메뉴 건너뛰기




Volumn 31, Issue , 2016, Pages 82-94

On-line enzymatic tailoring of polyketides and peptides in thiotemplate systems

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CYCLOPROPANE; CYCLOPROPANE DERIVATIVE; GLUTARIMIDE; LACTAM; LACTONE; OXAZOLE; PEPTIDE; POLYKETIDE; THIAZOLE;

EID: 84970916703     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2016.01.012     Document Type: Review
Times cited : (45)

References (63)
  • 1
    • 38949083855 scopus 로고    scopus 로고
    • The chemical versatility of natural-product assembly lines
    • Walsh C.T. The chemical versatility of natural-product assembly lines. Acc Chem Res 2008, 41:4-10.
    • (2008) Acc Chem Res , vol.41 , pp. 4-10
    • Walsh, C.T.1
  • 2
    • 68949159560 scopus 로고    scopus 로고
    • The chemical biology of modular biosynthetic enzymes
    • Meier J.L., Burkart M.D. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009, 38:2012-2045.
    • (2009) Chem Soc Rev , vol.38 , pp. 2012-2045
    • Meier, J.L.1    Burkart, M.D.2
  • 3
    • 69249202590 scopus 로고    scopus 로고
    • The biosynthetic logic of polyketide diversity
    • Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 2009, 48:4688-4716.
    • (2009) Angew Chem Int Ed , vol.48 , pp. 4688-4716
    • Hertweck, C.1
  • 4
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms
    • Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 2006, 106:3468-3496.
    • (2006) Chem Rev , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 5
    • 84915763024 scopus 로고    scopus 로고
    • An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases
    • Hari T., Labana P., Boileau M., Boddy C.N. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases. ChemBioChem 2014, 15:2656-2661.
    • (2014) ChemBioChem , vol.15 , pp. 2656-2661
    • Hari, T.1    Labana, P.2    Boileau, M.3    Boddy, C.N.4
  • 6
    • 84958145976 scopus 로고    scopus 로고
    • Insights into the chemical logic and enzymatic machinery of NRPS assembly lines
    • Walsh C.T. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 2015.
    • (2015) Nat Prod Rep
    • Walsh, C.T.1
  • 7
    • 84924208708 scopus 로고    scopus 로고
    • Macrodiolide formation by the thioesterase of a modular polyketide synthase
    • Zhou Y., Prediger P., Dias L.C., Murphy A.C., Leadlay P.F. Macrodiolide formation by the thioesterase of a modular polyketide synthase. Angew Chem Int Ed 2015, 127:5321-5324.
    • (2015) Angew Chem Int Ed , vol.127 , pp. 5321-5324
    • Zhou, Y.1    Prediger, P.2    Dias, L.C.3    Murphy, A.C.4    Leadlay, P.F.5
  • 8
    • 84935021723 scopus 로고    scopus 로고
    • Iterative mechanism of macrodiolide formation in the anticancer compound conglobatin
    • Zhou Y., Murphy A.C., Samborskyy M., Prediger P., Dias L.C., Leadlay P.F. Iterative mechanism of macrodiolide formation in the anticancer compound conglobatin. Chem Biol 2015, 22:745-754.
    • (2015) Chem Biol , vol.22 , pp. 745-754
    • Zhou, Y.1    Murphy, A.C.2    Samborskyy, M.3    Prediger, P.4    Dias, L.C.5    Leadlay, P.F.6
  • 9
    • 34547119075 scopus 로고    scopus 로고
    • Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis
    • Kopp M., Marahiel M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 2007, 24:735-749.
    • (2007) Nat. Prod. Rep. , vol.24 , pp. 735-749
    • Kopp, M.1    Marahiel, M.A.2
  • 10
    • 84925340903 scopus 로고    scopus 로고
    • Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology
    • Hertweck C. Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem Sci 2015, 40:189-199.
    • (2015) Trends Biochem Sci , vol.40 , pp. 189-199
    • Hertweck, C.1
  • 11
    • 77954675603 scopus 로고    scopus 로고
    • Biosynthesis of polyketides by trans-AT polyketide synthases
    • Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2010, 27:996-1047.
    • (2010) Nat Prod Rep , vol.27 , pp. 996-1047
    • Piel, J.1
  • 12
    • 52649133814 scopus 로고    scopus 로고
    • Isoprenoid-like alkylations in polyketide biosynthesis
    • Calderone C.T. Isoprenoid-like alkylations in polyketide biosynthesis. Nat Prod Rep 2008, 25:845-853.
    • (2008) Nat Prod Rep , vol.25 , pp. 845-853
    • Calderone, C.T.1
  • 15
    • 84921038461 scopus 로고    scopus 로고
    • Epoxide hydrolase-lasalocid A structure provides mechanistic insight into polyether natural product biosynthesis
    • Wong F.T., Hotta K., Chen X., Fang M., Watanabe K., Kim C.-Y. Epoxide hydrolase-lasalocid A structure provides mechanistic insight into polyether natural product biosynthesis. J Am Chem Soc 2014, 137:86-89.
    • (2014) J Am Chem Soc , vol.137 , pp. 86-89
    • Wong, F.T.1    Hotta, K.2    Chen, X.3    Fang, M.4    Watanabe, K.5    Kim, C.-Y.6
  • 17
    • 84869054540 scopus 로고    scopus 로고
    • Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules: biogenesis of the broad spectrum antifungal and anti-oomycete compound, oocydin A
    • Matilla M.A., Stöckmann H., Leeper F.J., Salmond G.P. Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules: biogenesis of the broad spectrum antifungal and anti-oomycete compound, oocydin A. J Biol Chem 2012, 287:39125-39138.
    • (2012) J Biol Chem , vol.287 , pp. 39125-39138
    • Matilla, M.A.1    Stöckmann, H.2    Leeper, F.J.3    Salmond, G.P.4
  • 19
    • 17444392475 scopus 로고    scopus 로고
    • Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family
    • Piel J., Butzke D., Fusetani N., Hui D., Platzer M., Wen G., Matsunaga S. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 2005, 68:472-479.
    • (2005) J Nat Prod , vol.68 , pp. 472-479
    • Piel, J.1    Butzke, D.2    Fusetani, N.3    Hui, D.4    Platzer, M.5    Wen, G.6    Matsunaga, S.7
  • 20
    • 84889650722 scopus 로고    scopus 로고
    • An enzymatic domain for the formation of cyclic ethers in complex polyketides
    • Pöplau P., Frank S., Morinaka B.I., Piel J. An enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew Chem Int Ed 2013, 52:13215-13218.
    • (2013) Angew Chem Int Ed , vol.52 , pp. 13215-13218
    • Pöplau, P.1    Frank, S.2    Morinaka, B.I.3    Piel, J.4
  • 21
    • 84917709236 scopus 로고    scopus 로고
    • A dehydratase domain in ambruticin biosynthesis displays additional activity as a pyran-forming cyclase
    • Berkhan G., Hahn F. A dehydratase domain in ambruticin biosynthesis displays additional activity as a pyran-forming cyclase. Angew Chem Int Ed 2014, 53:14240-14244.
    • (2014) Angew Chem Int Ed , vol.53 , pp. 14240-14244
    • Berkhan, G.1    Hahn, F.2
  • 23
    • 65549102503 scopus 로고    scopus 로고
    • Analysis of the indanomycin biosynthetic gene cluster from Streptomyces antibioticus NRRL 8167
    • Li C., Roege K.E., Kelly W.L. Analysis of the indanomycin biosynthetic gene cluster from Streptomyces antibioticus NRRL 8167. ChemBioChem 2009, 10:1064-1072.
    • (2009) ChemBioChem , vol.10 , pp. 1064-1072
    • Li, C.1    Roege, K.E.2    Kelly, W.L.3
  • 24
    • 27144465524 scopus 로고    scopus 로고
    • Pathogenic fungus harbours endosymbiotic bacteria for toxin production
    • Partida-Martinez L.P., Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005, 437:884-888.
    • (2005) Nature , vol.437 , pp. 884-888
    • Partida-Martinez, L.P.1    Hertweck, C.2
  • 28
    • 84930623689 scopus 로고    scopus 로고
    • Twofold polyketide branching by a stereoselective enzymatic Michael addition
    • Heine D., Sundaram S., Bretschneider T., Hertweck C. Twofold polyketide branching by a stereoselective enzymatic Michael addition. Chem Commun 2015, 51:9872-9875.
    • (2015) Chem Commun , vol.51 , pp. 9872-9875
    • Heine, D.1    Sundaram, S.2    Bretschneider, T.3    Hertweck, C.4
  • 29
    • 70350353075 scopus 로고    scopus 로고
    • Iso-Migrastatin, migrastatin, and dorrigocin production in Streptomyces platensis NRRL 18993 is governed by a single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase
    • Lim S.K., Ju J., Zazopoulos E., Jiang H., Seo J.W., Chen Y., Feng Z., Rajski S.R., Farnet C.M., Shen B. Iso-Migrastatin, migrastatin, and dorrigocin production in Streptomyces platensis NRRL 18993 is governed by a single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. J Biol Chem 2009, 284:29746-29756.
    • (2009) J Biol Chem , vol.284 , pp. 29746-29756
    • Lim, S.K.1    Ju, J.2    Zazopoulos, E.3    Jiang, H.4    Seo, J.W.5    Chen, Y.6    Feng, Z.7    Rajski, S.R.8    Farnet, C.M.9    Shen, B.10
  • 30
    • 84875203970 scopus 로고    scopus 로고
    • Biosynthesis of 9-methylstreptimidone involves a new decarboxylative step for polyketide terminal diene formation
    • Wang B., Song Y., Luo M., Chen Q., Ma J., Huang H., Ju J. Biosynthesis of 9-methylstreptimidone involves a new decarboxylative step for polyketide terminal diene formation. Org Lett 2013, 15:1278-1281.
    • (2013) Org Lett , vol.15 , pp. 1278-1281
    • Wang, B.1    Song, Y.2    Luo, M.3    Chen, Q.4    Ma, J.5    Huang, H.6    Ju, J.7
  • 31
    • 84902081276 scopus 로고    scopus 로고
    • Cycloheximide and actiphenol production in Streptomyces sp YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase
    • Yin M., Yan Y., Lohman J.R., Huang S.-X., Ma M., Zhao G.-R., Xu L.-H., Xiang W., Shen B. Cycloheximide and actiphenol production in Streptomyces sp YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. Org Lett 2014, 16:3072-3075.
    • (2014) Org Lett , vol.16 , pp. 3072-3075
    • Yin, M.1    Yan, Y.2    Lohman, J.R.3    Huang, S.-X.4    Ma, M.5    Zhao, G.-R.6    Xu, L.-H.7    Xiang, W.8    Shen, B.9
  • 32
    • 84908077928 scopus 로고    scopus 로고
    • Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles
    • Heine D., Bretschneider T., Sundaram S., Hertweck C. Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles. Angew Chem Int Ed 2014, 53:11645-11649.
    • (2014) Angew Chem Int Ed , vol.53 , pp. 11645-11649
    • Heine, D.1    Bretschneider, T.2    Sundaram, S.3    Hertweck, C.4
  • 33
    • 51149098989 scopus 로고    scopus 로고
    • The crystal structure of a mammalian fatty acid synthase
    • Maier T., Leibundgut M., Ban N. The crystal structure of a mammalian fatty acid synthase. Science 2008, 321:1315-1322.
    • (2008) Science , vol.321 , pp. 1315-1322
    • Maier, T.1    Leibundgut, M.2    Ban, N.3
  • 34
    • 84947713668 scopus 로고    scopus 로고
    • Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching
    • Sundaram S., Heine D., Hertweck C. Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching. Nat Chem Biol 2015, 11:949-951.
    • (2015) Nat Chem Biol , vol.11 , pp. 949-951
    • Sundaram, S.1    Heine, D.2    Hertweck, C.3
  • 35
    • 84881012253 scopus 로고    scopus 로고
    • Origins of the β-lactam rings in natural products
    • Tahlan K., Jensen S.E. Origins of the β-lactam rings in natural products. J Antibiot 2013, 66:401-410.
    • (2013) J Antibiot , vol.66 , pp. 401-410
    • Tahlan, K.1    Jensen, S.E.2
  • 36
    • 84928388575 scopus 로고    scopus 로고
    • β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis
    • Gaudelli N.M., Long D.H., Townsend C.A. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis. Nature 2015, 520:383-387.
    • (2015) Nature , vol.520 , pp. 383-387
    • Gaudelli, N.M.1    Long, D.H.2    Townsend, C.A.3
  • 37
    • 84897028113 scopus 로고    scopus 로고
    • Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis
    • Gaudelli N.M., Townsend C.A. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat Chem Biol 2014, 10:251-258.
    • (2014) Nat Chem Biol , vol.10 , pp. 251-258
    • Gaudelli, N.M.1    Townsend, C.A.2
  • 38
    • 77957784833 scopus 로고    scopus 로고
    • Glycopeptide biosynthesis in the context of basic cellular functions
    • Stegmann E., Frasch H.J., Wohlleben W. Glycopeptide biosynthesis in the context of basic cellular functions. Curr Opin Microbiol 2010, 13:595-602.
    • (2010) Curr Opin Microbiol , vol.13 , pp. 595-602
    • Stegmann, E.1    Frasch, H.J.2    Wohlleben, W.3
  • 40
    • 1642496907 scopus 로고    scopus 로고
    • The biosynthesis of glycopeptide antibiotics - a model for complex, non-ribosomally synthesized, peptidic secondary metabolites
    • Süssmuth R.D., Wohlleben W. The biosynthesis of glycopeptide antibiotics - a model for complex, non-ribosomally synthesized, peptidic secondary metabolites. Appl Microbiol Biotechnol 2004, 63:344-350.
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 344-350
    • Süssmuth, R.D.1    Wohlleben, W.2
  • 41
    • 34548647327 scopus 로고    scopus 로고
    • The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide a47934
    • Hadatsch B., Butz D., Schmiederer T., Steudle J., Wohlleben W., Süssmuth R., Stegmann E. The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide a47934. Chem Biol 2007, 14:1078-1089.
    • (2007) Chem Biol , vol.14 , pp. 1078-1089
    • Hadatsch, B.1    Butz, D.2    Schmiederer, T.3    Steudle, J.4    Wohlleben, W.5    Süssmuth, R.6    Stegmann, E.7
  • 42
    • 84915809650 scopus 로고    scopus 로고
    • Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis
    • Haslinger K., Maximowitsch E., Brieke C., Koch A., Cryle M.J. Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis. ChemBioChem 2014, 15:2719-2728.
    • (2014) ChemBioChem , vol.15 , pp. 2719-2728
    • Haslinger, K.1    Maximowitsch, E.2    Brieke, C.3    Koch, A.4    Cryle, M.J.5
  • 43
    • 84929077444 scopus 로고    scopus 로고
    • X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
    • Haslinger K., Peschke M., Brieke C., Maximowitsch E., Cryle M.J. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 2015, 521:105-109.
    • (2015) Nature , vol.521 , pp. 105-109
    • Haslinger, K.1    Peschke, M.2    Brieke, C.3    Maximowitsch, E.4    Cryle, M.J.5
  • 44
    • 84905443941 scopus 로고    scopus 로고
    • The structure of a transient complex of a nonribosomal peptide synthetase and a cytochrome P450 monooxygenase
    • Haslinger K., Brieke C., Uhlmann S., Sieverling L., Süssmuth R.D., Cryle M.J. The structure of a transient complex of a nonribosomal peptide synthetase and a cytochrome P450 monooxygenase. Angew Chem Int Ed 2014, 53:8518-8522.
    • (2014) Angew Chem Int Ed , vol.53 , pp. 8518-8522
    • Haslinger, K.1    Brieke, C.2    Uhlmann, S.3    Sieverling, L.4    Süssmuth, R.D.5    Cryle, M.J.6
  • 45
    • 84955389304 scopus 로고    scopus 로고
    • Sequential in vitro cyclization by cytochrome P450 enzymes of glycopeptide antibiotic precursors bearing the X-domain from nonribosomal peptide biosynthesis
    • Brieke C., Peschke M., Haslinger K., Cryle M.J. Sequential in vitro cyclization by cytochrome P450 enzymes of glycopeptide antibiotic precursors bearing the X-domain from nonribosomal peptide biosynthesis. Angew Chem Int Ed 2015, 127:15941-15945.
    • (2015) Angew Chem Int Ed , vol.127 , pp. 15941-15945
    • Brieke, C.1    Peschke, M.2    Haslinger, K.3    Cryle, M.J.4
  • 47
    • 81355148838 scopus 로고    scopus 로고
    • A natural prodrug activation mechanism in nonribosomal peptide synthesis
    • Reimer D., Pos K.M., Thines M., Grün P., Bode H.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat Chem Biol 2011, 7:888-890.
    • (2011) Nat Chem Biol , vol.7 , pp. 888-890
    • Reimer, D.1    Pos, K.M.2    Thines, M.3    Grün, P.4    Bode, H.B.5
  • 48
    • 84928549042 scopus 로고    scopus 로고
    • The colibactin warhead crosslinks DNA
    • Vizcaino M.I., Crawford J.M. The colibactin warhead crosslinks DNA. Nat Chem 2015, 7:411-417.
    • (2015) Nat Chem , vol.7 , pp. 411-417
    • Vizcaino, M.I.1    Crawford, J.M.2
  • 49
    • 84925372827 scopus 로고    scopus 로고
    • Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity
    • Brotherton C.A., Wilson M., Byrd G., Balskus E.P. Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Org Lett 2015, 17:1545-1548.
    • (2015) Org Lett , vol.17 , pp. 1545-1548
    • Brotherton, C.A.1    Wilson, M.2    Byrd, G.3    Balskus, E.P.4
  • 50
    • 84928150480 scopus 로고    scopus 로고
    • Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety
    • Bian X., Plaza A., Zhang Y., Müller R. Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 2015, 6:3154-3160.
    • (2015) Chem Sci , vol.6 , pp. 3154-3160
    • Bian, X.1    Plaza, A.2    Zhang, Y.3    Müller, R.4
  • 51
    • 84938741118 scopus 로고    scopus 로고
    • Critical intermediates reveal new biosynthetic events in the enigmatic colibactin pathway
    • Li Z.R., Li Y., Lai J.Y., Tang J., Wang B., Lu L., Zhu G., Wu X., Xu Y., Qian P.Y. Critical intermediates reveal new biosynthetic events in the enigmatic colibactin pathway. ChemBioChem 2015, 16:1715-1719.
    • (2015) ChemBioChem , vol.16 , pp. 1715-1719
    • Li, Z.R.1    Li, Y.2    Lai, J.Y.3    Tang, J.4    Wang, B.5    Lu, L.6    Zhu, G.7    Wu, X.8    Xu, Y.9    Qian, P.Y.10
  • 54
    • 24144485937 scopus 로고    scopus 로고
    • Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis
    • Vaillancourt F.H., Yeh E., Vosburg D.A., O'Connor S.E., Walsh C.T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 2005, 436:1191-1194.
    • (2005) Nature , vol.436 , pp. 1191-1194
    • Vaillancourt, F.H.1    Yeh, E.2    Vosburg, D.A.3    O'Connor, S.E.4    Walsh, C.T.5
  • 55
    • 84900840886 scopus 로고    scopus 로고
    • Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848)
    • Hiratsuka T., Suzuki H., Kariya R., Seo T., Minami A., Oikawa H. Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848). Angew Chem Int Ed 2014, 53:5423-5426.
    • (2014) Angew Chem Int Ed , vol.53 , pp. 5423-5426
    • Hiratsuka, T.1    Suzuki, H.2    Kariya, R.3    Seo, T.4    Minami, A.5    Oikawa, H.6
  • 56
    • 33845487314 scopus 로고    scopus 로고
    • Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis
    • Julien B., Tian Z.-Q., Reid R., Reeves C.D. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem Biol 2006, 13:1277-1286.
    • (2006) Chem Biol , vol.13 , pp. 1277-1286
    • Julien, B.1    Tian, Z.-Q.2    Reid, R.3    Reeves, C.D.4
  • 59
    • 84921516173 scopus 로고    scopus 로고
    • Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4 + 2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides
    • Hashimoto T., Hashimoto J., Teruya K., Hirano T., Shin-Ya K., Ikeda H., Liu H.-W., Nishiyama M., Kuzuyama T. Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4 + 2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J Am Chem Soc 2015, 137:572-575.
    • (2015) J Am Chem Soc , vol.137 , pp. 572-575
    • Hashimoto, T.1    Hashimoto, J.2    Teruya, K.3    Hirano, T.4    Shin-Ya, K.5    Ikeda, H.6    Liu, H.-W.7    Nishiyama, M.8    Kuzuyama, T.9
  • 60
    • 84926453060 scopus 로고    scopus 로고
    • An enzymatic [4 + 2] cyclization cascade creates the pentacyclic core of pyrroindomycins
    • Tian Z., Sun P., Yan Y., Wu Z., Zheng Q., Zhou S., Zhang H., Yu F., Jia X., Chen D., et al. An enzymatic [4 + 2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nat Chem Biol 2015, 11:259-265.
    • (2015) Nat Chem Biol , vol.11 , pp. 259-265
    • Tian, Z.1    Sun, P.2    Yan, Y.3    Wu, Z.4    Zheng, Q.5    Zhou, S.6    Zhang, H.7    Yu, F.8    Jia, X.9    Chen, D.10
  • 63
    • 84947976666 scopus 로고    scopus 로고
    • Biosynthesis of the novel macrolide antibiotic anthracimycin
    • Alt S., Wilkinson B. Biosynthesis of the novel macrolide antibiotic anthracimycin. ACS Chem Biol 2015, 10:2468-2479.
    • (2015) ACS Chem Biol , vol.10 , pp. 2468-2479
    • Alt, S.1    Wilkinson, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.