메뉴 건너뛰기




Volumn 73, Issue 21, 2016, Pages 4063-4073

Post-translational modifications in mitochondria: protein signaling in the powerhouse

Author keywords

Acetylation; Metabolism; Mitochondria; Post translational modification

Indexed keywords

ADENOSINE DIPHOSPHATE; NITROGEN DERIVATIVE; REACTIVE OXYGEN METABOLITE; LYSINE; MITOCHONDRIAL PROTEIN;

EID: 84971013948     PISSN: 1420682X     EISSN: 14209071     Source Type: Journal    
DOI: 10.1007/s00018-016-2280-4     Document Type: Review
Times cited : (117)

References (147)
  • 1
    • 84858414020 scopus 로고    scopus 로고
    • Cellular metabolism and disease: what do metabolic outliers teach us?
    • COI: 1:CAS:528:DC%2BC38Xkt1Ggt7w%3D, PID: 22424225
    • DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148(6):1132–1144
    • (2012) Cell , vol.148 , Issue.6 , pp. 1132-1144
    • DeBerardinis, R.J.1    Thompson, C.B.2
  • 2
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • COI: 1:CAS:528:DC%2BC38Xkt1Gitrg%3D, PID: 22424226
    • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159
    • (2012) Cell , vol.148 , Issue.6 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 3
    • 84865643438 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases
    • COI: 1:CAS:528:DC%2BC38Xht1Gku7jF, PID: 22446749
    • Salminen A et al (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69(18):2999–3013
    • (2012) Cell Mol Life Sci , vol.69 , Issue.18 , pp. 2999-3013
    • Salminen, A.1
  • 4
    • 84867738060 scopus 로고    scopus 로고
    • Mitochondria as a drug target in ischemic heart disease and cardiomyopathy
    • COI: 1:CAS:528:DC%2BC38XhsV2isrbM, PID: 23065345
    • Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111(9):1222–1236
    • (2012) Circ Res , vol.111 , Issue.9 , pp. 1222-1236
    • Walters, A.M.1    Porter, G.A.2    Brookes, P.S.3
  • 5
    • 84874496689 scopus 로고    scopus 로고
    • Mitochondrial involvement in neurodegenerative diseases
    • COI: 1:CAS:528:DC%2BC3sXhtFKqs7k%3D, PID: 23341346
    • Zsurka G, Kunz WS (2013) Mitochondrial involvement in neurodegenerative diseases. IUBMB Life 65(3):263–272
    • (2013) IUBMB Life , vol.65 , Issue.3 , pp. 263-272
    • Zsurka, G.1    Kunz, W.S.2
  • 6
    • 84864950181 scopus 로고    scopus 로고
    • TCA cycle defects and cancer: when metabolism tunes redox state
    • PID: 22888353
    • Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837
    • (2012) Int J Cell Biol , vol.2012 , pp. 161837
    • Cardaci, S.1    Ciriolo, M.R.2
  • 7
    • 84920136325 scopus 로고    scopus 로고
    • Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity
    • COI: 1:CAS:528:DC%2BC2cXkslGntLY%3D, PID: 24614286
    • Desideri E, Vegliante R, Ciriolo MR (2015) Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity. Cancer Lett 356(2 Pt A):217–223
    • (2015) Cancer Lett , vol.356 , Issue.2 , pp. 217-223
    • Desideri, E.1    Vegliante, R.2    Ciriolo, M.R.3
  • 8
    • 0034960785 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure
    • COI: 1:CAS:528:DC%2BD3MXkvFOqtb4%3D, PID: 11444914
    • Lesnefsky EJ et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089
    • (2001) J Mol Cell Cardiol , vol.33 , Issue.6 , pp. 1065-1089
    • Lesnefsky, E.J.1
  • 9
    • 14644425217 scopus 로고    scopus 로고
    • Mitochondrial energy metabolism in heart failure: a question of balance
    • COI: 1:CAS:528:DC%2BD2MXit1emsLY%3D, PID: 15765136
    • Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555
    • (2005) J Clin Invest , vol.115 , Issue.3 , pp. 547-555
    • Huss, J.M.1    Kelly, D.P.2
  • 10
    • 72949110566 scopus 로고    scopus 로고
    • Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure
    • COI: 1:CAS:528:DC%2BD1MXhs1Wks7jI, PID: 19843514
    • Bugger H et al (2010) Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 85(2):376–384
    • (2010) Cardiovasc Res , vol.85 , Issue.2 , pp. 376-384
    • Bugger, H.1
  • 11
    • 27444441492 scopus 로고    scopus 로고
    • Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity
    • PID: 16246967
    • Boudina S et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112(17):2686–2695
    • (2005) Circulation , vol.112 , Issue.17 , pp. 2686-2695
    • Boudina, S.1
  • 12
    • 84864302508 scopus 로고    scopus 로고
    • Regulation of mammalian mitochondrial translation by post-translational modifications
    • COI: 1:CAS:528:DC%2BC38XlvVSntbw%3D, PID: 22480953
    • Koc EC, Koc H (2012) Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta 1819(9–10):1055–1066
    • (2012) Biochim Biophys Acta , vol.1819 , Issue.9-10 , pp. 1055-1066
    • Koc, E.C.1    Koc, H.2
  • 13
    • 84907327882 scopus 로고    scopus 로고
    • Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria
    • PID: 25228883
    • Papanicolaou KN, O’Rourke B, Brian Foster D (2014) Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 5:301
    • (2014) Front Physiol , vol.5 , pp. 301
    • Papanicolaou, K.N.1    O’Rourke, B.2    Brian Foster, D.3
  • 14
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • COI: 1:CAS:528:DC%2BC3cXitVSjtbo%3D, PID: 20167786
    • Zhao S et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004
    • (2010) Science , vol.327 , Issue.5968 , pp. 1000-1004
    • Zhao, S.1
  • 15
    • 84949624063 scopus 로고    scopus 로고
    • Protein acetylation in metabolism-metabolites and cofactors
    • COI: 1:CAS:528:DC%2BC2MXhslaktrjK, PID: 26503676
    • Menzies KJ et al (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12:43–60
    • (2016) Nat Rev Endocrinol , vol.12 , pp. 43-60
    • Menzies, K.J.1
  • 16
    • 84918551836 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications
    • COI: 1:CAS:528:DC%2BC2cXhvVGitL%2FE, PID: 25465468
    • Song BJ et al (2014) Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 3:109–123
    • (2014) Redox Biol , vol.3 , pp. 109-123
    • Song, B.J.1
  • 17
    • 84901854646 scopus 로고    scopus 로고
    • Post-translational modification of mitochondria as a novel mode of regulation
    • COI: 1:CAS:528:DC%2BC2cXkslelu70%3D, PID: 24632076
    • Hofer A, Wenz T (2014) Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 56:202–220
    • (2014) Exp Gerontol , vol.56 , pp. 202-220
    • Hofer, A.1    Wenz, T.2
  • 18
    • 84884194110 scopus 로고    scopus 로고
    • Regulation of protein function and signaling by reversible cysteine S-nitrosylation
    • COI: 1:CAS:528:DC%2BC3sXhsVClsbvE, PID: 23861393
    • Gould N et al (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479
    • (2013) J Biol Chem , vol.288 , Issue.37 , pp. 26473-26479
    • Gould, N.1
  • 19
    • 0018791141 scopus 로고
    • Function of phosphorylation sites on pyruvate dehydrogenase
    • COI: 1:CAS:528:DyaE1MXhvVahsbk%3D, PID: 454401
    • Teague WM et al (1979) Function of phosphorylation sites on pyruvate dehydrogenase. Biochem Biophys Res Commun 87(1):244–252
    • (1979) Biochem Biophys Res Commun , vol.87 , Issue.1 , pp. 244-252
    • Teague, W.M.1
  • 20
    • 45149093574 scopus 로고    scopus 로고
    • Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation
    • COI: 1:CAS:528:DC%2BD1cXntlWhu78%3D, PID: 18247338
    • Tibaldi E et al (2008) Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 104(3):840–849
    • (2008) J Cell Biochem , vol.104 , Issue.3 , pp. 840-849
    • Tibaldi, E.1
  • 21
    • 84870695545 scopus 로고    scopus 로고
    • Src kinases are important regulators of mitochondrial functions
    • COI: 1:CAS:528:DC%2BC38XhtlSgt7zM, PID: 22951354
    • Hebert-Chatelain E (2013) Src kinases are important regulators of mitochondrial functions. Int J Biochem Cell Biol 45(1):90–98
    • (2013) Int J Biochem Cell Biol , vol.45 , Issue.1 , pp. 90-98
    • Hebert-Chatelain, E.1
  • 22
    • 84858722900 scopus 로고    scopus 로고
    • Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10
    • COI: 1:CAS:528:DC%2BC38Xltl2rsb0%3D, PID: 22321370
    • Hebert-Chatelain E et al (2012) Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochim Biophys Acta 1817(5):718–725
    • (2012) Biochim Biophys Acta , vol.1817 , Issue.5 , pp. 718-725
    • Hebert-Chatelain, E.1
  • 23
    • 0030040319 scopus 로고    scopus 로고
    • The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase
    • COI: 1:CAS:528:DyaK28Xht1Wlu78%3D, PID: 8603710
    • Papa S et al (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379(3):299–301
    • (1996) FEBS Lett , vol.379 , Issue.3 , pp. 299-301
    • Papa, S.1
  • 24
    • 0035793474 scopus 로고    scopus 로고
    • Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome
    • COI: 1:CAS:528:DC%2BD3MXpsF2mug%3D%3D, PID: 11165261
    • Papa S et al (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489(2–3):259–262
    • (2001) FEBS Lett , vol.489 , Issue.2-3 , pp. 259-262
    • Papa, S.1
  • 25
    • 22744437103 scopus 로고    scopus 로고
    • Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition
    • COI: 1:CAS:528:DC%2BD2MXmvFSjur4%3D, PID: 16023995
    • He L, Lemasters JJ (2005) Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun 334(3):829–837
    • (2005) Biochem Biophys Res Commun , vol.334 , Issue.3 , pp. 829-837
    • He, L.1    Lemasters, J.J.2
  • 26
    • 21544448596 scopus 로고    scopus 로고
    • Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery
    • COI: 1:CAS:528:DC%2BD2MXhtFCgs7bN, PID: 15924266
    • Augereau O et al (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62(13):1478–1488
    • (2005) Cell Mol Life Sci , vol.62 , Issue.13 , pp. 1478-1488
    • Augereau, O.1
  • 27
    • 79958034385 scopus 로고    scopus 로고
    • Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation
    • COI: 1:CAS:528:DC%2BC3MXntFSlurg%3D, PID: 21641552
    • Acin-Perez R et al (2011) Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab 13(6):712–719
    • (2011) Cell Metab , vol.13 , Issue.6 , pp. 712-719
    • Acin-Perez, R.1
  • 28
    • 80052219693 scopus 로고    scopus 로고
    • A phosphodiesterase 2A isoform localized to mitochondria regulates respiration
    • COI: 1:CAS:528:DC%2BC3MXhtVOkt7bJ, PID: 21724846
    • Acin-Perez R et al (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286(35):30423–30432
    • (2011) J Biol Chem , vol.286 , Issue.35 , pp. 30423-30432
    • Acin-Perez, R.1
  • 29
    • 0037416134 scopus 로고    scopus 로고
    • Regulation of cytochrome c oxidase activity by c-Src in osteoclasts
    • COI: 1:CAS:528:DC%2BD3sXhvFWls7s%3D, PID: 12615910
    • Miyazaki T et al (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160(5):709–718
    • (2003) J Cell Biol , vol.160 , Issue.5 , pp. 709-718
    • Miyazaki, T.1
  • 30
    • 3543025709 scopus 로고    scopus 로고
    • Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II
    • COI: 1:CAS:528:DC%2BD2cXmtlOjtrg%3D, PID: 15282306
    • Boerner JL et al (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24(16):7059–7071
    • (2004) Mol Cell Biol , vol.24 , Issue.16 , pp. 7059-7071
    • Boerner, J.L.1
  • 31
    • 84871905514 scopus 로고    scopus 로고
    • Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism
    • PID: 23232401
    • Ding Y et al (2012) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3:1271
    • (2012) Nat Commun , vol.3 , pp. 1271
    • Ding, Y.1
  • 32
    • 40849120423 scopus 로고    scopus 로고
    • Identification of new tyrosine phosphorylated proteins in rat brain mitochondria
    • COI: 1:CAS:528:DC%2BD1cXjs1Khtrw%3D, PID: 18331841
    • Lewandrowski U et al (2008) Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett 582(7):1104–1110
    • (2008) FEBS Lett , vol.582 , Issue.7 , pp. 1104-1110
    • Lewandrowski, U.1
  • 33
    • 48749122530 scopus 로고    scopus 로고
    • Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis
    • COI: 1:CAS:528:DC%2BD1cXpsVygsbw%3D, PID: 18381814
    • Yuan S et al (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J 22(8):2809–2820
    • (2008) FASEB J , vol.22 , Issue.8 , pp. 2809-2820
    • Yuan, S.1
  • 34
    • 59849101586 scopus 로고    scopus 로고
    • Function of mitochondrial Stat3 in cellular respiration
    • COI: 1:CAS:528:DC%2BD1MXhtlersbg%3D, PID: 19131594
    • Wegrzyn J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797
    • (2009) Science , vol.323 , Issue.5915 , pp. 793-797
    • Wegrzyn, J.1
  • 35
    • 81355146580 scopus 로고    scopus 로고
    • Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion
    • COI: 1:CAS:528:DC%2BC3MXhsVCjsrnP, PID: 21980124
    • Heusch G et al (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109(11):1302–1308
    • (2011) Circ Res , vol.109 , Issue.11 , pp. 1302-1308
    • Heusch, G.1
  • 36
    • 53749100817 scopus 로고    scopus 로고
    • The myocardial JAK/STAT pathway: from protection to failure
    • COI: 1:CAS:528:DC%2BD1cXht1Knsb3J, PID: 18786563
    • Boengler K et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120(2):172–185
    • (2008) Pharmacol Ther , vol.120 , Issue.2 , pp. 172-185
    • Boengler, K.1
  • 37
    • 84880105471 scopus 로고    scopus 로고
    • Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery
    • COI: 1:CAS:528:DC%2BC3sXktlert7Y%3D, PID: 23514336
    • Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679
    • (2013) Chem Rev , vol.113 , Issue.7 , pp. 4633-4679
    • Paulsen, C.E.1    Carroll, K.S.2
  • 38
    • 84949545879 scopus 로고    scopus 로고
    • The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function
    • PID: 26635632
    • Kramer PA et al (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347
    • (2015) Front Physiol , vol.6 , pp. 347
    • Kramer, P.A.1
  • 39
    • 84892575903 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
    • COI: 1:CAS:528:DC%2BC2cXht1Kqt7zO, PID: 24455476
    • Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139
    • (2014) Redox Biol , vol.2 , pp. 123-139
    • Mailloux, R.J.1    Jin, X.2    Willmore, W.G.3
  • 40
    • 84898785937 scopus 로고    scopus 로고
    • Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics
    • COI: 1:CAS:528:DC%2BC2cXovVKjt7s%3D, PID: 24681256
    • Levonen AL et al (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207
    • (2014) Free Radic Biol Med , vol.71 , pp. 196-207
    • Levonen, A.L.1
  • 41
    • 84939999016 scopus 로고    scopus 로고
    • Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology
    • COI: 1:CAS:528:DC%2BC2MXhsl2ltw%3D%3D, PID: 25433127
    • Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47
    • (2015) Life Sci , vol.129 , pp. 42-47
    • Victorino, V.J.1    Mencalha, A.L.2    Panis, C.3
  • 42
    • 33745631769 scopus 로고    scopus 로고
    • 2, a necessary evil for cell signaling
    • PID: 16809515
    • 2, a necessary evil for cell signaling. Science 312(5782):1882–1883
    • (2006) Science , vol.312 , Issue.5782 , pp. 1882-1883
    • Rhee, S.G.1
  • 43
    • 84942777656 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases
    • COI: 1:CAS:528:DC%2BC2MXovVShur4%3D, PID: 25999419
    • Kornfeld OS et al (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116(11):1783–1799
    • (2015) Circ Res , vol.116 , Issue.11 , pp. 1783-1799
    • Kornfeld, O.S.1
  • 44
    • 84894165975 scopus 로고    scopus 로고
    • Cardiac mitochondria and reactive oxygen species generation
    • COI: 1:CAS:528:DC%2BC2cXhs1yhsbg%3D, PID: 24481843
    • Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114(3):524–537
    • (2014) Circ Res , vol.114 , Issue.3 , pp. 524-537
    • Chen, Y.R.1    Zweier, J.L.2
  • 45
    • 33751183752 scopus 로고    scopus 로고
    • Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow
    • COI: 1:CAS:528:DC%2BD28XhtFymt7bO, PID: 17023676
    • Saitoh S et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614–2621
    • (2006) Arterioscler Thromb Vasc Biol , vol.26 , Issue.12 , pp. 2614-2621
    • Saitoh, S.1
  • 46
    • 84901066101 scopus 로고    scopus 로고
    • Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway
    • COI: 1:CAS:528:DC%2BC2cXlvFenuro%3D, PID: 24716714
    • Chang AH et al (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol 27(5):794–804
    • (2014) Chem Res Toxicol , vol.27 , Issue.5 , pp. 794-804
    • Chang, A.H.1
  • 47
    • 77955492720 scopus 로고    scopus 로고
    • Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation
    • COI: 1:CAS:528:DC%2BC3cXptlyltrk%3D, PID: 20533907
    • Chouchani ET et al (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430(1):49–59
    • (2010) Biochem J , vol.430 , Issue.1 , pp. 49-59
    • Chouchani, E.T.1
  • 48
    • 1542328892 scopus 로고    scopus 로고
    • S-nitrosylation: a potential new paradigm in signal transduction
    • COI: 1:CAS:528:DC%2BD2cXitFejur8%3D, PID: 15023551
    • Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62(1):43–52
    • (2004) Cardiovasc Res , vol.62 , Issue.1 , pp. 43-52
    • Martinez-Ruiz, A.1    Lamas, S.2
  • 49
    • 84901823953 scopus 로고    scopus 로고
    • Signaling by S-nitrosylation in the heart
    • COI: 1:CAS:528:DC%2BC2cXhs1KntLs%3D, PID: 24440455
    • Murphy E et al (2014) Signaling by S-nitrosylation in the heart. J Mol Cell Cardiol 73:18–25
    • (2014) J Mol Cell Cardiol , vol.73 , pp. 18-25
    • Murphy, E.1
  • 50
    • 84860481279 scopus 로고    scopus 로고
    • Regulation of mitochondrial processes by protein S-nitrosylation
    • COI: 1:CAS:528:DC%2BC38XmtlWrsLg%3D, PID: 21397666
    • Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta 1820(6):712–721
    • (2012) Biochim Biophys Acta , vol.1820 , Issue.6 , pp. 712-721
    • Piantadosi, C.A.1
  • 51
    • 84872577684 scopus 로고    scopus 로고
    • Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
    • PID: 23281369
    • Doulias PT et al (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal 6(256):rs1
    • (2013) Sci Signal , vol.6 , Issue.256 , pp. rs1
    • Doulias, P.T.1
  • 52
    • 0035282782 scopus 로고    scopus 로고
    • Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase
    • COI: 1:CAS:528:DC%2BD3MXhsFSit7s%3D, PID: 11239484
    • Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504(1):46–57
    • (2001) Biochim Biophys Acta , vol.1504 , Issue.1 , pp. 46-57
    • Brown, G.C.1
  • 53
    • 0346362068 scopus 로고    scopus 로고
    • Nitric oxide and mitochondrial complex IV
    • COI: 1:CAS:528:DC%2BD2cXptlylsg%3D%3D, PID: 14711006
    • Sarti P et al (2003) Nitric oxide and mitochondrial complex IV. IUBMB Life 55(10–11):605–611
    • (2003) IUBMB Life , vol.55 , Issue.10-11 , pp. 605-611
    • Sarti, P.1
  • 54
    • 81155123702 scopus 로고    scopus 로고
    • Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
    • COI: 1:CAS:528:DC%2BC3MXhsVKjs77F, PID: 21930693
    • Nguyen TT et al (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286(46):40184–40192
    • (2011) J Biol Chem , vol.286 , Issue.46 , pp. 40184-40192
    • Nguyen, T.T.1
  • 55
    • 79953179727 scopus 로고    scopus 로고
    • Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection
    • PID: 21036925
    • Murray CI et al (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10(3):4721
    • (2011) Mol Cell Proteomics , vol.10 , Issue.3 , pp. 4721
    • Murray, C.I.1
  • 56
    • 0041766297 scopus 로고    scopus 로고
    • Screening for nitric oxide-dependent protein–protein interactions
    • COI: 1:CAS:528:DC%2BD3sXlvVKnsb4%3D, PID: 12893946
    • Matsumoto A et al (2003) Screening for nitric oxide-dependent protein–protein interactions. Science 301(5633):657–661
    • (2003) Science , vol.301 , Issue.5633 , pp. 657-661
    • Matsumoto, A.1
  • 57
    • 67649757115 scopus 로고    scopus 로고
    • A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury
    • COI: 1:CAS:528:DC%2BD1MXosF2hs7s%3D, PID: 19528654
    • Prime TA et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury. Proc Natl Acad Sci USA 106(26):10764–10769
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.26 , pp. 10764-10769
    • Prime, T.A.1
  • 58
    • 65549133282 scopus 로고    scopus 로고
    • Endogenous S-nitrosothiols protect against myocardial injury
    • COI: 1:CAS:528:DC%2BD1MXlsFals7w%3D, PID: 19325130
    • Lima B et al (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci USA 106(15):6297–6302
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.15 , pp. 6297-6302
    • Lima, B.1
  • 59
    • 33644992047 scopus 로고    scopus 로고
    • Direct evidence for S-nitrosation of mitochondrial complex I
    • COI: 1:CAS:528:DC%2BD28XhvVemtbg%3D, PID: 16371007
    • Burwell LS et al (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394(Pt 3):627–634
    • (2006) Biochem J , vol.394 , pp. 627-634
    • Burwell, L.S.1
  • 60
    • 84880253528 scopus 로고    scopus 로고
    • Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
    • COI: 1:CAS:528:DC%2BC3sXot1Cgur8%3D, PID: 23708290
    • Chouchani ET et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759
    • (2013) Nat Med , vol.19 , Issue.6 , pp. 753-759
    • Chouchani, E.T.1
  • 61
    • 79959381299 scopus 로고    scopus 로고
    • Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease
    • COI: 1:CAS:528:DC%2BC3MXptVCntr4%3D, PID: 21391816
    • Hart GW et al (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858
    • (2011) Annu Rev Biochem , vol.80 , pp. 825-858
    • Hart, G.W.1
  • 62
    • 52949123249 scopus 로고    scopus 로고
    • Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc
    • COI: 1:CAS:528:DC%2BD1cXhtFKiurvP, PID: 18779572
    • Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 105(37):13793–13798
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.37 , pp. 13793-13798
    • Wang, Z.1    Gucek, M.2    Hart, G.W.3
  • 63
    • 50349093142 scopus 로고    scopus 로고
    • Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity
    • COI: 1:CAS:528:DC%2BD1cXoslyhtLY%3D, PID: 18445751
    • Copeland RJ, Bullen JW, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 295(1):E17–E28
    • (2008) Am J Physiol Endocrinol Metab , vol.295 , Issue.1 , pp. E17-E28
    • Copeland, R.J.1    Bullen, J.W.2    Hart, G.W.3
  • 64
    • 84903767444 scopus 로고    scopus 로고
    • O-GlcNAc profiling: from proteins to proteomes
    • PID: 24593906
    • Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11(1):8
    • (2014) Clin Proteomics , vol.11 , Issue.1 , pp. 8
    • Ma, J.1    Hart, G.W.2
  • 65
    • 84929191592 scopus 로고    scopus 로고
    • Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria
    • COI: 1:CAS:528:DC%2BC2MXntFCis7c%3D, PID: 25918408
    • Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 112(19):6050–6055
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.19 , pp. 6050-6055
    • Banerjee, P.S.1    Ma, J.2    Hart, G.W.3
  • 66
    • 0037440370 scopus 로고    scopus 로고
    • Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene
    • COI: 1:CAS:528:DC%2BD38Xps12ks7Y%3D, PID: 12504895
    • Hanover JA et al (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409(2):287–297
    • (2003) Arch Biochem Biophys , vol.409 , Issue.2 , pp. 287-297
    • Hanover, J.A.1
  • 67
    • 0037442984 scopus 로고    scopus 로고
    • Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase
    • COI: 1:CAS:528:DC%2BD3sXhvVOktbg%3D, PID: 12538765
    • Love DC et al (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116(Pt 4):647–654
    • (2003) J Cell Sci , vol.116 , pp. 647-654
    • Love, D.C.1
  • 68
    • 84865457924 scopus 로고    scopus 로고
    • Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes
    • COI: 1:CAS:528:DC%2BC38Xht1CgtrjE, PID: 22745122
    • Gawlowski T et al (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287(35):30024–30034
    • (2012) J Biol Chem , vol.287 , Issue.35 , pp. 30024-30034
    • Gawlowski, T.1
  • 69
    • 84884890368 scopus 로고    scopus 로고
    • Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods
    • COI: 1:CAS:528:DC%2BC3sXhsFyrurvM, PID: 24098488
    • Cao W et al (2013) Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One 8(10):e76399
    • (2013) PLoS One , vol.8 , Issue.10
    • Cao, W.1
  • 70
    • 48849094054 scopus 로고    scopus 로고
    • Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition
    • COI: 1:CAS:528:DC%2BD1cXhtVSjs7fI, PID: 18539296
    • Ngoh GA et al (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45(2):313–325
    • (2008) J Mol Cell Cardiol , vol.45 , Issue.2 , pp. 313-325
    • Ngoh, G.A.1
  • 71
    • 58649095123 scopus 로고    scopus 로고
    • Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose
    • COI: 1:CAS:528:DC%2BD1cXhsFCjtLvK, PID: 19004814
    • Hu Y et al (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284(1):547–555
    • (2009) J Biol Chem , vol.284 , Issue.1 , pp. 547-555
    • Hu, Y.1
  • 72
    • 84872202540 scopus 로고    scopus 로고
    • Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity
    • COI: 1:CAS:528:DC%2BC3sXjvVOrs7w%3D, PID: 23132757
    • Johnsen VL et al (2013) Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol Genomics 45(1):17–25
    • (2013) Physiol Genomics , vol.45 , Issue.1 , pp. 17-25
    • Johnsen, V.L.1
  • 73
    • 84901407632 scopus 로고    scopus 로고
    • Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function
    • COI: 1:CAS:528:DC%2BC2cXos1arurY%3D, PID: 24713701
    • Tan EP et al (2014) Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 289(21):14719–14730
    • (2014) J Biol Chem , vol.289 , Issue.21 , pp. 14719-14730
    • Tan, E.P.1
  • 74
    • 79954441395 scopus 로고    scopus 로고
    • Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis
    • COI: 1:CAS:528:DC%2BC3MXitFGqsL4%3D, PID: 20824293
    • Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40(3):885–893
    • (2011) Amino Acids , vol.40 , Issue.3 , pp. 885-893
    • Shin, S.H.1    Love, D.C.2    Hanover, J.A.3
  • 75
    • 84867279863 scopus 로고    scopus 로고
    • Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy
    • COI: 1:CAS:528:DC%2BC38Xhs1yktL%2FF, PID: 22874425
    • Fricovsky ES et al (2012) Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 303(7):R689–R699
    • (2012) Am J Physiol Regul Integr Comp Physiol , vol.303 , Issue.7 , pp. R689-R699
    • Fricovsky, E.S.1
  • 76
    • 84875223772 scopus 로고    scopus 로고
    • Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice
    • COI: 1:CAS:528:DC%2BC38XhsVCnsrfM, PID: 23000101
    • Bennett CE et al (2013) Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 92(11):657–663
    • (2013) Life Sci , vol.92 , Issue.11 , pp. 657-663
    • Bennett, C.E.1
  • 77
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • COI: 1:CAS:528:DC%2BD38XmsVSntbk%3D, PID: 12186850
    • Schwer B et al (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158(4):647–657
    • (2002) J Cell Biol , vol.158 , Issue.4 , pp. 647-657
    • Schwer, B.1
  • 78
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • COI: 1:CAS:528:DC%2BD2MXhtVygtL%2FP, PID: 16079181
    • Michishita E et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635
    • (2005) Mol Biol Cell , vol.16 , Issue.10 , pp. 4623-4635
    • Michishita, E.1
  • 79
    • 84867594869 scopus 로고    scopus 로고
    • Mitochondrial protein acetylation regulates metabolism
    • COI: 1:CAS:528:DC%2BC38Xht1ShurrM, PID: 22708561
    • Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35
    • (2012) Essays Biochem , vol.52 , pp. 23-35
    • Anderson, K.A.1    Hirschey, M.D.2
  • 80
    • 84860192261 scopus 로고    scopus 로고
    • Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1
    • COI: 1:CAS:528:DC%2BC38Xls1Shsb0%3D, PID: 22309213
    • Scott I et al (2012) Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem J 443(3):655–661
    • (2012) Biochem J , vol.443 , Issue.3 , pp. 655-661
    • Scott, I.1
  • 81
    • 84885155285 scopus 로고    scopus 로고
    • Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix
    • COI: 1:CAS:528:DC%2BC3sXhsFKqsbzP, PID: 23946487
    • Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288(40):29036–29045
    • (2013) J Biol Chem , vol.288 , Issue.40 , pp. 29036-29045
    • Wagner, G.R.1    Payne, R.M.2
  • 82
    • 84902331962 scopus 로고    scopus 로고
    • Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation
    • COI: 1:CAS:528:DC%2BC2cXpvV2rs7s%3D, PID: 24516071
    • Pougovkina O et al (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 23(13):3513–3522
    • (2014) Hum Mol Genet , vol.23 , Issue.13 , pp. 3513-3522
    • Pougovkina, O.1
  • 83
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • COI: 1:CAS:528:DC%2BD28XpvVKiur8%3D, PID: 16959573
    • Haigis MC et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954
    • (2006) Cell , vol.126 , Issue.5 , pp. 941-954
    • Haigis, M.C.1
  • 84
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • COI: 1:CAS:528:DC%2BD2sXht1Oqsr%2FK, PID: 17715127
    • Ahuja N et al (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282(46):33583–33592
    • (2007) J Biol Chem , vol.282 , Issue.46 , pp. 33583-33592
    • Ahuja, N.1
  • 85
    • 84888329025 scopus 로고    scopus 로고
    • Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
    • COI: 1:CAS:528:DC%2BC3sXhvV2qsr%2FF, PID: 24121500
    • Bharathi SS et al (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288(47):33837–33847
    • (2013) J Biol Chem , vol.288 , Issue.47 , pp. 33837-33847
    • Bharathi, S.S.1
  • 86
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • COI: 1:CAS:528:DC%2BC3cXislahsLY%3D, PID: 20203611
    • Hirschey MD et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125
    • (2010) Nature , vol.464 , Issue.7285 , pp. 121-125
    • Hirschey, M.D.1
  • 87
    • 84907186695 scopus 로고    scopus 로고
    • SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells
    • COI: 1:CAS:528:DC%2BC2cXhsFWnt77O, PID: 25152236
    • Ozden O et al (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172
    • (2014) Free Radic Biol Med , vol.76 , pp. 163-172
    • Ozden, O.1
  • 88
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • COI: 1:CAS:528:DC%2BD28XntlKmsLw%3D, PID: 16788062
    • Schwer B et al (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103(27):10224–10229
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.27 , pp. 10224-10229
    • Schwer, B.1
  • 89
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • COI: 1:CAS:528:DC%2BC3cXhsVygsLfI, PID: 21094524
    • Someya S et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812
    • (2010) Cell , vol.143 , Issue.5 , pp. 802-812
    • Someya, S.1
  • 90
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • COI: 1:CAS:528:DC%2BD1MXhsFOgtb3O, PID: 20000467
    • Cimen H et al (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49(2):304–311
    • (2010) Biochemistry , vol.49 , Issue.2 , pp. 304-311
    • Cimen, H.1
  • 91
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • COI: 1:CAS:528:DC%2BC3MXhtFKmsLnO, PID: 21858060
    • Finley LWS et al (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6(8):e23295
    • (2011) PLoS One , vol.6 , Issue.8
    • Finley, L.W.S.1
  • 92
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • COI: 1:CAS:528:DC%2BD1cXht1SgtrbL, PID: 18794531
    • Ahn B-H et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci 105(38):14447–14452
    • (2008) Proc Natl Acad Sci , vol.105 , Issue.38 , pp. 14447-14452
    • Ahn, B.-H.1
  • 93
    • 80051802678 scopus 로고    scopus 로고
    • Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain
    • COI: 1:CAS:528:DC%2BC3MXpslOksbY%3D, PID: 21700931
    • Shinmura K et al (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109(4):396–406
    • (2011) Circ Res , vol.109 , Issue.4 , pp. 396-406
    • Shinmura, K.1
  • 94
    • 84876217035 scopus 로고    scopus 로고
    • Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
    • COI: 1:CAS:528:DC%2BC3sXnvVOksr8%3D, PID: 23576753
    • Rardin MJ et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110(16):6601–6606
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.16 , pp. 6601-6606
    • Rardin, M.J.1
  • 95
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • COI: 1:CAS:528:DC%2BC3MXhtVSisrg%3D
    • Hafner AV et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923
    • (2010) Aging (Albany NY) , vol.2 , Issue.12 , pp. 914-923
    • Hafner, A.V.1
  • 96
    • 84933575770 scopus 로고    scopus 로고
    • Lysine acetylation activates mitochondrial aconitase in the heart
    • COI: 1:CAS:528:DC%2BC2MXhtVShtbrO, PID: 26061789
    • Fernandes J et al (2015) Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 54(25):4008–4018
    • (2015) Biochemistry , vol.54 , Issue.25 , pp. 4008-4018
    • Fernandes, J.1
  • 97
    • 84902670910 scopus 로고    scopus 로고
    • SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress
    • COI: 1:CAS:528:DC%2BC2cXhtFensb%2FO, PID: 24252090
    • Vassilopoulos A et al (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21:551–564
    • (2014) Antioxid Redox Signal , vol.21 , pp. 551-564
    • Vassilopoulos, A.1
  • 98
    • 77956173286 scopus 로고    scopus 로고
    • SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
    • COI: 1:CAS:528:DC%2BC3cXhtV2gs7%2FK, PID: 20647045
    • Bao J et al (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med 49(7):1230–1237
    • (2010) Free Radic Biol Med , vol.49 , Issue.7 , pp. 1230-1237
    • Bao, J.1
  • 99
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • COI: 1:CAS:528:DC%2BD1cXht1SgtrbL, PID: 18794531
    • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS 105:14447–14452
    • (2008) PNAS , vol.105 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3    Lee, I.H.4    Liu, J.5    Vassilopoulos, A.6    Deng, C.X.7    Finkel, T.8
  • 100
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • COI: 1:CAS:528:DC%2BD28XntlKmt74%3D, PID: 16790548
    • Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci 103(27):10230–10235
    • (2006) Proc Natl Acad Sci , vol.103 , Issue.27 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 101
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • COI: 1:CAS:528:DC%2BC3cXhsVyhs7jI, PID: 21109197
    • Shimazu T et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12(6):654–661
    • (2010) Cell Metab , vol.12 , Issue.6 , pp. 654-661
    • Shimazu, T.1
  • 102
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • COI: 1:CAS:528:DC%2BC3sXptFOmuro%3D, PID: 23746352
    • Laurent G et al (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50(5):686–698
    • (2013) Mol Cell , vol.50 , Issue.5 , pp. 686-698
    • Laurent, G.1
  • 103
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • COI: 1:CAS:528:DC%2BC3cXltlWrtbo%3D, PID: 20159966
    • Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902
    • (2010) J Cell Sci , vol.123 , pp. 894-902
    • Shulga, N.1    Wilson-Smith, R.2    Pastorino, J.G.3
  • 104
    • 84891506172 scopus 로고    scopus 로고
    • Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
    • COI: 1:CAS:528:DC%2BC3sXhsFOhtLrF, PID: 23835326
    • Jing E et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62(10):3404–3417
    • (2013) Diabetes , vol.62 , Issue.10 , pp. 3404-3417
    • Jing, E.1
  • 105
    • 79957979314 scopus 로고    scopus 로고
    • Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
    • COI: 1:CAS:528:DC%2BC3MXmtV2hs7k%3D, PID: 21566644
    • Chen Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12(6):534–541
    • (2011) EMBO Rep , vol.12 , Issue.6 , pp. 534-541
    • Chen, Y.1
  • 106
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • COI: 1:CAS:528:DC%2BC3cXhsVyhs7jJ, PID: 21109198
    • Qiu X et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667
    • (2010) Cell Metab , vol.12 , Issue.6 , pp. 662-667
    • Qiu, X.1
  • 107
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • COI: 1:CAS:528:DC%2BC3cXhsF2isbfK, PID: 21172655
    • Tao R et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904
    • (2010) Mol Cell , vol.40 , Issue.6 , pp. 893-904
    • Tao, R.1
  • 108
    • 84881076472 scopus 로고    scopus 로고
    • Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress
    • COI: 1:CAS:528:DC%2BC3sXhtFGls7bO, PID: 23868064
    • Cheng Y et al (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 4:e731
    • (2013) Cell Death Dis , vol.4
    • Cheng, Y.1
  • 109
    • 84943391158 scopus 로고    scopus 로고
    • Protective effects of sirtuins in cardiovascular diseases: from bench to bedside
    • PID: 26112889
    • Winnik S et al (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36:3404–3412
    • (2015) Eur Heart J , vol.36 , pp. 3404-3412
    • Winnik, S.1
  • 110
    • 84872308934 scopus 로고    scopus 로고
    • SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB
    • COI: 1:CAS:528:DC%2BC38XhvVKqurbE, PID: 23201401
    • Chen CJ et al (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun 430(2):798–803
    • (2013) Biochem Biophys Res Commun , vol.430 , Issue.2 , pp. 798-803
    • Chen, C.J.1
  • 111
    • 84928403220 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes
    • COI: 1:CAS:528:DC%2BC2MXntFSqtr8%3D, PID: 25759382
    • Cheung KG et al (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993
    • (2015) J Biol Chem , vol.290 , Issue.17 , pp. 10981-10993
    • Cheung, K.G.1
  • 112
    • 84879059766 scopus 로고    scopus 로고
    • SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
    • COI: 1:CAS:528:DC%2BC3sXhtFyjsbjI, PID: 23665396
    • Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234
    • (2013) Free Radic Biol Med , vol.63 , pp. 222-234
    • Tseng, A.H.1    Shieh, S.S.2    Wang, D.L.3
  • 113
    • 84929121391 scopus 로고    scopus 로고
    • Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD
    • PID: 25748450
    • Chen TS et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10(3):e0118909
    • (2015) PLoS One , vol.10 , Issue.3
    • Chen, T.S.1
  • 114
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • COI: 1:CAS:528:DC%2BD1MXhtFWgs7%2FN, PID: 19652361
    • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4    Isbatan, A.5    Gupta, M.P.6
  • 115
    • 84929088095 scopus 로고    scopus 로고
    • SIRT3 deficiency impairs mitochondrial and contractile function in the heart
    • PID: 25962702
    • Koentges C et al (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36
    • (2015) Basic Res Cardiol , vol.110 , Issue.4 , pp. 36
    • Koentges, C.1
  • 116
    • 84902687763 scopus 로고    scopus 로고
    • SIRT3 deficiency exacerbates ischemia–reperfusion injury: implication for aged hearts
    • COI: 1:CAS:528:DC%2BC2cXhtFalurrF, PID: 24748594
    • Porter GA et al (2014) SIRT3 deficiency exacerbates ischemia–reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306(12):H1602–H1609
    • (2014) Am J Physiol Heart Circ Physiol , vol.306 , Issue.12 , pp. H1602-H1609
    • Porter, G.A.1
  • 117
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • COI: 1:CAS:528:DC%2BC3sXhtVWlsLrI, PID: 23806337
    • Park J et al (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930
    • (2013) Mol Cell , vol.50 , Issue.6 , pp. 919-930
    • Park, J.1
  • 118
    • 84889636259 scopus 로고    scopus 로고
    • SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
    • COI: 1:CAS:528:DC%2BC3sXhvFOlsb3N, PID: 24315375
    • Rardin MJ et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18(6):920–933
    • (2013) Cell Metab , vol.18 , Issue.6 , pp. 920-933
    • Rardin, M.J.1
  • 119
    • 84937517955 scopus 로고    scopus 로고
    • SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
    • COI: 1:CAS:528:DC%2BC2MXhtVeiu7zO, PID: 26073543
    • Nishida Y et al (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59(2):321–332
    • (2015) Mol Cell , vol.59 , Issue.2 , pp. 321-332
    • Nishida, Y.1
  • 120
    • 84887412525 scopus 로고    scopus 로고
    • SIRT5 desuccinylates and activates SOD1 to eliminate ROS
    • COI: 1:CAS:528:DC%2BC3sXhs1yqtbrO, PID: 24140062
    • Lin ZF et al (2013) SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun 441(1):191–195
    • (2013) Biochem Biophys Res Commun , vol.441 , Issue.1 , pp. 191-195
    • Lin, Z.F.1
  • 121
    • 84897565291 scopus 로고    scopus 로고
    • Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
    • COI: 1:CAS:528:DC%2BC2cXlvFeqtrY%3D, PID: 24703693
    • Tan M et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19(4):605–617
    • (2014) Cell Metab , vol.19 , Issue.4 , pp. 605-617
    • Tan, M.1
  • 122
    • 77951023118 scopus 로고    scopus 로고
    • Toward a unified nomenclature for mammalian ADP-ribosyltransferases
    • COI: 1:CAS:528:DC%2BC3cXksVegs70%3D, PID: 20106667
    • Hottiger MO et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219
    • (2010) Trends Biochem Sci , vol.35 , Issue.4 , pp. 208-219
    • Hottiger, M.O.1
  • 123
    • 84870703762 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein
    • COI: 1:CAS:528:DC%2BC38XhsleksrrE, PID: 22581363
    • Szanto M et al (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 69(24):4079–4092
    • (2012) Cell Mol Life Sci , vol.69 , Issue.24 , pp. 4079-4092
    • Szanto, M.1
  • 124
    • 84886721124 scopus 로고    scopus 로고
    • Reprogramming cellular events by poly(ADP-ribose)-binding proteins
    • COI: 1:CAS:528:DC%2BC3sXitFKmsro%3D, PID: 23268355
    • Krietsch J et al (2013) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med 34(6):1066–1087
    • (2013) Mol Aspects Med , vol.34 , Issue.6 , pp. 1066-1087
    • Krietsch, J.1
  • 125
    • 0033580856 scopus 로고    scopus 로고
    • PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase
    • COI: 1:CAS:528:DyaK1MXktVylsL8%3D, PID: 10364231
    • Ame JC et al (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868
    • (1999) J Biol Chem , vol.274 , Issue.25 , pp. 17860-17868
    • Ame, J.C.1
  • 126
    • 4344685333 scopus 로고    scopus 로고
    • The PARP superfamily
    • COI: 1:CAS:528:DC%2BD2cXnt1CqtLk%3D, PID: 15273990
    • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893
    • (2004) BioEssays , vol.26 , Issue.8 , pp. 882-893
    • Ame, J.C.1    Spenlehauer, C.2    de Murcia, G.3
  • 127
    • 33745867638 scopus 로고    scopus 로고
    • Poly(ADP-ribose): novel functions for an old molecule
    • COI: 1:CAS:528:DC%2BD28Xms1Ohsb4%3D, PID: 16829982
    • Schreiber V et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528
    • (2006) Nat Rev Mol Cell Biol , vol.7 , Issue.7 , pp. 517-528
    • Schreiber, V.1
  • 128
    • 35649007784 scopus 로고    scopus 로고
    • PARP-1 activation in the ERK signaling pathway
    • COI: 1:CAS:528:DC%2BD2sXht1KgsL3E, PID: 17950909
    • Cohen-Armon M (2007) PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 28(11):556–560
    • (2007) Trends Pharmacol Sci , vol.28 , Issue.11 , pp. 556-560
    • Cohen-Armon, M.1
  • 129
    • 84937555760 scopus 로고    scopus 로고
    • Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance
    • COI: 1:CAS:528:DC%2BC2MXht1SqsbbI, PID: 26091343
    • Bai P (2015) Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958
    • (2015) Mol Cell , vol.58 , Issue.6 , pp. 947-958
    • Bai, P.1
  • 130
    • 28844493947 scopus 로고    scopus 로고
    • Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription
    • COI: 1:CAS:528:DC%2BD2MXht1OqtrjE, PID: 16204234
    • Hassa PO et al (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280(49):40450–40464
    • (2005) J Biol Chem , vol.280 , Issue.49 , pp. 40450-40464
    • Hassa, P.O.1
  • 131
    • 84886723521 scopus 로고    scopus 로고
    • Poly(ADP-ribose): PARadigms and PARadoxes
    • PID: 23290998
    • Burkle A, Virag L (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med 34(6):1046–1065
    • (2013) Mol Aspects Med , vol.34 , Issue.6 , pp. 1046-1065
    • Burkle, A.1    Virag, L.2
  • 132
    • 77950023283 scopus 로고    scopus 로고
    • PARP inhibition: PARP1 and beyond
    • COI: 1:CAS:528:DC%2BC3cXis1yms7w%3D, PID: 20200537
    • Rouleau M et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301
    • (2010) Nat Rev Cancer , vol.10 , Issue.4 , pp. 293-301
    • Rouleau, M.1
  • 133
    • 70350548179 scopus 로고    scopus 로고
    • Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function
    • COI: 1:CAS:528:DC%2BD1MXhtlymtr3E, PID: 19622798
    • Messner S et al (2009) Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB J 23(11):3978–3989
    • (2009) FASEB J , vol.23 , Issue.11 , pp. 3978-3989
    • Messner, S.1
  • 134
    • 84917680186 scopus 로고    scopus 로고
    • Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases
    • COI: 1:CAS:528:DC%2BC2cXmsVClsLw%3D
    • Mashimo M, Kato J, Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23:88–94
    • (2014) DNA Repair (Amst) , vol.23 , pp. 88-94
    • Mashimo, M.1    Kato, J.2    Moss, J.3
  • 135
    • 63849177643 scopus 로고    scopus 로고
    • Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential
    • COI: 1:CAS:528:DC%2BD1MXltFeisr0%3D
    • Min W, Wang ZQ (2009) Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci (Landmark Ed) 14:1619–1626
    • (2009) Front Biosci (Landmark Ed) , vol.14 , pp. 1619-1626
    • Min, W.1    Wang, Z.Q.2
  • 136
    • 84960969254 scopus 로고    scopus 로고
    • Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic Biol Med
    • Brunyanszki A et al (2016) Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.02.024 (Epub ahead of print)
    • (2016)
    • Brunyanszki, A.1
  • 137
    • 84923080018 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerases as modulators of mitochondrial activity
    • COI: 1:CAS:528:DC%2BC2cXitFKksrrL, PID: 25497347
    • Bai P et al (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26(2):75–83
    • (2015) Trends Endocrinol Metab , vol.26 , Issue.2 , pp. 75-83
    • Bai, P.1
  • 138
    • 84941028477 scopus 로고    scopus 로고
    • Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function
    • COI: 1:CAS:528:DC%2BC28XhsVKmurrM, PID: 25378300
    • Szczesny B et al (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42(21):13161–13173
    • (2014) Nucleic Acids Res , vol.42 , Issue.21 , pp. 13161-13173
    • Szczesny, B.1
  • 139
    • 84904300961 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis
    • COI: 1:CAS:528:DC%2BC2cXhtVOit7bJ, PID: 24987120
    • Andrabi SA et al (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.28 , pp. 10209-10214
    • Andrabi, S.A.1
  • 140
    • 37849013404 scopus 로고    scopus 로고
    • Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix
    • COI: 1:CAS:528:DC%2BD1cXkslGrsw%3D%3D, PID: 17991898
    • Niere M et al (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824
    • (2008) Mol Cell Biol , vol.28 , Issue.2 , pp. 814-824
    • Niere, M.1
  • 141
    • 20444454999 scopus 로고    scopus 로고
    • Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction
    • COI: 1:CAS:528:DC%2BD2MXjsFOgtbg%3D, PID: 15750180
    • Cipriani G et al (2005) Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280(17):17227–17234
    • (2005) J Biol Chem , vol.280 , Issue.17 , pp. 17227-17234
    • Cipriani, G.1
  • 142
    • 0019790092 scopus 로고
    • Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes
    • COI: 1:CAS:528:DyaL38XivVCktA%3D%3D, PID: 6458707
    • Sims JL, Berger SJ, Berger NA (1981) Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes. J Supramol Struct Cell Biochem 16(3):281–288
    • (1981) J Biol Chem , vol.16 , Issue.3 , pp. 281-288
    • Sims, J.L.1    Berger, S.J.2    Berger, N.A.3
  • 143
    • 48949116207 scopus 로고    scopus 로고
    • Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation
    • COI: 1:CAS:528:DC%2BD1cXovF2jur4%3D, PID: 18436469
    • Haenni SS et al (2008) Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 40(10):2274–2283
    • (2008) Int J Biochem Cell Biol , vol.40 , Issue.10 , pp. 2274-2283
    • Haenni, S.S.1
  • 144
    • 84886717428 scopus 로고    scopus 로고
    • Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
    • COI: 1:CAS:528:DC%2BC3sXislyltLY%3D, PID: 23357756
    • Canto C, Sauve AA, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34(6):1168–1201
    • (2013) Mol Aspects Med , vol.34 , Issue.6 , pp. 1168-1201
    • Canto, C.1    Sauve, A.A.2    Bai, P.3
  • 145
    • 30044443515 scopus 로고    scopus 로고
    • + depletion and reduced Sir2alpha deacetylase activity
    • COI: 1:CAS:528:DC%2BD2MXhtlCmsbzJ, PID: 16207712
    • + depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280(52):43121–43130
    • (2005) J Biol Chem , vol.280 , Issue.52 , pp. 43121-43130
    • Pillai, J.B.1
  • 146
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • COI: 1:CAS:528:DC%2BC3MXktF2nsLc%3D, PID: 21459330
    • Bai P et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468
    • (2011) Cell Metab , vol.13 , Issue.4 , pp. 461-468
    • Bai, P.1
  • 147
    • 84960371324 scopus 로고    scopus 로고
    • Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage
    • COI: 1:CAS:528:DC%2BC28Xkt1Wntro%3D, PID: 26692487
    • Gao J et al (2016) Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage. Biochem Biophys Res Commun 472(3):425–431
    • (2016) Biochem Biophys Res Commun , vol.472 , Issue.3 , pp. 425-431
    • Gao, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.