, Simon MC. Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol. 2012; 95: 464-70.
-
(2012)
Int J Hematol
, vol.95
, pp. 464-470
-
-
Mucaj, V.1
Shay, J.E.2
Simon, M.C.3
-
37
-
-
79957448442
-
Hypoxia: HIF switch
-
Seton-Rogers S. Hypoxia: HIF switch. Nat Rev Cancer. 2011; 11: 391.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 391
-
-
Seton-Rogers, S.1
-
38
-
-
84865173843
-
Hypoxia suppresses conversion from proliferative arrest to cellular senescence
-
Leontieva OV, Natarajan V, Demidenko ZN, Burdelya LG, Gudkov AV, Blagosklonny MV. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci U S A. 2012; 109: 13314-8.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 13314-13318
-
-
Leontieva, O.V.1
Natarajan, V.2
Demidenko, Z.N.3
Burdelya, L.G.4
Gudkov, A.V.5
Blagosklonny, M.V.6
-
39
-
-
79958289721
-
HIF-1a antagonizes p53-mediated apoptosis by triggering HIPK2 degradation
-
Nardinocchi L, Puca R, D'Orazi G. HIF-1a antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging (Albany NY). 2011; 3: 33-43.
-
(2011)
Aging (Albany NY)
, vol.3
, pp. 33-43
-
-
Nardinocchi, L.1
Puca, R.2
D'Orazi, G.3
-
40
-
-
84867514301
-
Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy
-
Meijer TW, Kaanders JH, Span PN, Bussink J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res. 2012; 18: 5585-94.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 5585-5594
-
-
Meijer, T.W.1
Kaanders, J.H.2
Span, P.N.3
Bussink, J.4
-
41
-
-
84894299576
-
Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8
-
Ahn GO, Seita J, Hong BJ, Kim YE, Bok S, Lee CJ, Kim KS, Lee JC, Leeper NJ, Cooke JP, Kim HJ, Kim IH, Weissman IL, Brown JM. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci U S A. 2014; 111: 2698-703.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 2698-2703
-
-
Ahn, G.O.1
Seita, J.2
Hong, B.J.3
Kim, Y.E.4
Bok, S.5
Lee, C.J.6
Kim, K.S.7
Lee, J.C.8
Leeper, N.J.9
Cooke, J.P.10
Kim, H.J.11
Kim, I.H.12
Weissman, I.L.13
Brown, J.M.14
-
42
-
-
84874948547
-
Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model
-
Kim KJ, Choi JS, Kang I, Kim KW, Jeong CH, Jeong JW. Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J Pineal Res. 2013; 54: 264-70.
-
(2013)
J Pineal Res
, vol.54
, pp. 264-270
-
-
Kim, K.J.1
Choi, J.S.2
Kang, I.3
Kim, K.W.4
Jeong, C.H.5
Jeong, J.W.6
-
43
-
-
84907202296
-
Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming
-
Zwaans BM, Lombard DB. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech. 2014; 7: 1023-32.
-
(2014)
Dis Model Mech
, vol.7
, pp. 1023-1032
-
-
Zwaans, B.M.1
Lombard, D.B.2
-
44
-
-
50149097983
-
Hypoxia, HIF1 and glucose metabolism in the solid tumour
-
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008; 8: 705-13.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 705-713
-
-
Denko, N.C.1
-
45
-
-
79952255381
-
STAT3, HIF-1, glucose addiction and Warburg effect
-
Darnell JE Jr. STAT3, HIF-1, glucose addiction and Warburg effect. Aging (Albany NY). 2010; 2: 890-1.
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 890-891
-
-
Darnell, J.E.1
-
46
-
-
84901452684
-
Analysis of hypoxia-induced metabolic reprogramming
-
Yang C, Jiang L, Zhang H, Shimoda LA, DeBerardinis RJ, Semenza GL. Analysis of hypoxia-induced metabolic reprogramming. Methods Enzymol. 2014; 542: 425-55.
-
(2014)
Methods Enzymol
, vol.542
, pp. 425-455
-
-
Yang, C.1
Jiang, L.2
Zhang, H.3
Shimoda, L.A.4
DeBerardinis, R.J.5
Semenza, G.L.6
-
47
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013; 123: 3664-71.
-
(2013)
J Clin Invest
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
48
-
-
84939977740
-
Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1a expression, tumor invasiveness, and patient prognosis
-
Starska K, Forma E, Józwiak P, Brys M, Lewy-Trenda I, Brzezinska-Blaszczyk E, Krzeslak A. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1a expression, tumor invasiveness, and patient prognosis. Tumour Biol. 2015; 36: 2309-21.
-
(2015)
Tumour Biol
, vol.36
, pp. 2309-2321
-
-
Starska, K.1
Forma, E.2
Józwiak, P.3
Brys, M.4
Lewy-Trenda, I.5
Brzezinska-Blaszczyk, E.6
Krzeslak, A.7
-
49
-
-
79951699777
-
Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
-
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011; 208: 313-26.
-
(2011)
J Exp Med
, vol.208
, pp. 313-326
-
-
Wolf, A.1
Agnihotri, S.2
Micallef, J.3
Mukherjee, J.4
Sabha, N.5
Cairns, R.6
Hawkins, C.7
Guha, A.8
-
50
-
-
84907543940
-
mTOR-and HIF-1a-mediated aerobic glycolysis as metabolic basis for trained immunity
-
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Meer BM, Deen PM, Logie C, O'Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG. mTOR-and HIF-1a-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014; 345: 1250684.
-
(2014)
Science
, vol.345
-
-
Cheng, S.C.1
Quintin, J.2
Cramer, R.A.3
Shepardson, K.M.4
Saeed, S.5
Kumar, V.6
Giamarellos-Bourboulis, E.J.7
Martens, J.H.8
Rao, N.A.9
Aghajanirefah, A.10
Manjeri, G.R.11
Li, Y.12
Ifrim, D.C.13
Arts, R.J.14
van der Meer, B.M.15
Deen, P.M.16
Logie, C.17
O'Neill, L.A.18
Willems, P.19
van de Veerdonk, F.L.20
van der Meer, J.W.21
Ng, A.22
Joosten, L.A.23
Wijmenga, C.24
Stunnenberg, H.G.25
Xavier, R.J.26
Netea, M.G.27
more..
-
51
-
-
79955725303
-
Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines
-
Hussien R, Brooks GA. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics. 2011; 43: 255-64.
-
(2011)
Physiol Genomics
, vol.43
, pp. 255-264
-
-
Hussien, R.1
Brooks, G.A.2
-
52
-
-
84895854657
-
Upregulation of HIF-1a Via Activation of ERK and PI3K Pathway Mediated Protective Response to Microwave-Induced Mitochondrial Injury in Neuron-Like Cells
-
Zhao L, Yang YF, Gao YB, Wang SM, Wang LF, Zuo HY, Dong J, Xu XP, Su ZT, Zhou HM, Zhu LL, Peng RY. Upregulation of HIF-1a Via Activation of ERK and PI3K Pathway Mediated Protective Response to Microwave-Induced Mitochondrial Injury in Neuron-Like Cells. Mol Neurobiol. 2014; 50: 1024-34.
-
(2014)
Mol Neurobiol
, vol.50
, pp. 1024-1034
-
-
Zhao, L.1
Yang, Y.F.2
Gao, Y.B.3
Wang, S.M.4
Wang, L.F.5
Zuo, H.Y.6
Dong, J.7
Xu, X.P.8
Su, Z.T.9
Zhou, H.M.10
Zhu, L.L.11
Peng, R.Y.12
-
53
-
-
84939977740
-
Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1a expression, tumor invasiveness, and patient prognosis
-
Starska K, Forma E, Józwiak P, Brys M, Lewy-Trenda I, Brzezinska-Blaszczyk E, Krzeslak A. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1a expression, tumor invasiveness, and patient prognosis. Tumour Biol. 2015; 36: 2309-21.
-
(2015)
Tumour Biol
, vol.36
, pp. 2309-2321
-
-
Starska, K.1
Forma, E.2
Józwiak, P.3
Brys, M.4
Lewy-Trenda, I.5
Brzezinska-Blaszczyk, E.6
Krzeslak, A.7
-
54
-
-
84864040884
-
Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells
-
Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012; 1826: 370-84.
-
(2012)
Biochim Biophys Acta
, vol.1826
, pp. 370-384
-
-
Chen, J.Q.1
Russo, J.2
-
55
-
-
84913555668
-
HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore
-
Ong SG, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, Briston T, Kiriakidis S, Ashcroft M, Davidson SM, Maxwell PH, Yellon DM, Hausenloy DJ. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res. 2014; 104: 24-36.
-
(2014)
Cardiovasc Res
, vol.104
, pp. 24-36
-
-
Ong, S.G.1
Lee, W.H.2
Theodorou, L.3
Kodo, K.4
Lim, S.Y.5
Shukla, D.H.6
Briston, T.7
Kiriakidis, S.8
Ashcroft, M.9
Davidson, S.M.10
Maxwell, P.H.11
Yellon, D.M.12
Hausenloy, D.J.13
-
56
-
-
84899113715
-
HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs
-
Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 2014; 4: 3793.
-
(2014)
Sci Rep
, vol.4
, pp. 3793
-
-
Zhao, T.1
Zhu, Y.2
Morinibu, A.3
Kobayashi, M.4
Shinomiya, K.5
Itasaka, S.6
Yoshimura, M.7
Guo, G.8
Hiraoka, M.9
Harada, H.10
-
57
-
-
84907485979
-
TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy
-
Xie JM, Li B, Yu HP, Gao QG, Li W, Wu HR, Qin ZH. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res. 2014; 74: 5127-38.
-
(2014)
Cancer Res
, vol.74
, pp. 5127-5138
-
-
Xie, J.M.1
Li, B.2
Yu, H.P.3
Gao, Q.G.4
Li, W.5
Wu, H.R.6
Qin, Z.H.7
-
58
-
-
84864354801
-
TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex
-
Madan E, Gogna R, Kuppusamy P, Bhatt M, Pati U, Mahdi AA. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. Br J Cancer. 2012; 107: 516-26.
-
(2012)
Br J Cancer
, vol.107
, pp. 516-526
-
-
Madan, E.1
Gogna, R.2
Kuppusamy, P.3
Bhatt, M.4
Pati, U.5
Mahdi, A.A.6
-
59
-
-
80655124584
-
TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells
-
Peña-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, Martínez-Soler F, Giménez-Bonafé P, Navarro-Sabaté À, Tortosa A, Bartrons R, Manzano A. TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. Radiother Oncol. 2011; 101: 132-9.
-
(2011)
Radiother Oncol
, vol.101
, pp. 132-139
-
-
Peña-Rico, M.A.1
Calvo-Vidal, M.N.2
Villalonga-Planells, R.3
Martínez-Soler, F.4
Giménez-Bonafé, P.5
Navarro-Sabaté, À.6
Tortosa, A.7
Bartrons, R.8
Manzano, A.9
-
60
-
-
84866910992
-
Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis
-
Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012; 287: 33436-46.
-
(2012)
J Biol Chem
, vol.287
, pp. 33436-33446
-
-
Wanka, C.1
Steinbach, J.P.2
Rieger, J.3
-
62
-
-
84896836929
-
Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolateindependent 2, 3-bisphosphoglycerate phosphatase
-
Gerin I, Noël G, Bolsée J, Haumont O, Van Schaftingen E, Bommer GT. Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolateindependent 2, 3-bisphosphoglycerate phosphatase. Biochem J. 2014; 458: 439-48.
-
(2014)
Biochem J
, vol.458
, pp. 439-448
-
-
Gerin, I.1
Noël, G.2
Bolsée, J.3
Haumont, O.4
Van Schaftingen, E.5
Bommer, G.T.6
-
63
-
-
84896830899
-
TIGAR's promiscuity
-
Bolaños JP. TIGAR's promiscuity. Biochem J. 2014; 458: e5-7.
-
(2014)
Biochem J
, vol.458
, pp. e5-e7
-
-
Bolaños, J.P.1
-
64
-
-
84880727618
-
Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells
-
Ye L, Zhao X, Lu J, Qian G, Zheng JC, Ge S. Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2013; 437: 300-6.
-
(2013)
Biochem Biophys Res Commun
, vol.437
, pp. 300-306
-
-
Ye, L.1
Zhao, X.2
Lu, J.3
Qian, G.4
Zheng, J.C.5
Ge, S.6
-
65
-
-
84901390341
-
A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia
-
Li M, Sun M, Cao L, Gu JH, Ge J, Chen J, Han R, Qin YY, Zhou ZP, Ding Y, Qin ZH. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J Neurosci. 2014; 34: 7458-71.
-
(2014)
J Neurosci
, vol.34
, pp. 7458-7471
-
-
Li, M.1
Sun, M.2
Cao, L.3
Gu, J.H.4
Ge, J.5
Chen, J.6
Han, R.7
Qin, Y.Y.8
Zhou, Z.P.9
Ding, Y.10
Qin, Z.H.11
-
66
-
-
84870918602
-
Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
-
Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A. 2012; 109: 20491-6.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 20491-20496
-
-
Cheung, E.C.1
Ludwig, R.L.2
Vousden, K.H.3
-
67
-
-
79952283136
-
Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death
-
Lui VW, Wong EY, Ho K, Ng PK, Lau CP, Tsui SK, Tsang CM, Tsao SW, Cheng SH, Ng MH, Ng YK, Lam EK, Hong B, Lo KW, Mok TS, Chan AT, Mills GB. Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene. 2011; 30: 1127-34.
-
(2011)
Oncogene
, vol.30
, pp. 1127-1134
-
-
Lui, V.W.1
Wong, E.Y.2
Ho, K.3
Ng, P.K.4
Lau, C.P.5
Tsui, S.K.6
Tsang, C.M.7
Tsao, S.W.8
Cheng, S.H.9
Ng, M.H.10
Ng, Y.K.11
Lam, E.K.12
Hong, B.13
Lo, K.W.14
Mok, T.S.15
Chan, A.T.16
Mills, G.B.17
-
68
-
-
84866235983
-
Cancer Cell Metabolism: There Is No ROS for the Weary
-
Dang CV. Cancer Cell Metabolism: There Is No ROS for the Weary. Cancer Discov. 2012; 2: 304-7.
-
(2012)
Cancer Discov
, vol.2
, pp. 304-307
-
-
Dang, C.V.1
-
69
-
-
84865298906
-
Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation
-
Trejo-Solís C, Jimenez-Farfan D, Rodriguez-Enriquez S, Fernandez-Valverde F, Cruz-Salgado A, Ruiz-Azuara L, Sotelo J. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer. 2012; 12: 156.
-
(2012)
BMC Cancer
, vol.12
, pp. 156
-
-
Trejo-Solís, C.1
Jimenez-Farfan, D.2
Rodriguez-Enriquez, S.3
Fernandez-Valverde, F.4
Cruz-Salgado, A.5
Ruiz-Azuara, L.6
Sotelo, J.7
-
70
-
-
84900441753
-
Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death
-
Yin L, Kufe T, Avigan D, Kufe D. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood. 2014; 123: 2997-3006.
-
(2014)
Blood
, vol.123
, pp. 2997-3006
-
-
Yin, L.1
Kufe, T.2
Avigan, D.3
Kufe, D.4
-
71
-
-
84888315343
-
Reactive oxygen speciesdependent down-regulation of tumor suppressor genes PTEN, USP28, DRAM, TIGAR, and CYLD under oxidative stress
-
Kim SJ, Jung HJ, Lim CJ. Reactive oxygen speciesdependent down-regulation of tumor suppressor genes PTEN, USP28, DRAM, TIGAR, and CYLD under oxidative stress. Biochem Genet. 2013; 51: 901-15.
-
(2013)
Biochem Genet
, vol.51
, pp. 901-915
-
-
Kim, S.J.1
Jung, H.J.2
Lim, C.J.3
-
72
-
-
84858446579
-
MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship
-
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012; 13: 271-82.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 271-282
-
-
Pasquinelli, A.E.1
-
73
-
-
84858776574
-
MicroRNAs in metabolism and metabolic disorders
-
Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012; 13: 239-50.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 239-250
-
-
Rottiers, V.1
Näär, A.M.2
-
74
-
-
81855224576
-
Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy
-
Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011; 11: 849-64.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 849-864
-
-
Kasinski, A.L.1
Slack, F.J.2
-
75
-
-
84869159093
-
Roles of microRNA on cancer cell metabolism
-
Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, Liang S. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012; 10: 228.
-
(2012)
J Transl Med
, vol.10
, pp. 228
-
-
Chen, B.1
Li, H.2
Zeng, X.3
Yang, P.4
Liu, X.5
Zhao, X.6
Liang, S.7
-
76
-
-
84864573730
-
MicroRNAs and the Warburg Effect: new players in an old arena
-
Gao P, Sun L, He X, Cao Y, Zhang H. MicroRNAs and the Warburg Effect: new players in an old arena. Curr Gene Ther. 2012; 12: 285-91.
-
(2012)
Curr Gene Ther
, vol.12
, pp. 285-291
-
-
Gao, P.1
Sun, L.2
He, X.3
Cao, Y.4
Zhang, H.5
-
77
-
-
84870917660
-
Circulating miRNA profiling to identify biomarkers of dysmetabolism
-
Tomaselli S, Panera N, Gallo A, Alisi A. Circulating miRNA profiling to identify biomarkers of dysmetabolism. Biomark Med. 2012; 6: 729-42.
-
(2012)
Biomark Med
, vol.6
, pp. 729-742
-
-
Tomaselli, S.1
Panera, N.2
Gallo, A.3
Alisi, A.4
-
79
-
-
84863316020
-
miR-143 regulates cancer glycolysis via targeting hexokinase 2
-
Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, Feng Y, Li L, Wang Y, Liu X, Chen H, Liu XY, Ji H. miR-143 regulates cancer glycolysis via targeting hexokinase 2. J Biol Chem. 2012; 287: 23227-35.
-
(2012)
J Biol Chem
, vol.287
, pp. 23227-23235
-
-
Fang, R.1
Xiao, T.2
Fang, Z.3
Sun, Y.4
Li, F.5
Gao, Y.6
Feng, Y.7
Li, L.8
Wang, Y.9
Liu, X.10
Chen, H.11
Liu, X.Y.12
Ji, H.13
-
80
-
-
84913594663
-
Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia
-
Yao M, Wang X, Tang Y, Zhang W, Cui B, Liu Q, Xing L. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2014; 307: L829-37.
-
(2014)
Am J Physiol Lung Cell Mol Physiol
, vol.307
, pp. L829-L837
-
-
Yao, M.1
Wang, X.2
Tang, Y.3
Zhang, W.4
Cui, B.5
Liu, Q.6
Xing, L.7
-
81
-
-
84862812020
-
A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells
-
Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED, Liu MF. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012; 31: 1985-98.
-
(2012)
EMBO J
, vol.31
, pp. 1985-1998
-
-
Jiang, S.1
Zhang, L.F.2
Zhang, H.W.3
Hu, S.4
Lu, M.H.5
Liang, S.6
Li, B.7
Li, Y.8
Li, D.9
Wang, E.D.10
Liu, M.F.11
-
82
-
-
84862784999
-
MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression
-
Fei X, Qi M, Wu B, Song Y, Wang Y, Li T. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 2012; 586: 392-7.
-
(2012)
FEBS Lett
, vol.586
, pp. 392-397
-
-
Fei, X.1
Qi, M.2
Wu, B.3
Song, Y.4
Wang, Y.5
Li, T.6
-
83
-
-
84856111309
-
miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response
-
Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011; 17: 1627-35.
-
(2011)
Nat Med
, vol.17
, pp. 1627-1635
-
-
Mateescu, B.1
Batista, L.2
Cardon, M.3
Gruosso, T.4
de Feraudy, Y.5
Mariani, O.6
Nicolas, A.7
Meyniel, J.P.8
Cottu, P.9
Sastre-Garau, X.10
Mechta-Grigoriou, F.11
-
84
-
-
80053597754
-
MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia
-
Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol. 2011; 31: 4087-96.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4087-4096
-
-
Bruning, U.1
Cerone, L.2
Neufeld, Z.3
Fitzpatrick, S.F.4
Cheong, A.5
Scholz, C.C.6
Simpson, D.A.7
Leonard, M.O.8
Tambuwala, M.M.9
Cummins, E.P.10
Taylor, C.T.11
-
85
-
-
84880713203
-
p53 regulates glucose metabolism by miR-34a
-
Kim HR, Roe JS, Lee JE, Cho EJ, Youn HD. p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013; 437: 225-31.
-
(2013)
Biochem Biophys Res Commun
, vol.437
, pp. 225-231
-
-
Kim, H.R.1
Roe, J.S.2
Lee, J.E.3
Cho, E.J.4
Youn, H.D.5
-
86
-
-
84904157844
-
Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1a/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
-
Do MT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1a/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med. 2014; 74: 21-34.
-
(2014)
Free Radic Biol Med
, vol.74
, pp. 21-34
-
-
Do, M.T.1
Kim, H.G.2
Choi, J.H.3
Jeong, H.G.4
-
87
-
-
84896785165
-
Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure
-
Poulsen RC, Knowles HJ, Carr AJ, Hulley PA. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis. 2014; 5: e1074.
-
(2014)
Cell Death Dis
, vol.5
-
-
Poulsen, R.C.1
Knowles, H.J.2
Carr, A.J.3
Hulley, P.A.4
-
88
-
-
84878846762
-
Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway
-
Li W, Wang J, Chen QD, Qian X, Li Q, Yin Y, Shi ZM, Wang L, Lin J, Liu LZ, Jiang BH. Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PLoS One. 2013; 8: e64924.
-
(2013)
PLoS One
, vol.8
-
-
Li, W.1
Wang, J.2
Chen, Q.D.3
Qian, X.4
Li, Q.5
Yin, Y.6
Shi, Z.M.7
Wang, L.8
Lin, J.9
Liu, L.Z.10
Jiang, B.H.11
-
89
-
-
84880235521
-
MicroRNA-183 upregulates HIF-1a by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells
-
Tanaka H, Sasayama T, Tanaka K, Nakamizo S, Nishihara M, Mizukawa K, Kohta M, Koyama J, Miyake S, Taniguchi M, Hosoda K, Kohmura E. MicroRNA-183 upregulates HIF-1a by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol. 2013; 111: 273-83.
-
(2013)
J Neurooncol
, vol.111
, pp. 273-283
-
-
Tanaka, H.1
Sasayama, T.2
Tanaka, K.3
Nakamizo, S.4
Nishihara, M.5
Mizukawa, K.6
Kohta, M.7
Koyama, J.8
Miyake, S.9
Taniguchi, M.10
Hosoda, K.11
Kohmura, E.12
-
90
-
-
84902649752
-
Multiple functions of hypoxia-regulated miR-210 in cancer
-
Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res. 2014; 33: 50.
-
(2014)
J Exp Clin Cancer Res
, vol.33
, pp. 50
-
-
Qin, Q.1
Furong, W.2
Baosheng, L.3
-
91
-
-
80052242132
-
Targeting cancer metabolism: a therapeutic window opens
-
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011; 10: 671-84.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
92
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013; 4: e532.
-
(2013)
Cell Death Dis
, vol.4
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
93
-
-
79955023800
-
Emerging metabolic targets in cancer therapy
-
Zhao Y, Liu H, Riker AI, Fodstad O, Ledoux SP, Wilson GL, Tan M. Emerging metabolic targets in cancer therapy. Front Biosci. 2011; 16: 1844-60.
-
(2011)
Front Biosci
, vol.16
, pp. 1844-1860
-
-
Zhao, Y.1
Liu, H.2
Riker, A.I.3
Fodstad, O.4
Ledoux, S.P.5
Wilson, G.L.6
Tan, M.7
-
94
-
-
84896716045
-
Targeting glucose metabolism in patients with cancer
-
Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014; 120: 774-80.
-
(2014)
Cancer
, vol.120
, pp. 774-780
-
-
Elf, S.E.1
Chen, J.2
-
95
-
-
84863661689
-
Therapeutic targets in cancer cell metabolism and autophagy
-
Cheong H, Lu C, Lindsten T, Thompson CB. Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol. 2012; 30: 671-8.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 671-678
-
-
Cheong, H.1
Lu, C.2
Lindsten, T.3
Thompson, C.B.4
-
96
-
-
84883514161
-
Targeting lactate metabolism for cancer therapeutics
-
Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013; 123: 3685-92.
-
(2013)
J Clin Invest
, vol.123
, pp. 3685-3692
-
-
Doherty, J.R.1
Cleveland, J.L.2
-
97
-
-
79960989122
-
Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1a in advanced solid tumors
-
Kummar S, Raffeld M, Juwara L, Horneffer Y, Strassberger A, Allen D, Steinberg SM, Rapisarda A, Spencer SD, Figg WD, Chen X, Turkbey IB, Choyke P, Murgo AJ, Doroshow JH, Melillo G. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1a in advanced solid tumors. Clin Cancer Res. 2011; 17: 5123-31.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 5123-5131
-
-
Kummar, S.1
Raffeld, M.2
Juwara, L.3
Horneffer, Y.4
Strassberger, A.5
Allen, D.6
Steinberg, S.M.7
Rapisarda, A.8
Spencer, S.D.9
Figg, W.D.10
Chen, X.11
Turkbey, I.B.12
Choyke, P.13
Murgo, A.J.14
Doroshow, J.H.15
Melillo, G.16
-
98
-
-
84855719307
-
From cancer metabolism to new biomarkers and drug targets
-
Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv. 2012; 30: 30-51.
-
(2012)
Biotechnol Adv
, vol.30
, pp. 30-51
-
-
Chiaradonna, F.1
Moresco, R.M.2
Airoldi, C.3
Gaglio, D.4
Palorini, R.5
Nicotra, F.6
Messa, C.7
Alberghina, L.8
-
99
-
-
84884211823
-
Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects
-
Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. 2013; 32: 1475-87.
-
(2013)
Oncogene
, vol.32
, pp. 1475-1487
-
-
Pierotti, M.A.1
Berrino, F.2
Gariboldi, M.3
Melani, C.4
Mogavero, A.5
Negri, T.6
Pasanisi, P.7
Pilotti, S.8
-
100
-
-
84940746785
-
Combined 2-deoxy glucose and metformin improves therapeutic efficacy of sodiumiodide symporter-mediated targeted radioiodine therapy in breast cancer cells
-
Chatterjee S, Thaker N, De A. Combined 2-deoxy glucose and metformin improves therapeutic efficacy of sodiumiodide symporter-mediated targeted radioiodine therapy in breast cancer cells. Breast Cancer (Dove Med Press). 2015; 7: 251-65.
-
(2015)
Breast Cancer (Dove Med Press)
, vol.7
, pp. 251-265
-
-
Chatterjee, S.1
Thaker, N.2
De, A.3
-
101
-
-
84941204952
-
Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells
-
Bruno S, Ledda B, Tenca C, Ravera S, Orengo AM, Mazzarello AN, Pesenti E, Casciaro S, Racchi O, Ghiotto F, Marini C, Sambuceti G, DeCensi A, Fais F. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells. Oncotarget. 2015; 6: 22624-40. doi: 10.18632/oncotarget.4168.
-
(2015)
Oncotarget
, vol.6
, pp. 22624-22640
-
-
Bruno, S.1
Ledda, B.2
Tenca, C.3
Ravera, S.4
Orengo, A.M.5
Mazzarello, A.N.6
Pesenti, E.7
Casciaro, S.8
Racchi, O.9
Ghiotto, F.10
Marini, C.11
Sambuceti, G.12
DeCensi, A.13
Fais, F.14
-
102
-
-
84923856475
-
Investigating and targeting chronic lymphocytic leukemia metabolism with the human immunodeficiency virus protease inhibitor ritonavir and metformin
-
Adekola KU, Dalva Aydemir S, Ma S, Zhou Z, Rosen ST, Shanmugam M. Investigating and targeting chronic lymphocytic leukemia metabolism with the human immunodeficiency virus protease inhibitor ritonavir and metformin. Leuk Lymphoma. 2015; 56: 450-9.
-
(2015)
Leuk Lymphoma
, vol.56
, pp. 450-459
-
-
Adekola, K.U.1
Dalva Aydemir, S.2
Ma, S.3
Zhou, Z.4
Rosen, S.T.5
Shanmugam, M.6
|