-
1
-
-
84858414020
-
Cellular metabolism and disease: what do metabolic outliers teach us?
-
COI: 1:CAS:528:DC%2BC38Xkt1Ggt7w%3D, PID: 22424225
-
DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148(6):1132–1144
-
(2012)
Cell
, vol.148
, Issue.6
, pp. 1132-1144
-
-
DeBerardinis, R.J.1
Thompson, C.B.2
-
2
-
-
84858376953
-
Mitochondria: in sickness and in health
-
COI: 1:CAS:528:DC%2BC38Xkt1Gitrg%3D, PID: 22424226
-
Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159
-
(2012)
Cell
, vol.148
, Issue.6
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
3
-
-
84865643438
-
Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases
-
COI: 1:CAS:528:DC%2BC38Xht1Gku7jF, PID: 22446749
-
Salminen A et al (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69(18):2999–3013
-
(2012)
Cell Mol Life Sci
, vol.69
, Issue.18
, pp. 2999-3013
-
-
Salminen, A.1
-
4
-
-
84867738060
-
Mitochondria as a drug target in ischemic heart disease and cardiomyopathy
-
COI: 1:CAS:528:DC%2BC38XhsV2isrbM, PID: 23065345
-
Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111(9):1222–1236
-
(2012)
Circ Res
, vol.111
, Issue.9
, pp. 1222-1236
-
-
Walters, A.M.1
Porter, G.A.2
Brookes, P.S.3
-
5
-
-
84874496689
-
Mitochondrial involvement in neurodegenerative diseases
-
COI: 1:CAS:528:DC%2BC3sXhtFKqs7k%3D, PID: 23341346
-
Zsurka G, Kunz WS (2013) Mitochondrial involvement in neurodegenerative diseases. IUBMB Life 65(3):263–272
-
(2013)
IUBMB Life
, vol.65
, Issue.3
, pp. 263-272
-
-
Zsurka, G.1
Kunz, W.S.2
-
6
-
-
84864950181
-
TCA cycle defects and cancer: when metabolism tunes redox state
-
PID: 22888353
-
Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837
-
(2012)
Int J Cell Biol
, vol.2012
, pp. 161837
-
-
Cardaci, S.1
Ciriolo, M.R.2
-
7
-
-
84920136325
-
Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity
-
COI: 1:CAS:528:DC%2BC2cXkslGntLY%3D, PID: 24614286
-
Desideri E, Vegliante R, Ciriolo MR (2015) Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity. Cancer Lett 356(2 Pt A):217–223
-
(2015)
Cancer Lett
, vol.356
, Issue.2
, pp. 217-223
-
-
Desideri, E.1
Vegliante, R.2
Ciriolo, M.R.3
-
8
-
-
0034960785
-
Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure
-
COI: 1:CAS:528:DC%2BD3MXkvFOqtb4%3D, PID: 11444914
-
Lesnefsky EJ et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089
-
(2001)
J Mol Cell Cardiol
, vol.33
, Issue.6
, pp. 1065-1089
-
-
Lesnefsky, E.J.1
-
9
-
-
14644425217
-
Mitochondrial energy metabolism in heart failure: a question of balance
-
COI: 1:CAS:528:DC%2BD2MXit1emsLY%3D, PID: 15765136
-
Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555
-
(2005)
J Clin Invest
, vol.115
, Issue.3
, pp. 547-555
-
-
Huss, J.M.1
Kelly, D.P.2
-
10
-
-
72949110566
-
Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure
-
COI: 1:CAS:528:DC%2BD1MXhs1Wks7jI, PID: 19843514
-
Bugger H et al (2010) Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 85(2):376–384
-
(2010)
Cardiovasc Res
, vol.85
, Issue.2
, pp. 376-384
-
-
Bugger, H.1
-
11
-
-
27444441492
-
Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity
-
PID: 16246967
-
Boudina S et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112(17):2686–2695
-
(2005)
Circulation
, vol.112
, Issue.17
, pp. 2686-2695
-
-
Boudina, S.1
-
12
-
-
84864302508
-
Regulation of mammalian mitochondrial translation by post-translational modifications
-
COI: 1:CAS:528:DC%2BC38XlvVSntbw%3D, PID: 22480953
-
Koc EC, Koc H (2012) Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta 1819(9–10):1055–1066
-
(2012)
Biochim Biophys Acta
, vol.1819
, Issue.9-10
, pp. 1055-1066
-
-
Koc, E.C.1
Koc, H.2
-
13
-
-
84907327882
-
Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria
-
PID: 25228883
-
Papanicolaou KN, O’Rourke B, Brian Foster D (2014) Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 5:301
-
(2014)
Front Physiol
, vol.5
, pp. 301
-
-
Papanicolaou, K.N.1
O’Rourke, B.2
Brian Foster, D.3
-
14
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
COI: 1:CAS:528:DC%2BC3cXitVSjtbo%3D, PID: 20167786
-
Zhao S et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004
-
(2010)
Science
, vol.327
, Issue.5968
, pp. 1000-1004
-
-
Zhao, S.1
-
15
-
-
84949624063
-
Protein acetylation in metabolism-metabolites and cofactors
-
COI: 1:CAS:528:DC%2BC2MXhslaktrjK, PID: 26503676
-
Menzies KJ et al (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12:43–60
-
(2016)
Nat Rev Endocrinol
, vol.12
, pp. 43-60
-
-
Menzies, K.J.1
-
16
-
-
84918551836
-
Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications
-
COI: 1:CAS:528:DC%2BC2cXhvVGitL%2FE, PID: 25465468
-
Song BJ et al (2014) Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 3:109–123
-
(2014)
Redox Biol
, vol.3
, pp. 109-123
-
-
Song, B.J.1
-
17
-
-
84901854646
-
Post-translational modification of mitochondria as a novel mode of regulation
-
COI: 1:CAS:528:DC%2BC2cXkslelu70%3D, PID: 24632076
-
Hofer A, Wenz T (2014) Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 56:202–220
-
(2014)
Exp Gerontol
, vol.56
, pp. 202-220
-
-
Hofer, A.1
Wenz, T.2
-
18
-
-
84884194110
-
Regulation of protein function and signaling by reversible cysteine S-nitrosylation
-
COI: 1:CAS:528:DC%2BC3sXhsVClsbvE, PID: 23861393
-
Gould N et al (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479
-
(2013)
J Biol Chem
, vol.288
, Issue.37
, pp. 26473-26479
-
-
Gould, N.1
-
19
-
-
0018791141
-
Function of phosphorylation sites on pyruvate dehydrogenase
-
COI: 1:CAS:528:DyaE1MXhvVahsbk%3D, PID: 454401
-
Teague WM et al (1979) Function of phosphorylation sites on pyruvate dehydrogenase. Biochem Biophys Res Commun 87(1):244–252
-
(1979)
Biochem Biophys Res Commun
, vol.87
, Issue.1
, pp. 244-252
-
-
Teague, W.M.1
-
20
-
-
45149093574
-
Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation
-
COI: 1:CAS:528:DC%2BD1cXntlWhu78%3D, PID: 18247338
-
Tibaldi E et al (2008) Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 104(3):840–849
-
(2008)
J Cell Biochem
, vol.104
, Issue.3
, pp. 840-849
-
-
Tibaldi, E.1
-
21
-
-
84870695545
-
Src kinases are important regulators of mitochondrial functions
-
COI: 1:CAS:528:DC%2BC38XhtlSgt7zM, PID: 22951354
-
Hebert-Chatelain E (2013) Src kinases are important regulators of mitochondrial functions. Int J Biochem Cell Biol 45(1):90–98
-
(2013)
Int J Biochem Cell Biol
, vol.45
, Issue.1
, pp. 90-98
-
-
Hebert-Chatelain, E.1
-
22
-
-
84858722900
-
Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10
-
COI: 1:CAS:528:DC%2BC38Xltl2rsb0%3D, PID: 22321370
-
Hebert-Chatelain E et al (2012) Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochim Biophys Acta 1817(5):718–725
-
(2012)
Biochim Biophys Acta
, vol.1817
, Issue.5
, pp. 718-725
-
-
Hebert-Chatelain, E.1
-
23
-
-
0030040319
-
The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase
-
COI: 1:CAS:528:DyaK28Xht1Wlu78%3D, PID: 8603710
-
Papa S et al (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379(3):299–301
-
(1996)
FEBS Lett
, vol.379
, Issue.3
, pp. 299-301
-
-
Papa, S.1
-
24
-
-
0035793474
-
Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome
-
COI: 1:CAS:528:DC%2BD3MXpsF2mug%3D%3D, PID: 11165261
-
Papa S et al (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489(2–3):259–262
-
(2001)
FEBS Lett
, vol.489
, Issue.2-3
, pp. 259-262
-
-
Papa, S.1
-
25
-
-
22744437103
-
Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition
-
COI: 1:CAS:528:DC%2BD2MXmvFSjur4%3D, PID: 16023995
-
He L, Lemasters JJ (2005) Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun 334(3):829–837
-
(2005)
Biochem Biophys Res Commun
, vol.334
, Issue.3
, pp. 829-837
-
-
He, L.1
Lemasters, J.J.2
-
26
-
-
21544448596
-
Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery
-
COI: 1:CAS:528:DC%2BD2MXhtFCgs7bN, PID: 15924266
-
Augereau O et al (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62(13):1478–1488
-
(2005)
Cell Mol Life Sci
, vol.62
, Issue.13
, pp. 1478-1488
-
-
Augereau, O.1
-
27
-
-
79958034385
-
Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation
-
COI: 1:CAS:528:DC%2BC3MXntFSlurg%3D, PID: 21641552
-
Acin-Perez R et al (2011) Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab 13(6):712–719
-
(2011)
Cell Metab
, vol.13
, Issue.6
, pp. 712-719
-
-
Acin-Perez, R.1
-
28
-
-
80052219693
-
A phosphodiesterase 2A isoform localized to mitochondria regulates respiration
-
COI: 1:CAS:528:DC%2BC3MXhtVOkt7bJ, PID: 21724846
-
Acin-Perez R et al (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286(35):30423–30432
-
(2011)
J Biol Chem
, vol.286
, Issue.35
, pp. 30423-30432
-
-
Acin-Perez, R.1
-
29
-
-
0037416134
-
Regulation of cytochrome c oxidase activity by c-Src in osteoclasts
-
COI: 1:CAS:528:DC%2BD3sXhvFWls7s%3D, PID: 12615910
-
Miyazaki T et al (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160(5):709–718
-
(2003)
J Cell Biol
, vol.160
, Issue.5
, pp. 709-718
-
-
Miyazaki, T.1
-
30
-
-
3543025709
-
Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II
-
COI: 1:CAS:528:DC%2BD2cXmtlOjtrg%3D, PID: 15282306
-
Boerner JL et al (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24(16):7059–7071
-
(2004)
Mol Cell Biol
, vol.24
, Issue.16
, pp. 7059-7071
-
-
Boerner, J.L.1
-
31
-
-
84871905514
-
Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism
-
PID: 23232401
-
Ding Y et al (2012) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3:1271
-
(2012)
Nat Commun
, vol.3
, pp. 1271
-
-
Ding, Y.1
-
32
-
-
40849120423
-
Identification of new tyrosine phosphorylated proteins in rat brain mitochondria
-
COI: 1:CAS:528:DC%2BD1cXjs1Khtrw%3D, PID: 18331841
-
Lewandrowski U et al (2008) Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett 582(7):1104–1110
-
(2008)
FEBS Lett
, vol.582
, Issue.7
, pp. 1104-1110
-
-
Lewandrowski, U.1
-
33
-
-
48749122530
-
Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis
-
COI: 1:CAS:528:DC%2BD1cXpsVygsbw%3D, PID: 18381814
-
Yuan S et al (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J 22(8):2809–2820
-
(2008)
FASEB J
, vol.22
, Issue.8
, pp. 2809-2820
-
-
Yuan, S.1
-
34
-
-
59849101586
-
Function of mitochondrial Stat3 in cellular respiration
-
COI: 1:CAS:528:DC%2BD1MXhtlersbg%3D, PID: 19131594
-
Wegrzyn J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797
-
(2009)
Science
, vol.323
, Issue.5915
, pp. 793-797
-
-
Wegrzyn, J.1
-
35
-
-
81355146580
-
Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion
-
COI: 1:CAS:528:DC%2BC3MXhsVCjsrnP, PID: 21980124
-
Heusch G et al (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109(11):1302–1308
-
(2011)
Circ Res
, vol.109
, Issue.11
, pp. 1302-1308
-
-
Heusch, G.1
-
36
-
-
53749100817
-
The myocardial JAK/STAT pathway: from protection to failure
-
COI: 1:CAS:528:DC%2BD1cXht1Knsb3J, PID: 18786563
-
Boengler K et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120(2):172–185
-
(2008)
Pharmacol Ther
, vol.120
, Issue.2
, pp. 172-185
-
-
Boengler, K.1
-
37
-
-
84880105471
-
Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery
-
COI: 1:CAS:528:DC%2BC3sXktlert7Y%3D, PID: 23514336
-
Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679
-
(2013)
Chem Rev
, vol.113
, Issue.7
, pp. 4633-4679
-
-
Paulsen, C.E.1
Carroll, K.S.2
-
38
-
-
84949545879
-
The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function
-
PID: 26635632
-
Kramer PA et al (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347
-
(2015)
Front Physiol
, vol.6
, pp. 347
-
-
Kramer, P.A.1
-
39
-
-
84892575903
-
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
-
COI: 1:CAS:528:DC%2BC2cXht1Kqt7zO, PID: 24455476
-
Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139
-
(2014)
Redox Biol
, vol.2
, pp. 123-139
-
-
Mailloux, R.J.1
Jin, X.2
Willmore, W.G.3
-
40
-
-
84898785937
-
Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics
-
COI: 1:CAS:528:DC%2BC2cXovVKjt7s%3D, PID: 24681256
-
Levonen AL et al (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207
-
(2014)
Free Radic Biol Med
, vol.71
, pp. 196-207
-
-
Levonen, A.L.1
-
41
-
-
84939999016
-
Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology
-
COI: 1:CAS:528:DC%2BC2MXhsl2ltw%3D%3D, PID: 25433127
-
Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47
-
(2015)
Life Sci
, vol.129
, pp. 42-47
-
-
Victorino, V.J.1
Mencalha, A.L.2
Panis, C.3
-
42
-
-
33745631769
-
2, a necessary evil for cell signaling
-
PID: 16809515
-
2, a necessary evil for cell signaling. Science 312(5782):1882–1883
-
(2006)
Science
, vol.312
, Issue.5782
, pp. 1882-1883
-
-
Rhee, S.G.1
-
43
-
-
84942777656
-
Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases
-
COI: 1:CAS:528:DC%2BC2MXovVShur4%3D, PID: 25999419
-
Kornfeld OS et al (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116(11):1783–1799
-
(2015)
Circ Res
, vol.116
, Issue.11
, pp. 1783-1799
-
-
Kornfeld, O.S.1
-
44
-
-
84894165975
-
Cardiac mitochondria and reactive oxygen species generation
-
COI: 1:CAS:528:DC%2BC2cXhs1yhsbg%3D, PID: 24481843
-
Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114(3):524–537
-
(2014)
Circ Res
, vol.114
, Issue.3
, pp. 524-537
-
-
Chen, Y.R.1
Zweier, J.L.2
-
45
-
-
33751183752
-
Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow
-
COI: 1:CAS:528:DC%2BD28XhtFymt7bO, PID: 17023676
-
Saitoh S et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614–2621
-
(2006)
Arterioscler Thromb Vasc Biol
, vol.26
, Issue.12
, pp. 2614-2621
-
-
Saitoh, S.1
-
46
-
-
84901066101
-
Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway
-
COI: 1:CAS:528:DC%2BC2cXlvFenuro%3D, PID: 24716714
-
Chang AH et al (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol 27(5):794–804
-
(2014)
Chem Res Toxicol
, vol.27
, Issue.5
, pp. 794-804
-
-
Chang, A.H.1
-
47
-
-
77955492720
-
Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation
-
COI: 1:CAS:528:DC%2BC3cXptlyltrk%3D, PID: 20533907
-
Chouchani ET et al (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430(1):49–59
-
(2010)
Biochem J
, vol.430
, Issue.1
, pp. 49-59
-
-
Chouchani, E.T.1
-
48
-
-
1542328892
-
S-nitrosylation: a potential new paradigm in signal transduction
-
COI: 1:CAS:528:DC%2BD2cXitFejur8%3D, PID: 15023551
-
Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62(1):43–52
-
(2004)
Cardiovasc Res
, vol.62
, Issue.1
, pp. 43-52
-
-
Martinez-Ruiz, A.1
Lamas, S.2
-
49
-
-
84901823953
-
Signaling by S-nitrosylation in the heart
-
COI: 1:CAS:528:DC%2BC2cXhs1KntLs%3D, PID: 24440455
-
Murphy E et al (2014) Signaling by S-nitrosylation in the heart. J Mol Cell Cardiol 73:18–25
-
(2014)
J Mol Cell Cardiol
, vol.73
, pp. 18-25
-
-
Murphy, E.1
-
50
-
-
84860481279
-
Regulation of mitochondrial processes by protein S-nitrosylation
-
COI: 1:CAS:528:DC%2BC38XmtlWrsLg%3D, PID: 21397666
-
Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta 1820(6):712–721
-
(2012)
Biochim Biophys Acta
, vol.1820
, Issue.6
, pp. 712-721
-
-
Piantadosi, C.A.1
-
51
-
-
84872577684
-
Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
-
PID: 23281369
-
Doulias PT et al (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal 6(256):rs1
-
(2013)
Sci Signal
, vol.6
, Issue.256
, pp. rs1
-
-
Doulias, P.T.1
-
52
-
-
0035282782
-
Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase
-
COI: 1:CAS:528:DC%2BD3MXhsFSit7s%3D, PID: 11239484
-
Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504(1):46–57
-
(2001)
Biochim Biophys Acta
, vol.1504
, Issue.1
, pp. 46-57
-
-
Brown, G.C.1
-
53
-
-
0346362068
-
Nitric oxide and mitochondrial complex IV
-
COI: 1:CAS:528:DC%2BD2cXptlylsg%3D%3D, PID: 14711006
-
Sarti P et al (2003) Nitric oxide and mitochondrial complex IV. IUBMB Life 55(10–11):605–611
-
(2003)
IUBMB Life
, vol.55
, Issue.10-11
, pp. 605-611
-
-
Sarti, P.1
-
54
-
-
81155123702
-
Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
-
COI: 1:CAS:528:DC%2BC3MXhsVKjs77F, PID: 21930693
-
Nguyen TT et al (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286(46):40184–40192
-
(2011)
J Biol Chem
, vol.286
, Issue.46
, pp. 40184-40192
-
-
Nguyen, T.T.1
-
55
-
-
79953179727
-
Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection
-
PID: 21036925
-
Murray CI et al (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10(3):4721
-
(2011)
Mol Cell Proteomics
, vol.10
, Issue.3
, pp. 4721
-
-
Murray, C.I.1
-
56
-
-
0041766297
-
Screening for nitric oxide-dependent protein–protein interactions
-
COI: 1:CAS:528:DC%2BD3sXlvVKnsb4%3D, PID: 12893946
-
Matsumoto A et al (2003) Screening for nitric oxide-dependent protein–protein interactions. Science 301(5633):657–661
-
(2003)
Science
, vol.301
, Issue.5633
, pp. 657-661
-
-
Matsumoto, A.1
-
57
-
-
67649757115
-
A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury
-
COI: 1:CAS:528:DC%2BD1MXosF2hs7s%3D, PID: 19528654
-
Prime TA et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury. Proc Natl Acad Sci USA 106(26):10764–10769
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.26
, pp. 10764-10769
-
-
Prime, T.A.1
-
58
-
-
65549133282
-
Endogenous S-nitrosothiols protect against myocardial injury
-
COI: 1:CAS:528:DC%2BD1MXlsFals7w%3D, PID: 19325130
-
Lima B et al (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci USA 106(15):6297–6302
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.15
, pp. 6297-6302
-
-
Lima, B.1
-
59
-
-
33644992047
-
Direct evidence for S-nitrosation of mitochondrial complex I
-
COI: 1:CAS:528:DC%2BD28XhvVemtbg%3D, PID: 16371007
-
Burwell LS et al (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394(Pt 3):627–634
-
(2006)
Biochem J
, vol.394
, pp. 627-634
-
-
Burwell, L.S.1
-
60
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
COI: 1:CAS:528:DC%2BC3sXot1Cgur8%3D, PID: 23708290
-
Chouchani ET et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759
-
(2013)
Nat Med
, vol.19
, Issue.6
, pp. 753-759
-
-
Chouchani, E.T.1
-
61
-
-
79959381299
-
Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease
-
COI: 1:CAS:528:DC%2BC3MXptVCntr4%3D, PID: 21391816
-
Hart GW et al (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 825-858
-
-
Hart, G.W.1
-
62
-
-
52949123249
-
Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc
-
COI: 1:CAS:528:DC%2BD1cXhtFKiurvP, PID: 18779572
-
Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 105(37):13793–13798
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.37
, pp. 13793-13798
-
-
Wang, Z.1
Gucek, M.2
Hart, G.W.3
-
63
-
-
50349093142
-
Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity
-
COI: 1:CAS:528:DC%2BD1cXoslyhtLY%3D, PID: 18445751
-
Copeland RJ, Bullen JW, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 295(1):E17–E28
-
(2008)
Am J Physiol Endocrinol Metab
, vol.295
, Issue.1
, pp. E17-E28
-
-
Copeland, R.J.1
Bullen, J.W.2
Hart, G.W.3
-
64
-
-
84903767444
-
O-GlcNAc profiling: from proteins to proteomes
-
PID: 24593906
-
Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11(1):8
-
(2014)
Clin Proteomics
, vol.11
, Issue.1
, pp. 8
-
-
Ma, J.1
Hart, G.W.2
-
65
-
-
84929191592
-
Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria
-
COI: 1:CAS:528:DC%2BC2MXntFCis7c%3D, PID: 25918408
-
Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 112(19):6050–6055
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.19
, pp. 6050-6055
-
-
Banerjee, P.S.1
Ma, J.2
Hart, G.W.3
-
66
-
-
0037440370
-
Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene
-
COI: 1:CAS:528:DC%2BD38Xps12ks7Y%3D, PID: 12504895
-
Hanover JA et al (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409(2):287–297
-
(2003)
Arch Biochem Biophys
, vol.409
, Issue.2
, pp. 287-297
-
-
Hanover, J.A.1
-
67
-
-
0037442984
-
Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase
-
COI: 1:CAS:528:DC%2BD3sXhvVOktbg%3D, PID: 12538765
-
Love DC et al (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116(Pt 4):647–654
-
(2003)
J Cell Sci
, vol.116
, pp. 647-654
-
-
Love, D.C.1
-
68
-
-
84865457924
-
Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes
-
COI: 1:CAS:528:DC%2BC38Xht1CgtrjE, PID: 22745122
-
Gawlowski T et al (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287(35):30024–30034
-
(2012)
J Biol Chem
, vol.287
, Issue.35
, pp. 30024-30034
-
-
Gawlowski, T.1
-
69
-
-
84884890368
-
Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods
-
COI: 1:CAS:528:DC%2BC3sXhsFyrurvM, PID: 24098488
-
Cao W et al (2013) Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One 8(10):e76399
-
(2013)
PLoS One
, vol.8
, Issue.10
-
-
Cao, W.1
-
70
-
-
48849094054
-
Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition
-
COI: 1:CAS:528:DC%2BD1cXhtVSjs7fI, PID: 18539296
-
Ngoh GA et al (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45(2):313–325
-
(2008)
J Mol Cell Cardiol
, vol.45
, Issue.2
, pp. 313-325
-
-
Ngoh, G.A.1
-
71
-
-
58649095123
-
Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose
-
COI: 1:CAS:528:DC%2BD1cXhsFCjtLvK, PID: 19004814
-
Hu Y et al (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284(1):547–555
-
(2009)
J Biol Chem
, vol.284
, Issue.1
, pp. 547-555
-
-
Hu, Y.1
-
72
-
-
84872202540
-
Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity
-
COI: 1:CAS:528:DC%2BC3sXjvVOrs7w%3D, PID: 23132757
-
Johnsen VL et al (2013) Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol Genomics 45(1):17–25
-
(2013)
Physiol Genomics
, vol.45
, Issue.1
, pp. 17-25
-
-
Johnsen, V.L.1
-
73
-
-
84901407632
-
Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function
-
COI: 1:CAS:528:DC%2BC2cXos1arurY%3D, PID: 24713701
-
Tan EP et al (2014) Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 289(21):14719–14730
-
(2014)
J Biol Chem
, vol.289
, Issue.21
, pp. 14719-14730
-
-
Tan, E.P.1
-
74
-
-
79954441395
-
Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis
-
COI: 1:CAS:528:DC%2BC3MXitFGqsL4%3D, PID: 20824293
-
Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40(3):885–893
-
(2011)
Amino Acids
, vol.40
, Issue.3
, pp. 885-893
-
-
Shin, S.H.1
Love, D.C.2
Hanover, J.A.3
-
75
-
-
84867279863
-
Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy
-
COI: 1:CAS:528:DC%2BC38Xhs1yktL%2FF, PID: 22874425
-
Fricovsky ES et al (2012) Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 303(7):R689–R699
-
(2012)
Am J Physiol Regul Integr Comp Physiol
, vol.303
, Issue.7
, pp. R689-R699
-
-
Fricovsky, E.S.1
-
76
-
-
84875223772
-
Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice
-
COI: 1:CAS:528:DC%2BC38XhsVCnsrfM, PID: 23000101
-
Bennett CE et al (2013) Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 92(11):657–663
-
(2013)
Life Sci
, vol.92
, Issue.11
, pp. 657-663
-
-
Bennett, C.E.1
-
77
-
-
0037135972
-
The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
-
COI: 1:CAS:528:DC%2BD38XmsVSntbk%3D, PID: 12186850
-
Schwer B et al (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158(4):647–657
-
(2002)
J Cell Biol
, vol.158
, Issue.4
, pp. 647-657
-
-
Schwer, B.1
-
78
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
COI: 1:CAS:528:DC%2BD2MXhtVygtL%2FP, PID: 16079181
-
Michishita E et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635
-
(2005)
Mol Biol Cell
, vol.16
, Issue.10
, pp. 4623-4635
-
-
Michishita, E.1
-
79
-
-
84867594869
-
Mitochondrial protein acetylation regulates metabolism
-
COI: 1:CAS:528:DC%2BC38Xht1ShurrM, PID: 22708561
-
Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35
-
(2012)
Essays Biochem
, vol.52
, pp. 23-35
-
-
Anderson, K.A.1
Hirschey, M.D.2
-
80
-
-
84860192261
-
Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1
-
COI: 1:CAS:528:DC%2BC38Xls1Shsb0%3D, PID: 22309213
-
Scott I et al (2012) Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem J 443(3):655–661
-
(2012)
Biochem J
, vol.443
, Issue.3
, pp. 655-661
-
-
Scott, I.1
-
81
-
-
84885155285
-
Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix
-
COI: 1:CAS:528:DC%2BC3sXhsFKqsbzP, PID: 23946487
-
Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288(40):29036–29045
-
(2013)
J Biol Chem
, vol.288
, Issue.40
, pp. 29036-29045
-
-
Wagner, G.R.1
Payne, R.M.2
-
82
-
-
84902331962
-
Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation
-
COI: 1:CAS:528:DC%2BC2cXpvV2rs7s%3D, PID: 24516071
-
Pougovkina O et al (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 23(13):3513–3522
-
(2014)
Hum Mol Genet
, vol.23
, Issue.13
, pp. 3513-3522
-
-
Pougovkina, O.1
-
83
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
COI: 1:CAS:528:DC%2BD28XpvVKiur8%3D, PID: 16959573
-
Haigis MC et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
-
84
-
-
36349030394
-
Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
-
COI: 1:CAS:528:DC%2BD2sXht1Oqsr%2FK, PID: 17715127
-
Ahuja N et al (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282(46):33583–33592
-
(2007)
J Biol Chem
, vol.282
, Issue.46
, pp. 33583-33592
-
-
Ahuja, N.1
-
85
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
COI: 1:CAS:528:DC%2BC3sXhvV2qsr%2FF, PID: 24121500
-
Bharathi SS et al (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288(47):33837–33847
-
(2013)
J Biol Chem
, vol.288
, Issue.47
, pp. 33837-33847
-
-
Bharathi, S.S.1
-
86
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
COI: 1:CAS:528:DC%2BC3cXislahsLY%3D, PID: 20203611
-
Hirschey MD et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125
-
(2010)
Nature
, vol.464
, Issue.7285
, pp. 121-125
-
-
Hirschey, M.D.1
-
87
-
-
84907186695
-
SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells
-
COI: 1:CAS:528:DC%2BC2cXhsFWnt77O, PID: 25152236
-
Ozden O et al (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172
-
(2014)
Free Radic Biol Med
, vol.76
, pp. 163-172
-
-
Ozden, O.1
-
88
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
COI: 1:CAS:528:DC%2BD28XntlKmsLw%3D, PID: 16788062
-
Schwer B et al (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103(27):10224–10229
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.27
, pp. 10224-10229
-
-
Schwer, B.1
-
89
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
COI: 1:CAS:528:DC%2BC3cXhsVygsLfI, PID: 21094524
-
Someya S et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812
-
(2010)
Cell
, vol.143
, Issue.5
, pp. 802-812
-
-
Someya, S.1
-
90
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
COI: 1:CAS:528:DC%2BD1MXhsFOgtb3O, PID: 20000467
-
Cimen H et al (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49(2):304–311
-
(2010)
Biochemistry
, vol.49
, Issue.2
, pp. 304-311
-
-
Cimen, H.1
-
91
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
COI: 1:CAS:528:DC%2BC3MXhtFKmsLnO, PID: 21858060
-
Finley LWS et al (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6(8):e23295
-
(2011)
PLoS One
, vol.6
, Issue.8
-
-
Finley, L.W.S.1
-
92
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
COI: 1:CAS:528:DC%2BD1cXht1SgtrbL, PID: 18794531
-
Ahn B-H et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci 105(38):14447–14452
-
(2008)
Proc Natl Acad Sci
, vol.105
, Issue.38
, pp. 14447-14452
-
-
Ahn, B.-H.1
-
93
-
-
80051802678
-
Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain
-
COI: 1:CAS:528:DC%2BC3MXpslOksbY%3D, PID: 21700931
-
Shinmura K et al (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109(4):396–406
-
(2011)
Circ Res
, vol.109
, Issue.4
, pp. 396-406
-
-
Shinmura, K.1
-
94
-
-
84876217035
-
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
-
COI: 1:CAS:528:DC%2BC3sXnvVOksr8%3D, PID: 23576753
-
Rardin MJ et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110(16):6601–6606
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.16
, pp. 6601-6606
-
-
Rardin, M.J.1
-
95
-
-
79952266729
-
Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
-
COI: 1:CAS:528:DC%2BC3MXhtVSisrg%3D
-
Hafner AV et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923
-
(2010)
Aging (Albany NY)
, vol.2
, Issue.12
, pp. 914-923
-
-
Hafner, A.V.1
-
96
-
-
84933575770
-
Lysine acetylation activates mitochondrial aconitase in the heart
-
COI: 1:CAS:528:DC%2BC2MXhtVShtbrO, PID: 26061789
-
Fernandes J et al (2015) Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 54(25):4008–4018
-
(2015)
Biochemistry
, vol.54
, Issue.25
, pp. 4008-4018
-
-
Fernandes, J.1
-
97
-
-
84902670910
-
SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress
-
COI: 1:CAS:528:DC%2BC2cXhtFensb%2FO, PID: 24252090
-
Vassilopoulos A et al (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21:551–564
-
(2014)
Antioxid Redox Signal
, vol.21
, pp. 551-564
-
-
Vassilopoulos, A.1
-
98
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
COI: 1:CAS:528:DC%2BC3cXhtV2gs7%2FK, PID: 20647045
-
Bao J et al (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med 49(7):1230–1237
-
(2010)
Free Radic Biol Med
, vol.49
, Issue.7
, pp. 1230-1237
-
-
Bao, J.1
-
99
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
COI: 1:CAS:528:DC%2BD1cXht1SgtrbL, PID: 18794531
-
Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS 105:14447–14452
-
(2008)
PNAS
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
Deng, C.X.7
Finkel, T.8
-
100
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
COI: 1:CAS:528:DC%2BD28XntlKmt74%3D, PID: 16790548
-
Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci 103(27):10230–10235
-
(2006)
Proc Natl Acad Sci
, vol.103
, Issue.27
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
101
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
COI: 1:CAS:528:DC%2BC3cXhsVyhs7jI, PID: 21109197
-
Shimazu T et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12(6):654–661
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 654-661
-
-
Shimazu, T.1
-
102
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
COI: 1:CAS:528:DC%2BC3sXptFOmuro%3D, PID: 23746352
-
Laurent G et al (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50(5):686–698
-
(2013)
Mol Cell
, vol.50
, Issue.5
, pp. 686-698
-
-
Laurent, G.1
-
103
-
-
77951176793
-
Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
-
COI: 1:CAS:528:DC%2BC3cXltlWrtbo%3D, PID: 20159966
-
Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902
-
(2010)
J Cell Sci
, vol.123
, pp. 894-902
-
-
Shulga, N.1
Wilson-Smith, R.2
Pastorino, J.G.3
-
104
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
COI: 1:CAS:528:DC%2BC3sXhsFOhtLrF, PID: 23835326
-
Jing E et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62(10):3404–3417
-
(2013)
Diabetes
, vol.62
, Issue.10
, pp. 3404-3417
-
-
Jing, E.1
-
105
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
COI: 1:CAS:528:DC%2BC3MXmtV2hs7k%3D, PID: 21566644
-
Chen Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12(6):534–541
-
(2011)
EMBO Rep
, vol.12
, Issue.6
, pp. 534-541
-
-
Chen, Y.1
-
106
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
COI: 1:CAS:528:DC%2BC3cXhsVyhs7jJ, PID: 21109198
-
Qiu X et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 662-667
-
-
Qiu, X.1
-
107
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
COI: 1:CAS:528:DC%2BC3cXhsF2isbfK, PID: 21172655
-
Tao R et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904
-
(2010)
Mol Cell
, vol.40
, Issue.6
, pp. 893-904
-
-
Tao, R.1
-
108
-
-
84881076472
-
Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress
-
COI: 1:CAS:528:DC%2BC3sXhtFGls7bO, PID: 23868064
-
Cheng Y et al (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 4:e731
-
(2013)
Cell Death Dis
, vol.4
-
-
Cheng, Y.1
-
109
-
-
84943391158
-
Protective effects of sirtuins in cardiovascular diseases: from bench to bedside
-
PID: 26112889
-
Winnik S et al (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36:3404–3412
-
(2015)
Eur Heart J
, vol.36
, pp. 3404-3412
-
-
Winnik, S.1
-
110
-
-
84872308934
-
SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB
-
COI: 1:CAS:528:DC%2BC38XhvVKqurbE, PID: 23201401
-
Chen CJ et al (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun 430(2):798–803
-
(2013)
Biochem Biophys Res Commun
, vol.430
, Issue.2
, pp. 798-803
-
-
Chen, C.J.1
-
111
-
-
84928403220
-
Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes
-
COI: 1:CAS:528:DC%2BC2MXntFSqtr8%3D, PID: 25759382
-
Cheung KG et al (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993
-
(2015)
J Biol Chem
, vol.290
, Issue.17
, pp. 10981-10993
-
-
Cheung, K.G.1
-
112
-
-
84879059766
-
SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
-
COI: 1:CAS:528:DC%2BC3sXhtFyjsbjI, PID: 23665396
-
Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234
-
(2013)
Free Radic Biol Med
, vol.63
, pp. 222-234
-
-
Tseng, A.H.1
Shieh, S.S.2
Wang, D.L.3
-
113
-
-
84929121391
-
Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD
-
PID: 25748450
-
Chen TS et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10(3):e0118909
-
(2015)
PLoS One
, vol.10
, Issue.3
-
-
Chen, T.S.1
-
114
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
COI: 1:CAS:528:DC%2BD1MXhtFWgs7%2FN, PID: 19652361
-
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771
-
(2009)
J Clin Invest
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
115
-
-
84929088095
-
SIRT3 deficiency impairs mitochondrial and contractile function in the heart
-
PID: 25962702
-
Koentges C et al (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36
-
(2015)
Basic Res Cardiol
, vol.110
, Issue.4
, pp. 36
-
-
Koentges, C.1
-
116
-
-
84902687763
-
SIRT3 deficiency exacerbates ischemia–reperfusion injury: implication for aged hearts
-
COI: 1:CAS:528:DC%2BC2cXhtFalurrF, PID: 24748594
-
Porter GA et al (2014) SIRT3 deficiency exacerbates ischemia–reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306(12):H1602–H1609
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.306
, Issue.12
, pp. H1602-H1609
-
-
Porter, G.A.1
-
117
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
COI: 1:CAS:528:DC%2BC3sXhtVWlsLrI, PID: 23806337
-
Park J et al (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930
-
(2013)
Mol Cell
, vol.50
, Issue.6
, pp. 919-930
-
-
Park, J.1
-
118
-
-
84889636259
-
SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
-
COI: 1:CAS:528:DC%2BC3sXhvFOlsb3N, PID: 24315375
-
Rardin MJ et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18(6):920–933
-
(2013)
Cell Metab
, vol.18
, Issue.6
, pp. 920-933
-
-
Rardin, M.J.1
-
119
-
-
84937517955
-
SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
-
COI: 1:CAS:528:DC%2BC2MXhtVeiu7zO, PID: 26073543
-
Nishida Y et al (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59(2):321–332
-
(2015)
Mol Cell
, vol.59
, Issue.2
, pp. 321-332
-
-
Nishida, Y.1
-
120
-
-
84887412525
-
SIRT5 desuccinylates and activates SOD1 to eliminate ROS
-
COI: 1:CAS:528:DC%2BC3sXhs1yqtbrO, PID: 24140062
-
Lin ZF et al (2013) SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun 441(1):191–195
-
(2013)
Biochem Biophys Res Commun
, vol.441
, Issue.1
, pp. 191-195
-
-
Lin, Z.F.1
-
121
-
-
84897565291
-
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
-
COI: 1:CAS:528:DC%2BC2cXlvFeqtrY%3D, PID: 24703693
-
Tan M et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19(4):605–617
-
(2014)
Cell Metab
, vol.19
, Issue.4
, pp. 605-617
-
-
Tan, M.1
-
122
-
-
77951023118
-
Toward a unified nomenclature for mammalian ADP-ribosyltransferases
-
COI: 1:CAS:528:DC%2BC3cXksVegs70%3D, PID: 20106667
-
Hottiger MO et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219
-
(2010)
Trends Biochem Sci
, vol.35
, Issue.4
, pp. 208-219
-
-
Hottiger, M.O.1
-
123
-
-
84870703762
-
Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein
-
COI: 1:CAS:528:DC%2BC38XhsleksrrE, PID: 22581363
-
Szanto M et al (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 69(24):4079–4092
-
(2012)
Cell Mol Life Sci
, vol.69
, Issue.24
, pp. 4079-4092
-
-
Szanto, M.1
-
124
-
-
84886721124
-
Reprogramming cellular events by poly(ADP-ribose)-binding proteins
-
COI: 1:CAS:528:DC%2BC3sXitFKmsro%3D, PID: 23268355
-
Krietsch J et al (2013) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med 34(6):1066–1087
-
(2013)
Mol Aspects Med
, vol.34
, Issue.6
, pp. 1066-1087
-
-
Krietsch, J.1
-
125
-
-
0033580856
-
PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase
-
COI: 1:CAS:528:DyaK1MXktVylsL8%3D, PID: 10364231
-
Ame JC et al (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868
-
(1999)
J Biol Chem
, vol.274
, Issue.25
, pp. 17860-17868
-
-
Ame, J.C.1
-
126
-
-
4344685333
-
The PARP superfamily
-
COI: 1:CAS:528:DC%2BD2cXnt1CqtLk%3D, PID: 15273990
-
Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893
-
(2004)
BioEssays
, vol.26
, Issue.8
, pp. 882-893
-
-
Ame, J.C.1
Spenlehauer, C.2
de Murcia, G.3
-
127
-
-
33745867638
-
Poly(ADP-ribose): novel functions for an old molecule
-
COI: 1:CAS:528:DC%2BD28Xms1Ohsb4%3D, PID: 16829982
-
Schreiber V et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, Issue.7
, pp. 517-528
-
-
Schreiber, V.1
-
128
-
-
35649007784
-
PARP-1 activation in the ERK signaling pathway
-
COI: 1:CAS:528:DC%2BD2sXht1KgsL3E, PID: 17950909
-
Cohen-Armon M (2007) PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 28(11):556–560
-
(2007)
Trends Pharmacol Sci
, vol.28
, Issue.11
, pp. 556-560
-
-
Cohen-Armon, M.1
-
129
-
-
84937555760
-
Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance
-
COI: 1:CAS:528:DC%2BC2MXht1SqsbbI, PID: 26091343
-
Bai P (2015) Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958
-
(2015)
Mol Cell
, vol.58
, Issue.6
, pp. 947-958
-
-
Bai, P.1
-
130
-
-
28844493947
-
Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription
-
COI: 1:CAS:528:DC%2BD2MXht1OqtrjE, PID: 16204234
-
Hassa PO et al (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280(49):40450–40464
-
(2005)
J Biol Chem
, vol.280
, Issue.49
, pp. 40450-40464
-
-
Hassa, P.O.1
-
131
-
-
84886723521
-
Poly(ADP-ribose): PARadigms and PARadoxes
-
PID: 23290998
-
Burkle A, Virag L (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med 34(6):1046–1065
-
(2013)
Mol Aspects Med
, vol.34
, Issue.6
, pp. 1046-1065
-
-
Burkle, A.1
Virag, L.2
-
132
-
-
77950023283
-
PARP inhibition: PARP1 and beyond
-
COI: 1:CAS:528:DC%2BC3cXis1yms7w%3D, PID: 20200537
-
Rouleau M et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301
-
(2010)
Nat Rev Cancer
, vol.10
, Issue.4
, pp. 293-301
-
-
Rouleau, M.1
-
133
-
-
70350548179
-
Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function
-
COI: 1:CAS:528:DC%2BD1MXhtlymtr3E, PID: 19622798
-
Messner S et al (2009) Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB J 23(11):3978–3989
-
(2009)
FASEB J
, vol.23
, Issue.11
, pp. 3978-3989
-
-
Messner, S.1
-
134
-
-
84917680186
-
Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases
-
COI: 1:CAS:528:DC%2BC2cXmsVClsLw%3D
-
Mashimo M, Kato J, Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23:88–94
-
(2014)
DNA Repair (Amst)
, vol.23
, pp. 88-94
-
-
Mashimo, M.1
Kato, J.2
Moss, J.3
-
135
-
-
63849177643
-
Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential
-
COI: 1:CAS:528:DC%2BD1MXltFeisr0%3D
-
Min W, Wang ZQ (2009) Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci (Landmark Ed) 14:1619–1626
-
(2009)
Front Biosci (Landmark Ed)
, vol.14
, pp. 1619-1626
-
-
Min, W.1
Wang, Z.Q.2
-
136
-
-
84960969254
-
Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic Biol Med
-
Brunyanszki A et al (2016) Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.02.024 (Epub ahead of print)
-
(2016)
-
-
Brunyanszki, A.1
-
137
-
-
84923080018
-
Poly(ADP-ribose) polymerases as modulators of mitochondrial activity
-
COI: 1:CAS:528:DC%2BC2cXitFKksrrL, PID: 25497347
-
Bai P et al (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26(2):75–83
-
(2015)
Trends Endocrinol Metab
, vol.26
, Issue.2
, pp. 75-83
-
-
Bai, P.1
-
138
-
-
84941028477
-
Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function
-
COI: 1:CAS:528:DC%2BC28XhsVKmurrM, PID: 25378300
-
Szczesny B et al (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42(21):13161–13173
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.21
, pp. 13161-13173
-
-
Szczesny, B.1
-
139
-
-
84904300961
-
Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis
-
COI: 1:CAS:528:DC%2BC2cXhtVOit7bJ, PID: 24987120
-
Andrabi SA et al (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.28
, pp. 10209-10214
-
-
Andrabi, S.A.1
-
140
-
-
37849013404
-
Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix
-
COI: 1:CAS:528:DC%2BD1cXkslGrsw%3D%3D, PID: 17991898
-
Niere M et al (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824
-
(2008)
Mol Cell Biol
, vol.28
, Issue.2
, pp. 814-824
-
-
Niere, M.1
-
141
-
-
20444454999
-
Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction
-
COI: 1:CAS:528:DC%2BD2MXjsFOgtbg%3D, PID: 15750180
-
Cipriani G et al (2005) Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280(17):17227–17234
-
(2005)
J Biol Chem
, vol.280
, Issue.17
, pp. 17227-17234
-
-
Cipriani, G.1
-
142
-
-
0019790092
-
Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes
-
COI: 1:CAS:528:DyaL38XivVCktA%3D%3D, PID: 6458707
-
Sims JL, Berger SJ, Berger NA (1981) Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes. J Supramol Struct Cell Biochem 16(3):281–288
-
(1981)
J Biol Chem
, vol.16
, Issue.3
, pp. 281-288
-
-
Sims, J.L.1
Berger, S.J.2
Berger, N.A.3
-
143
-
-
48949116207
-
Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation
-
COI: 1:CAS:528:DC%2BD1cXovF2jur4%3D, PID: 18436469
-
Haenni SS et al (2008) Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 40(10):2274–2283
-
(2008)
Int J Biochem Cell Biol
, vol.40
, Issue.10
, pp. 2274-2283
-
-
Haenni, S.S.1
-
144
-
-
84886717428
-
Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
-
COI: 1:CAS:528:DC%2BC3sXislyltLY%3D, PID: 23357756
-
Canto C, Sauve AA, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34(6):1168–1201
-
(2013)
Mol Aspects Med
, vol.34
, Issue.6
, pp. 1168-1201
-
-
Canto, C.1
Sauve, A.A.2
Bai, P.3
-
145
-
-
30044443515
-
+ depletion and reduced Sir2alpha deacetylase activity
-
COI: 1:CAS:528:DC%2BD2MXhtlCmsbzJ, PID: 16207712
-
+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280(52):43121–43130
-
(2005)
J Biol Chem
, vol.280
, Issue.52
, pp. 43121-43130
-
-
Pillai, J.B.1
-
146
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
COI: 1:CAS:528:DC%2BC3MXktF2nsLc%3D, PID: 21459330
-
Bai P et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468
-
(2011)
Cell Metab
, vol.13
, Issue.4
, pp. 461-468
-
-
Bai, P.1
-
147
-
-
84960371324
-
Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage
-
COI: 1:CAS:528:DC%2BC28Xkt1Wntro%3D, PID: 26692487
-
Gao J et al (2016) Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage. Biochem Biophys Res Commun 472(3):425–431
-
(2016)
Biochem Biophys Res Commun
, vol.472
, Issue.3
, pp. 425-431
-
-
Gao, J.1
|