-
1
-
-
0033558878
-
The boundaries of the silenced HMR domain in Saccharomyces cerevisiae
-
Donze, D., Adams, C. R., Rine, J., & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698-708 (1999
-
(1999)
Genes Dev
, vol.13
, pp. 698-708
-
-
Donze, D.1
Adams, C.R.2
Rine, J.3
Kamakaka, R.T.4
-
2
-
-
39149121436
-
Cohesin mediates transcriptional insulation by CCCTC-binding factor
-
Wendt, K. S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801 (2008
-
(2008)
Nature
, vol.451
, pp. 796-801
-
-
Wendt, K.S.1
-
3
-
-
38849121606
-
Cohesins functionally associate with CTCF on mammalian chromosome arms
-
Parelho, V., et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433 (2008
-
(2008)
Cell
, vol.132
, pp. 422-433
-
-
Parelho, V.1
-
4
-
-
0033538518
-
A central role for cohesins in sister chromatid cohesin, formation of axial elements, and recombination during yeast meiosis
-
Klein, F., et al. A central role for cohesins in sister chromatid cohesin, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91-103 (1999
-
(1999)
Cell
, vol.98
, pp. 91-103
-
-
Klein, F.1
-
5
-
-
0033614934
-
Cohesin Rec8 is required for reductional chromosome segregation at meiosis
-
Watanabe, Y., & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461-464 (1999
-
(1999)
Nature
, vol.400
, pp. 461-464
-
-
Watanabe, Y.1
Nurse, P.2
-
6
-
-
84859619817
-
The ancient and evolving roles of cohesin in gene expression and DNA repair
-
Dorsett, D., & Ström, L. The ancient and evolving roles of cohesin in gene expression and DNA repair. Curr. Biol. 22, R240-R250 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. R240-R250
-
-
Dorsett, D.1
Ström, L.2
-
7
-
-
84883212203
-
Cohesin in development and disease
-
Rameseiro, S., Cuadrado, A., & Losada, A. Cohesin in development and disease. Development 140, 3715-3718 (2013
-
(2013)
Development
, vol.140
, pp. 3715-3718
-
-
Rameseiro, S.1
Cuadrado, A.2
Losada, A.3
-
8
-
-
84887627069
-
Meiosis I: When chromosomes undergo extreme makeover
-
Miller, M. P., Amon, A., & Ünal, E. Meiosis I: when chromosomes undergo extreme makeover. Curr. Opin. Cell Biol. 25, 687-696 (2013
-
(2013)
Curr. Opin. Cell Biol
, vol.25
, pp. 687-696
-
-
Miller, M.P.1
Amon, A.2
Ünal, E.3
-
9
-
-
84871820710
-
Cohesin in gametogenesis
-
McNicoll, F., Stevense, M., & Jessberger, R. Cohesin in gametogenesis. Curr. Top. Dev. Biol. 102, 1-34 (2013
-
(2013)
Curr. Top. Dev. Biol
, vol.102
, pp. 1-34
-
-
McNicoll, F.1
Stevense, M.2
Jessberger, R.3
-
10
-
-
0026069582
-
The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of e coli
-
Niki, H., Jaffé, A., Imamura, R., Ogura, T., & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E coli. EMBO J. 10, 183-193 (1991
-
(1991)
EMBO J.
, vol.10
, pp. 183-193
-
-
Niki, H.1
Jaffé, A.2
Imamura, R.3
Ogura, T.4
Hiraga, S.5
-
11
-
-
0027097480
-
E coli MukB protein involved in chromosome partition forms a homodimer with a rod-And-hinge structure having DNA binding and ATP/GTP binding activities
-
Niki, H., et al. E coli MukB protein involved in chromosome partition forms a homodimer with a rod-And-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11, 5101-5109 (1992
-
(1992)
EMBO J.
, vol.11
, pp. 5101-5109
-
-
Niki, H.1
-
12
-
-
0027759461
-
SMC1: An essential yeast gene encoding a putative head-rod-Tail protein is required for nuclear division and defines a new ubiquitous protein family
-
Strunnikov, A. V., Larionov, V. L., & Koshland, D. SMC1: an essential yeast gene encoding a putative head-rod-Tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123, 1635-1648 (1993
-
(1993)
J. Cell Biol
, vol.123
, pp. 1635-1648
-
-
Strunnikov, A.V.1
Larionov, V.L.2
Koshland, D.3
-
13
-
-
0028081446
-
Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis
-
Saka, Y., et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938-4952 (1994
-
(1994)
EMBO J.
, vol.13
, pp. 4938-4952
-
-
Saka, Y.1
-
14
-
-
0027943721
-
A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
-
Hirano, T., & Mitchison, T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449-458 (1994
-
(1994)
Cell
, vol.79
, pp. 449-458
-
-
Hirano, T.1
Mitchison, T.J.2
-
15
-
-
0028109863
-
ScII: An abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure
-
Saitoh, N., Goldberg, I. G., Wood, E. R., & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303-318 (1994
-
(1994)
J. Cell Biol
, vol.127
, pp. 303-318
-
-
Saitoh, N.1
Goldberg, I.G.2
Wood, E.R.3
Earnshaw, W.C.4
-
16
-
-
0028942904
-
SMC2 a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
-
Strunnikov, A., Hogan, E., & Koshland, D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9, 587-599 (1995
-
(1995)
Genes Dev
, vol.9
, pp. 587-599
-
-
Strunnikov, A.1
Hogan, E.2
Koshland, D.3
-
17
-
-
0028104856
-
DPY 27: A chromosome condensation protein homolog that regulates C elegans dosage compensation through association with the X chromosome
-
Chuang, P. T., Albertson, D. G., & Meyer, B. J. DPY 27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459-474 (1994
-
(1994)
Cell
, vol.79
, pp. 459-474
-
-
Chuang, P.T.1
Albertson, D.G.2
Meyer, B.J.3
-
18
-
-
0028850628
-
The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair
-
Lehmann, A. R., et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067-7080 (1995
-
(1995)
Mol. Cell. Biol
, vol.15
, pp. 7067-7080
-
-
Lehmann, A.R.1
-
19
-
-
0030830639
-
Condensins chromosome condensation protein complexes containing XCAP C XCAP e and a Xenopus homolog of the Drosophila barren protein
-
Hirano, T., Kobayashi, R., & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP C, XCAP E and a Xenopus homolog of the Drosophila barren protein. Cell 89, 511-521 (1997
-
(1997)
Cell
, vol.89
, pp. 511-521
-
-
Hirano, T.1
Kobayashi, R.2
Hirano, M.3
-
20
-
-
0030885925
-
Cohesins chromosomal proteins that prevent premature separation of sister chromatids
-
Michaelis, C., Ciosk, R., & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45 (1997
-
(1997)
Cell
, vol.91
, pp. 35-45
-
-
Michaelis, C.1
Ciosk, R.2
Nasmyth, K.3
-
21
-
-
0030886602
-
A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S cerevisiae
-
Guacci, V., Koshland, D., & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell 91, 47-57 (1997
-
(1997)
Cell
, vol.91
, pp. 47-57
-
-
Guacci, V.1
Koshland, D.2
Strunnikov, A.3
-
22
-
-
0032127940
-
Identification of Xenopus SMC protein complexes required for sister chromatid cohesion
-
Losada, A., Hirano, M., & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986-1997 (1998
-
(1998)
Genes Dev
, vol.12
, pp. 1986-1997
-
-
Losada, A.1
Hirano, M.2
Hirano, T.3
-
23
-
-
0033083727
-
Yeast cohesin complex requires a conserved protein Eco1p (Ctf7) to establish cohesion between sister chromatids during DNA replication
-
Tóth, A., et al. Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320-333 (1999
-
(1999)
Genes Dev
, vol.13
, pp. 320-333
-
-
Tóth, A.1
-
24
-
-
0034599577
-
A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair complex
-
Fousteri, M. I., & Lehmann, A. R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair complex. EMBO J. 19, 1691-1702 (2000
-
(2000)
EMBO J.
, vol.19
, pp. 1691-1702
-
-
Fousteri, M.I.1
Lehmann, A.R.2
-
25
-
-
84872099346
-
Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
-
Lopez-Serra, L., Lengronne, A., Borges, V., Kelly, G., & Uhlmann, F. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr. Biol. 23, 64-69 (2013
-
(2013)
Curr. Biol
, vol.23
, pp. 64-69
-
-
Lopez-Serra, L.1
Lengronne, A.2
Borges, V.3
Kelly, G.4
Uhlmann, F.5
-
26
-
-
84885592677
-
Wapl is an essential regulator of chromatin structure and chromosome segregation
-
Tedeschi, A., et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564-568 (2013
-
(2013)
Nature
, vol.501
, pp. 564-568
-
-
Tedeschi, A.1
-
27
-
-
0027059030
-
Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand-break repair
-
Birkenbihl, R. P., & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand-break repair. Nucleic Acids Res. 20, 6605-6611 (1992
-
(1992)
Nucleic Acids Res
, vol.20
, pp. 6605-6611
-
-
Birkenbihl, R.P.1
Subramani, S.2
-
28
-
-
0034312307
-
Characterization of fission yeast cohesin: Essential anaphase proteolysis of Rad21 phosphorylated in the S phase
-
Tomonaga, T., et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757-2770 (2000
-
(2000)
Genes Dev
, vol.14
, pp. 2757-2770
-
-
Tomonaga, T.1
-
29
-
-
0035954251
-
Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
-
Sjögren, C., & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995 (2001
-
(2001)
Curr. Biol
, vol.11
, pp. 991-995
-
-
Sjögren, C.1
Nasmyth, K.2
-
30
-
-
0037046553
-
Cnd2 has dual roles in mitotic condensation and interphase
-
Aono, N., Sutani, T., Tomonaga, T., Mochida, S., & Yanagida, M. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417, 197-202 (2002
-
(2002)
Nature
, vol.417
, pp. 197-202
-
-
Aono, N.1
Sutani, T.2
Tomonaga, T.3
Mochida, S.4
Yanagida, M.5
-
31
-
-
0032497566
-
Cohesion between sister chromatids must be established during DNA replication
-
Uhlmann, F., & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095-1101 (1998
-
(1998)
Curr. Biol
, vol.8
, pp. 1095-1101
-
-
Uhlmann, F.1
Nasmyth, K.2
-
32
-
-
0033168496
-
Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1
-
Uhlmann, F., Lottspeich, F., & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37-42 (1999
-
(1999)
Nature
, vol.400
, pp. 37-42
-
-
Uhlmann, F.1
Lottspeich, F.2
Nasmyth, K.3
-
33
-
-
0034721669
-
Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
-
Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V., & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375-386 (2000
-
(2000)
Cell
, vol.103
, pp. 375-386
-
-
Uhlmann, F.1
Wernic, D.2
Poupart, M.A.3
Koonin, E.V.4
Nasmyth, K.5
-
34
-
-
0034721656
-
Two distinct pathways remove mammalian cohesin complexes from chromosome arms in prophase and from centromeres in anaphase
-
Waizenegger, I. C., Hauf, S., Meinke, A., & Peters, J. M. Two distinct pathways remove mammalian cohesin complexes from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399-410 (2000
-
(2000)
Cell
, vol.103
, pp. 399-410
-
-
Waizenegger, I.C.1
Hauf, S.2
Meinke, A.3
Peters, J.M.4
-
35
-
-
0037017393
-
Condensin and cohesin display different arm conformations with characteristic hinge angles
-
Anderson, D. E., Losada, A., Erickson, H. P., & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419-424 (2002
-
(2002)
J. Cell Biol
, vol.156
, pp. 419-424
-
-
Anderson, D.E.1
Losada, A.2
Erickson, H.P.3
Hirano, T.4
-
36
-
-
0036242551
-
Molecular architecture of SMC proteins and the yeast cohesin complex
-
Haering, C. H., Löwe, J., Hochwagen, A., & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773-788 (2002
-
(2002)
Mol. Cell
, vol.9
, pp. 773-788
-
-
Haering, C.H.1
Löwe, J.2
Hochwagen, A.3
Nasmyth, K.4
-
37
-
-
4644220369
-
Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases
-
Lammens, A., Schele, A., & Hopfner, K. P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778-1782 (2004
-
(2004)
Curr. Biol
, vol.14
, pp. 1778-1782
-
-
Lammens, A.1
Schele, A.2
Hopfner, K.P.3
-
38
-
-
79151480827
-
ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex
-
Hu, B., et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12-24 (2011
-
(2011)
Curr. Biol
, vol.21
, pp. 12-24
-
-
Hu, B.1
-
39
-
-
33845985979
-
The Smc5 Smc6 DNA repair complex. Bridging of the Smc5 Smc6 heads by the kleisin
-
Palecek, J., Vidot, S., Feng, M., Doherty, A. J., & Lehmann, A. R. The Smc5 Smc6 DNA repair complex. Bridging of the Smc5 Smc6 heads by the kleisin, Nse4, and non-kleisin subunits. J. Biol. Chem. 281, 36952-36959 (2006
-
(2006)
Nse4, and Non-kleisin Subunits. J. Biol. Chem
, vol.281
, pp. 36952-36959
-
-
Palecek, J.1
Vidot, S.2
Feng, M.3
Doherty, A.J.4
Lehmann, A.R.5
-
40
-
-
33847199666
-
And subunit geometry of human condensin complexes
-
Onn, I., Aono, N., Hirano, M., & Hirano, T. Reconstitution and subunit geometry of human condensin complexes. EMBO J. 26, 1024-1034 (2007
-
(2007)
EMBO J.
, vol.26
, pp. 1024-1034
-
-
Onn, I.1
Aono, N.2
Hirano, M.3
Reconstitution, H.T.4
-
41
-
-
84911413825
-
Characterization of a DNA exit gate in the human cohesin ring
-
Huis in ?t Veld, P. J., et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346, 968-972 (2014
-
(2014)
Science
, vol.346
, pp. 968-972
-
-
-
42
-
-
4644244326
-
Structure and stability of cohesin?s Smc1 kleisin interaction
-
Haering, C. H., et al. Structure and stability of cohesin?s Smc1 kleisin interaction. Mol. Cell 15, 951-964 (2004
-
(2004)
Mol. Cell
, vol.15
, pp. 951-964
-
-
Haering, C.H.1
-
43
-
-
84875165205
-
An asymmetric SMC-kleisin bridge in prokaryotic condensin
-
Bürmann, F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20, 371-379 (2013
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 371-379
-
-
Bürmann, F.1
-
44
-
-
84907295977
-
Closing the cohesin ring: Structure and function of its Smc3 kleisin interface
-
Gligoris, T. G., et al. Closing the cohesin ring: structure and function of its Smc3 kleisin interface. Science 346, 963-967 (2014
-
(2014)
Science
, vol.346
, pp. 963-967
-
-
Gligoris, T.G.1
-
45
-
-
84922327650
-
Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion
-
Hara, K., et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864-870 (2014
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 864-870
-
-
Hara, K.1
-
46
-
-
67649809770
-
Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5 6 subcomplex and the hinge regions of Smc5 and Smc6
-
Duan, X., et al. Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5 6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284, 8507-8515 (2009
-
(2009)
J. Biol. Chem
, vol.284
, pp. 8507-8515
-
-
Duan, X.1
-
47
-
-
84950266410
-
DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism
-
Murayama, Y., & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628-1640 (2015
-
(2015)
Cell
, vol.163
, pp. 1628-1640
-
-
Murayama, Y.1
Uhlmann, F.2
-
48
-
-
0035678054
-
Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis
-
Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673-745 (2001
-
(2001)
Annu. Rev. Genet
, vol.35
, pp. 673-745
-
-
Nasmyth, K.1
-
49
-
-
47549115780
-
The cohesin ring concatenates sister DNA molecules
-
Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J., & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297-301 (2008
-
(2008)
Nature
, vol.454
, pp. 297-301
-
-
Haering, C.H.1
Farcas, A.M.2
Arumugam, P.3
Metson, J.4
Nasmyth, K.5
-
50
-
-
84892617115
-
Biochemical reconstitution of topological DNA binding by the cohesin ring
-
Murayama, Y., & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367-371 (2014
-
(2014)
Nature
, vol.505
, pp. 367-371
-
-
Murayama, Y.1
Uhlmann, F.2
-
51
-
-
79961029402
-
Condensin structures chromosomal DNA through topological links
-
Cuylen, S., Metz, J., & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894-901 (2011
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 894-901
-
-
Cuylen, S.1
Metz, J.2
Haering, C.H.3
-
52
-
-
84940793917
-
The Smc5/6 complex is an ATP-dependent intermolecular DNA linker
-
Kanno, T., Berta, D. G., & Sjögren, C. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep. 12, 1471-1482 (2015
-
(2015)
Cell Rep
, vol.12
, pp. 1471-1482
-
-
Kanno, T.1
Berta, D.G.2
Sjögren, C.3
-
53
-
-
84930616986
-
SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
-
Wilhelm, L., et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4, e06659 (2015
-
(2015)
ELife
, vol.4
, pp. e06659
-
-
Wilhelm, L.1
-
54
-
-
0242540364
-
A model for ATP hydrolysis-dependent binding of cohesin to DNA
-
Weitzer, S., Lehane, C., & Uhlmann, F. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr. Biol. 13, 1930-1940 (2003
-
(2003)
Curr. Biol
, vol.13
, pp. 1930-1940
-
-
Weitzer, S.1
Lehane, C.2
Uhlmann, F.3
-
55
-
-
0037459376
-
Chromosomal cohesin forms a ring
-
Gruber, S., Haering, C. H., & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765-777 (2003
-
(2003)
Cell
, vol.112
, pp. 765-777
-
-
Gruber, S.1
Haering, C.H.2
Nasmyth, K.3
-
56
-
-
75949117626
-
Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei
-
Oliveira, R. A., Hamilton, R. S., Pauli, A., Davis, I., & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185-192 (2010
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 185-192
-
-
Oliveira, R.A.1
Hamilton, R.S.2
Pauli, A.3
Davis, I.4
Nasmyth, K.5
-
57
-
-
32944477078
-
Condensin i stabilizes chromosomes mechanically through a dynamic interaction in live cells
-
Gerlich, D., Hirota, T., Koch, B., Peters, J. M., & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333-344 (2006
-
(2006)
Curr. Biol
, vol.16
, pp. 333-344
-
-
Gerlich, D.1
Hirota, T.2
Koch, B.3
Peters, J.M.4
Ellenberg, J.5
-
58
-
-
33746486793
-
Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
-
Gerlich, D., Koch, B., Dupeux, F., Peters, J. M., & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571-1578 (2006
-
(2006)
Curr. Biol
, vol.16
, pp. 1571-1578
-
-
Gerlich, D.1
Koch, B.2
Dupeux, F.3
Peters, J.M.4
Ellenberg, J.5
-
59
-
-
84867760568
-
In vivo architecture and action of bacterial structural maintenance of chromosome proteins
-
Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C., & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528-531 (2012
-
(2012)
Science
, vol.338
, pp. 528-531
-
-
Badrinarayanan, A.1
Reyes-Lamothe, R.2
Uphoff, S.3
Leake, M.C.4
Sherratt, D.J.5
-
60
-
-
84865689123
-
Cohesin?s DNA exit gate is distinct from its entrance gate and is regulated by acetylation
-
Chan, K. L., et al. Cohesin?s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961-974 (2012
-
(2012)
Cell
, vol.150
, pp. 961-974
-
-
Chan, K.L.1
-
61
-
-
84926365170
-
Balancing acts of two HEAT subunits of condensin i support dynamic assembly of chromosome axes
-
Kinoshita, K., Kobayashi, T. J., & Hirano, T. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev. Cell 33, 94-106 (2015
-
(2015)
Dev. Cell
, vol.33
, pp. 94-106
-
-
Kinoshita, K.1
Kobayashi, T.J.2
Hirano, T.3
-
62
-
-
33750021276
-
Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
-
Gruber, S., et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523-537 (2006
-
(2006)
Cell
, vol.127
, pp. 523-537
-
-
Gruber, S.1
-
63
-
-
84875213862
-
Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate
-
Buheitel, J., & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32, 666-676 (2013
-
(2013)
EMBO J.
, vol.32
, pp. 666-676
-
-
Buheitel, J.1
Stemmann, O.2
-
64
-
-
84919371771
-
Structure of the Rad50 DNA double-strand break repair protein in complex with DNA
-
Rojowska, A., et al. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J. 33, 2847-2859 (2014
-
(2014)
EMBO J.
, vol.33
, pp. 2847-2859
-
-
Rojowska, A.1
-
65
-
-
0033859660
-
Cohesin?s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins
-
Ciosk, R., et al. Cohesin?s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243-254 (2000
-
(2000)
Mol. Cell
, vol.5
, pp. 243-254
-
-
Ciosk, R.1
-
66
-
-
33646178283
-
A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4
-
Bernard, P., et al. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr. Biol. 16, 875-881 (2006
-
(2006)
Curr. Biol
, vol.16
, pp. 875-881
-
-
Bernard, P.1
-
67
-
-
0036006301
-
Condensin architecture and interaction with DNA: Regulatory non-SMC subunits bind to the head of SMC heterodimer
-
Yoshimura, S. H., et al. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12, 508-513 (2002
-
(2002)
Curr. Biol
, vol.12
, pp. 508-513
-
-
Yoshimura, S.H.1
-
68
-
-
0037507259
-
Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein-protein assembly
-
Sakai, A., Hizume, K., Sutani, T., Takeyasu, K., & Yanagida, M. Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein-protein assembly. EMBO J. 22, 2764-2775 (2003
-
(2003)
EMBO J.
, vol.22
, pp. 2764-2775
-
-
Sakai, A.1
Hizume, K.2
Sutani, T.3
Takeyasu, K.4
Yanagida, M.5
-
69
-
-
34548074957
-
In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae
-
Mc Intyre, J., et al. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J. 26, 3783-3793 (2007
-
(2007)
EMBO J.
, vol.26
, pp. 3783-3793
-
-
Mc Intyre, J.1
-
70
-
-
0035916338
-
Intermolecular DNA interactions stimulated by the cohesin complex in vitro: Implications for sister chromatid cohesion
-
Losada, A., & Hirano, T. Intermolecular DNA interactions stimulated by the cohesin complex in vitro: implications for sister chromatid cohesion. Curr. Biol. 11, 268-272 (2001
-
(2001)
Curr. Biol
, vol.11
, pp. 268-272
-
-
Losada, A.1
Hirano, T.2
-
71
-
-
77949570558
-
Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo
-
Petrushenko, Z. M., Cui, Y., She, W., & Rybenkov, V. V. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 29, 1126-1135 (2010
-
(2010)
EMBO J.
, vol.29
, pp. 1126-1135
-
-
Petrushenko, Z.M.1
Cui, Y.2
She, W.3
Rybenkov, V.V.4
-
72
-
-
36249021097
-
Displacement and re accumulation of centromeric cohesin during transient pre-Anaphase centromere splitting
-
Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K., & Uhlmann, F. Displacement and re accumulation of centromeric cohesin during transient pre-Anaphase centromere splitting. Chromosoma 116, 531-544 (2007
-
(2007)
Chromosoma
, vol.116
, pp. 531-544
-
-
Ocampo-Hafalla, M.T.1
Katou, Y.2
Shirahige, K.3
Uhlmann, F.4
-
73
-
-
50049126078
-
Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes
-
Dambrosio, C., et al. Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215-2227 (2008
-
(2008)
Genes Dev
, vol.22
, pp. 2215-2227
-
-
Dambrosio, C.1
-
74
-
-
84908335938
-
The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement
-
Jeppsson, K., et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 10, e1004680 (2014
-
(2014)
PLoS Genet
, vol.10
, pp. e1004680
-
-
Jeppsson, K.1
-
75
-
-
65549135760
-
Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B subtilis
-
Gruber, S., & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-696 (2009
-
(2009)
Cell
, vol.137
, pp. 685-696
-
-
Gruber, S.1
Errington, J.2
-
76
-
-
0000818409
-
Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
-
Tanaka, T., Fuchs, J., Loidl, J., & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2, 492-499 (2000
-
(2000)
Nat. Cell Biol
, vol.2
, pp. 492-499
-
-
Tanaka, T.1
Fuchs, J.2
Loidl, J.3
Nasmyth, K.4
-
77
-
-
65649107604
-
Condensin regulates the stiffness of vertebrate centromeres
-
Ribeiro, S. A., et al. Condensin regulates the stiffness of vertebrate centromeres. Mol. Biol. Cell 20, 2371-2380 (2009
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 2371-2380
-
-
Ribeiro, S.A.1
-
78
-
-
84954317413
-
ChromoShake: A chromosome dynamics simulator reveals chromatin loops stiffen centromeric chromatin
-
Lawrimore, J., et al. ChromoShake: a chromosome dynamics simulator reveals chromatin loops stiffen centromeric chromatin. Mol. Biol. Cell 27, 153-166 (2016
-
(2016)
Mol. Biol. Cell
, vol.27
, pp. 153-166
-
-
Lawrimore, J.1
-
79
-
-
84876129123
-
Cohesin-dependent associatin of Scc2/4 with the centromere initiates pericentromeric cohesion establishment
-
Fernius, J., et al. Cohesin-dependent associatin of Scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr. Biol. 23, 599-606 (2013
-
(2013)
Curr. Biol
, vol.23
, pp. 599-606
-
-
Fernius, J.1
-
80
-
-
84878877755
-
Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7 Dbf4 kinase recruitment
-
Natsume, T., et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7 Dbf4 kinase recruitment. Mol. Cell 50, 661-674 (2013
-
(2013)
Mol. Cell
, vol.50
, pp. 661-674
-
-
Natsume, T.1
-
81
-
-
84903468580
-
Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation
-
Peplowska, K., Wallek, A. U., & Storchova, Z. Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation. PLoS Genet. 10, e1004411 (2014
-
(2014)
PLoS Genet
, vol.10
, pp. e1004411
-
-
Peplowska, K.1
Wallek, A.U.2
Storchova, Z.3
-
82
-
-
84898739128
-
Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere
-
Verzijlbergen, K. F., et al. Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. eLife 3, e01374 (2014
-
(2014)
ELife
, vol.3
, pp. e01374
-
-
Verzijlbergen, K.F.1
-
83
-
-
3242880374
-
Cohesin relocation from sites of chromosomal loading to places of convergent transcription
-
Lengronne, A., et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573-578 (2004
-
(2004)
Nature
, vol.430
, pp. 573-578
-
-
Lengronne, A.1
-
84
-
-
77957139539
-
Mediator and cohesin connect gene expression and chromatin architecture
-
Kagey, M. H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435 (2010
-
(2010)
Nature
, vol.467
, pp. 430-435
-
-
Kagey, M.H.1
-
85
-
-
84889582440
-
Genome-wide analysis of condensin binding in Caenorhabditis elegans
-
Kranz, A. L., et al. Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol. 14, R112 (2013
-
(2013)
Genome Biol
, vol.14
, pp. R112
-
-
Kranz, A.L.1
-
86
-
-
84922068409
-
The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions
-
Lopez-Serra, L., Kelly, G., Patel, H., Stewart, A., & Uhlmann, F. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat. Genet. 46, 1147-1151 (2014
-
(2014)
Nat. Genet
, vol.46
, pp. 1147-1151
-
-
Lopez-Serra, L.1
Kelly, G.2
Patel, H.3
Stewart, A.4
Uhlmann, F.5
-
87
-
-
84901735084
-
A cohesin-independent role for NIPBL at promoters provides insight in CdLS
-
Zuin, J., et al. A cohesin-independent role for NIPBL at promoters provides insight in CdLS. PLoS Genet. 10, e1004153 (2014
-
(2014)
PLoS Genet
, vol.10
, pp. e1004153
-
-
Zuin, J.1
-
88
-
-
84938547194
-
Structural studies reveal the functional modularity of the Scc2 Scc4 cohesin loader
-
Chao, W. C. H., et al. Structural studies reveal the functional modularity of the Scc2 Scc4 cohesin loader. Cell Rep. 12, 719-725 (2015
-
(2015)
Cell Rep
, vol.12
, pp. 719-725
-
-
Chao, W.C.H.1
-
89
-
-
85015083969
-
Structural evidence for Scc4 dependent localization of cohesin loading
-
Hinshaw, S. M., Makrantoni, V., Kerr, A., Marston, A. L., & Harrison, S. C. Structural evidence for Scc4 dependent localization of cohesin loading. eLife 4, e06057 (2015
-
(2015)
ELife
, vol.4
, pp. e06057
-
-
Hinshaw, S.M.1
Makrantoni, V.2
Kerr, A.3
Marston, A.L.4
Harrison, S.C.5
-
90
-
-
47549096990
-
Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts
-
Takahashi, T. S., Basu, A., Bermudez, V., Hurwitz, J., & Walter, J. C. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev. 22, 1894-1905 (2008
-
(2008)
Genes Dev
, vol.22
, pp. 1894-1905
-
-
Takahashi, T.S.1
Basu, A.2
Bermudez, V.3
Hurwitz, J.4
Walter, J.C.5
-
91
-
-
84860507563
-
Cohesin SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres
-
Remeseiro, S., et al. Cohesin SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076-2089 (2012
-
(2012)
EMBO J.
, vol.31
, pp. 2076-2089
-
-
Remeseiro, S.1
-
92
-
-
84860539709
-
A unique role of cohesin SA1 in gene regulation and development
-
Remeseiro, S., Cuadrado, A., Gómez-López, G., Pisano, D. G., & Losada, A. A unique role of cohesin SA1 in gene regulation and development. EMBO J. 31, 2090-2102 (2012
-
(2012)
EMBO J.
, vol.31
, pp. 2090-2102
-
-
Remeseiro, S.1
Cuadrado, A.2
Gómez-López, G.3
Pisano, D.G.4
Losada, A.5
-
93
-
-
84887819535
-
Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres
-
Carretero, M., Ruiz-Torres, M., Rodríguez Corsino, M., Barthelemy, I., & Losada, A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32, 2938-2949 (2013
-
(2013)
EMBO J.
, vol.32
, pp. 2938-2949
-
-
Carretero, M.1
Ruiz-Torres, M.2
Rodríguez Corsino, M.3
Barthelemy, I.4
Losada, A.5
-
94
-
-
66249086197
-
Conserved features of cohesin binding along fission yeast chromosomes
-
Schmidt, C. K., Brookes, N., & Uhlmann, F. Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol. 10, R52 (2009
-
(2009)
Genome Biol
, vol.10
, pp. R52
-
-
Schmidt, C.K.1
Brookes, N.2
Uhlmann, F.3
-
95
-
-
50049112678
-
Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes
-
Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A., & Engelke, D. R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204-2214 (2008
-
(2008)
Genes Dev
, vol.22
, pp. 2204-2214
-
-
Haeusler, R.A.1
Pratt-Hyatt, M.2
Good, P.D.3
Gipson, T.A.4
Engelke, D.R.5
-
96
-
-
63649098077
-
The cis element and factors required for condensin recruitment to chromosomes
-
Johzuka, K., & Horiuchi, T. The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34, 26-35 (2009
-
(2009)
Mol. Cell
, vol.34
, pp. 26-35
-
-
Johzuka, K.1
Horiuchi, T.2
-
97
-
-
79959549133
-
Condensin association with histone H2A shapes mitotic chromosomes
-
Tada, K., Susumu, H., Sakuno, T., & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477-483 (2011
-
(2011)
Nature
, vol.474
, pp. 477-483
-
-
Tada, K.1
Susumu, H.2
Sakuno, T.3
Watanabe, Y.4
-
98
-
-
84940888891
-
Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes
-
Iwasaki, O., et al. Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes. Mol. Cell 59, 755-767 (2015
-
(2015)
Mol. Cell
, vol.59
, pp. 755-767
-
-
Iwasaki, O.1
-
99
-
-
84885135720
-
Condensin i associates with structural and gene regulatory regions in vertebrate chromosomes
-
Kim, J. H., et al. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat. Commun. 4, 2537 (2013
-
(2013)
Nat. Commun
, vol.4
, pp. 2537
-
-
Kim, J.H.1
-
100
-
-
84937904648
-
Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation
-
Sutani, T., et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat. Commun. 6, 7815 (2015
-
(2015)
Nat. Commun
, vol.6
, pp. 7815
-
-
Sutani, T.1
-
101
-
-
0141987890
-
Differential contributions of condensin i and condensin II to mitotic chromosome architecture in vertebrate cells
-
Ono, T., et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109-121 (2003
-
(2003)
Cell
, vol.115
, pp. 109-121
-
-
Ono, T.1
-
102
-
-
38349177548
-
Association of cohesin and Nipped B with transcriptionally active regions of the Drosophila melanogaster genome
-
Misulovin, Z., et al. Association of cohesin and Nipped B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117, 89-102 (2008
-
(2008)
Chromosoma
, vol.117
, pp. 89-102
-
-
Misulovin, Z.1
-
103
-
-
82555176440
-
PolII caught speeding by single gene imaging
-
Cannon, D., & Chubb, J. R. PolII caught speeding by single gene imaging. EMBO Rep. 12, 1208-1210 (2011
-
(2011)
EMBO Rep
, vol.12
, pp. 1208-1210
-
-
Cannon, D.1
Chubb, J.R.2
-
104
-
-
84866183822
-
HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle
-
Deardorff, M. A., et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489, 313-317 (2012
-
(2012)
Nature
, vol.489
, pp. 313-317
-
-
Deardorff, M.A.1
-
105
-
-
84930277562
-
RNA pol II transcript abundance controls condensin accumulation at mitotically up regulated and heat-shock-inducible genes in fission yeast
-
Nakazawa, N., et al. RNA pol II transcript abundance controls condensin accumulation at mitotically up regulated and heat-shock-inducible genes in fission yeast. Genes Cells 20, 481-499 (2015
-
(2015)
Genes Cells
, vol.20
, pp. 481-499
-
-
Nakazawa, N.1
-
106
-
-
56549108671
-
Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively
-
Pebernard, S., Schaffer, L., Campbell, D., Head, S. R., & Boddy, M. N. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J. 27, 3011-3023 (2008
-
(2008)
EMBO J.
, vol.27
, pp. 3011-3023
-
-
Pebernard, S.1
Schaffer, L.2
Campbell, D.3
Head, S.R.4
Boddy, M.N.5
-
107
-
-
67650997080
-
Cohesins form chromosomal cis interactions at the developmentally regulated IFNG locus
-
Hadjur, S., et al. Cohesins form chromosomal cis interactions at the developmentally regulated IFNG locus. Nature 460, 410-413 (2009
-
(2009)
Nature
, vol.460
, pp. 410-413
-
-
Hadjur, S.1
-
108
-
-
73649145481
-
Cohesin is required for higher-order chromatin conformation at the imprinted IGF2 H19 locus
-
Nativio, R., et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2 H19 locus. PLoS Genet. 5, e1000739 (2009
-
(2009)
PLoS Genet
, vol.5
, pp. e1000739
-
-
Nativio, R.1
-
109
-
-
84966350662
-
Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle
-
Iwasaki, O., Corcoran, C. J., & Noma, K. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkv1502 (2016
-
(2016)
Nucleic Acids Res
-
-
Iwasaki, O.1
Corcoran, C.J.2
Noma, K.3
-
110
-
-
0037180450
-
Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold
-
Poirier, M. G., & Marko, J. F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl Acad. Sci. USA 99, 15393-15397 (2002
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 15393-15397
-
-
Poirier, M.G.1
Marko, J.F.2
-
111
-
-
34347247308
-
The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by em tomography
-
König, P., Braunfeld, M. B., Sedat, J. W., & Agard, D. A. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116, 349-372 (2007
-
(2007)
Chromosoma
, vol.116
, pp. 349-372
-
-
König, P.1
Braunfeld, M.B.2
Sedat, J.W.3
Agard, D.A.4
-
112
-
-
84859421494
-
Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30 nm chromatin structure
-
Nishino, Y., et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30 nm chromatin structure. EMBO J. 31, 1644-1653 (2012
-
(2012)
EMBO J.
, vol.31
, pp. 1644-1653
-
-
Nishino, Y.1
-
113
-
-
84948403758
-
Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes
-
Sanborn, A. L., et al. Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456-E6465 (2015
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E6456-E6465
-
-
Sanborn, A.L.1
-
114
-
-
84870491262
-
Condensin chromatin crossbarring and chromosome condensation
-
Thadani, R., Uhlmann, F., & Heeger, S. Condensin, chromatin crossbarring and chromosome condensation. Curr. Biol. 22, R1012-R1021 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. R1012-R1021
-
-
Thadani, R.1
Uhlmann, F.2
Heeger, S.3
-
115
-
-
84929149353
-
A simple biophysical model emulates budding yeast chromosome condensation
-
Cheng, T. M. K., et al. A simple biophysical model emulates budding yeast chromosome condensation. eLife 4, e05565 (2015
-
(2015)
ELife
, vol.4
, pp. e05565
-
-
Cheng, T.M.K.1
-
116
-
-
84938683625
-
Reconstitution of mitotic chromatids with a minimum set of purified factors
-
Shintomi, K., Takahashi, T. S., & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014-1023 (2015
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 1014-1023
-
-
Shintomi, K.1
Takahashi, T.S.2
Hirano, T.3
-
117
-
-
0033597962
-
13S condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation
-
Kimura, K., Rybenkov, V. V., Crisona, N. J., Hirano, T., & Cozzarelli, N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239-248 (1999
-
(1999)
Cell
, vol.98
, pp. 239-248
-
-
Kimura, K.1
Rybenkov, V.V.2
Crisona, N.J.3
Hirano, T.4
Cozzarelli, N.R.5
-
118
-
-
84923763345
-
Condensins and the evolution of torsion-mediated genome organization
-
Hirano, T. Condensins and the evolution of torsion-mediated genome organization. Trends Cell Biol. 24, 727-733 (2014
-
(2014)
Trends Cell Biol
, vol.24
, pp. 727-733
-
-
Hirano, T.1
-
119
-
-
84871208196
-
Self-organization of domain structures by DNA-loop-extruding enzymes
-
Alipour, E., & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202-11212 (2012
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11202-11212
-
-
Alipour, E.1
Marko, J.F.2
-
120
-
-
84940986924
-
SMC condensin: Promoting cohesion of replicon arms
-
Bürmann, F., & Gruber, S. SMC condensin: promoting cohesion of replicon arms. Nat. Struct. Mol. Biol. 22, 653-655 (2015
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, pp. 653-655
-
-
Bürmann, F.1
Gruber, S.2
-
121
-
-
84939550260
-
Condensin-And replication-mediated bacterial chromosome folding and origin condensation revealed by Hi C and super-resolution imaging
-
Marbouty, M., et al. Condensin-And replication-mediated bacterial chromosome folding and origin condensation revealed by Hi C and super-resolution imaging. Mol. Cell 59, 588-602 (2015
-
(2015)
Mol. Cell
, vol.59
, pp. 588-602
-
-
Marbouty, M.1
-
122
-
-
84938848092
-
Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis
-
Wang, X., et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29, 1661-1675 (2015
-
(2015)
Genes Dev
, vol.29
, pp. 1661-1675
-
-
Wang, X.1
-
123
-
-
0030730114
-
Polymer models of meiotic and mitotic chromosomes
-
Marko, J. F., & Siggia, E. D. Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell 8, 2217-2231 (1997
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 2217-2231
-
-
Marko, J.F.1
Siggia, E.D.2
-
124
-
-
0037087623
-
C elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis
-
Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R., & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729-742 (2002
-
(2002)
Genes Dev
, vol.16
, pp. 729-742
-
-
Hagstrom, K.A.1
Holmes, V.F.2
Cozzarelli, N.R.3
Meyer, B.J.4
-
125
-
-
0041440100
-
Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes
-
Hudson, D. F., Vagnarelli, P., Gassmann, R., & Earnshaw, W. C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323-336 (2003
-
(2003)
Dev. Cell
, vol.5
, pp. 323-336
-
-
Hudson, D.F.1
Vagnarelli, P.2
Gassmann, R.3
Earnshaw, W.C.4
-
126
-
-
47049085406
-
Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation
-
Dambrosio, C., Kelly, G., Shirahige, K., & Uhlmann, F. Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr. Biol. 18, 1084-1089 (2008
-
(2008)
Curr. Biol
, vol.18
, pp. 1084-1089
-
-
Dambrosio, C.1
Kelly, G.2
Shirahige, K.3
Uhlmann, F.4
-
127
-
-
79952514729
-
Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes
-
Baxter, J., et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331, 1328-1332 (2011
-
(2011)
Science
, vol.331
, pp. 1328-1332
-
-
Baxter, J.1
-
128
-
-
84891810056
-
Condensin AIDS sister chromatid decatenation by topoisomerase II
-
Charbin, A., Bouchoux, C., & Uhlmann, F Condensin Aids Sister Chromatid Decatenation by Topoisomerase II. Nucleic Acids Res. 42, 340-348 (2014
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 340-348
-
-
Charbin, A.1
Bouchoux, C.2
Uhlmann, F.3
-
129
-
-
84942061078
-
The mechanism of DNA replication termination in vertebrates
-
Dewar, J. M., Budzowska, M., & Walter, J. C. The mechanism of DNA replication termination in vertebrates. Nature 525, 345-350 (2015
-
(2015)
Nature
, vol.525
, pp. 345-350
-
-
Dewar, J.M.1
Budzowska, M.2
Walter, J.C.3
-
130
-
-
78650438598
-
Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction
-
Li, Y., et al. Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc. Natl Acad. Sci. USA 107, 18832-18837 (2010
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 18832-18837
-
-
Li, Y.1
-
131
-
-
84875159535
-
The MukB-ParC interaction affects intramolecular, not intermolecular, activities of topoisomerase IV
-
Hayama, R., Bahng, S., Karasu, M. E., & Marians, K. J. The MukB-ParC interaction affects intramolecular, not intermolecular, activities of topoisomerase IV. J. Biol. Chem. 288, 7653-7661 (2013
-
(2013)
J. Biol. Chem
, vol.288
, pp. 7653-7661
-
-
Hayama, R.1
Bahng, S.2
Karasu, M.E.3
Marians, K.J.4
-
132
-
-
0037416210
-
A role of topoisomerase II in linking DNA replication to chromosome condensation
-
Cuvier, O., & Hirano, T. A role of topoisomerase II in linking DNA replication to chromosome condensation. J. Cell. Biol. 160, 645-655 (2003
-
(2003)
J. Cell. Biol
, vol.160
, pp. 645-655
-
-
Cuvier, O.1
Hirano, T.2
-
133
-
-
33751237384
-
Wapl controls the dynamic association of cohesin with chromatin
-
Kueng, S., et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955-967 (2006
-
(2006)
Cell
, vol.127
, pp. 955-967
-
-
Kueng, S.1
-
134
-
-
84857223788
-
Cohesin-independent segregation of sister chromatids in budding yeast
-
Guacci, V., & Koshland, D. Cohesin-independent segregation of sister chromatids in budding yeast. Mol. Biol. Cell 23, 729-739 (2012
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 729-739
-
-
Guacci, V.1
Koshland, D.2
-
135
-
-
33748424969
-
Establishment of sister chromatid cohesion at the S cerevisiae replication fork
-
Lengronne, A., et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23, 787-799 (2006
-
(2006)
Mol. Cell
, vol.23
, pp. 787-799
-
-
Lengronne, A.1
-
136
-
-
33747882922
-
PCNA controls establishment of sister chromatid cohesion during S phase
-
Moldovan, G. L., Pfander, B., & Jentsch, S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723-732 (2006
-
(2006)
Mol. Cell
, vol.23
, pp. 723-732
-
-
Moldovan, G.L.1
Pfander, B.2
Jentsch, S.3
-
137
-
-
48249132443
-
Eco1 dependent cohesin acetylation during establishment of sister chromatid cohesion
-
Ben-Shahar, T. R., et al. Eco1 dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563-566 (2008
-
(2008)
Science
, vol.321
, pp. 563-566
-
-
Ben-Shahar, T.R.1
-
138
-
-
48249142388
-
A molecular determinant for the establishment of sister chromatid cohesion
-
Ünal, E., et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566-569 (2008
-
(2008)
Science
, vol.321
, pp. 566-569
-
-
Ünal, E.1
-
139
-
-
46149100946
-
Acetylation of smc3 by eco1 is required for s phase sister chromatid cohesion in both human and yeast
-
Zhang, J., et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143-151 (2008
-
(2008)
Mol. Cell
, vol.31
, pp. 143-151
-
-
Zhang, J.1
-
140
-
-
62549149415
-
Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity
-
Rowland, B. D., et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763-774 (2009
-
(2009)
Mol. Cell
, vol.33
, pp. 763-774
-
-
Rowland, B.D.1
-
141
-
-
62549130668
-
Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction
-
Sutani, T., Kawaguchi, T., Kanno, R., Itoh, T., & Shirahige, K. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19, 492-497 (2009
-
(2009)
Curr. Biol
, vol.19
, pp. 492-497
-
-
Sutani, T.1
Kawaguchi, T.2
Kanno, R.3
Itoh, T.4
Shirahige, K.5
-
142
-
-
84895455197
-
Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components
-
Alabert, C., et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281-291 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 281-291
-
-
Alabert, C.1
-
143
-
-
84955308895
-
The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering
-
Çamdere, G., Guacci, V., Stricklin, J., & Koshland, D. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. eLife 4, e11315 (2015
-
(2015)
ELife
, vol.4
, pp. e11315
-
-
Çamdere, G.1
Guacci, V.2
Stricklin, J.3
Koshland, D.4
-
144
-
-
33751087042
-
Condensin is required for chromosome arm cohesion during mitosis
-
Lam, W. W., Peterson, E. A., Yeung, M., & Lavoie, B. D. Condensin is required for chromosome arm cohesion during mitosis. Genes. Dev. 20, 2973-2984 (2006
-
(2006)
Genes. Dev
, vol.20
, pp. 2973-2984
-
-
Lam, W.W.1
Peterson, E.A.2
Yeung, M.3
Lavoie, B.D.4
-
145
-
-
84907991087
-
Cohesin?s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation
-
Ladurner, R., et al. Cohesin?s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr. Biol. 24, 2228-2237 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 2228-2237
-
-
Ladurner, R.1
-
146
-
-
23044514962
-
Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion
-
Hou, F., & Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908-3918 (2005
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 3908-3918
-
-
Hou, F.1
Zou, H.2
-
147
-
-
84937513375
-
Esco1 acetylates cohesin via a mechanism different from that of Esco2
-
Minamino, M., et al. Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr. Biol. 25, 1694-1704 (2015
-
(2015)
Curr. Biol
, vol.25
, pp. 1694-1704
-
-
Minamino, M.1
-
148
-
-
84861909407
-
The prereplication complex recruits XEco2 to chromatin to promote cohesin acetylation in Xenopus egg extracts
-
Higashi, T. L., et al. The prereplication complex recruits XEco2 to chromatin to promote cohesin acetylation in Xenopus egg extracts. Curr. Biol. 22, 977-988 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 977-988
-
-
Higashi, T.L.1
-
149
-
-
84867270264
-
Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery
-
Song, J., et al. Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery. J. Biol. Chem. 287, 34325-34336 (2012
-
(2012)
J. Biol. Chem
, vol.287
, pp. 34325-34336
-
-
Song, J.1
-
150
-
-
77956501610
-
Hos1 deacetylates Smc3 to close the cohesin acetylation cycle
-
Borges, V., et al. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol. Cell 39, 677-688 (2010
-
(2010)
Mol. Cell
, vol.39
, pp. 677-688
-
-
Borges, V.1
-
151
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7
-
Ünal, E., Heidinger-Pauli, J. M., & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248 (2007
-
(2007)
Science
, vol.317
, pp. 245-248
-
-
Ünal, E.1
Heidinger-Pauli, J.M.2
Koshland, D.3
-
152
-
-
34447549077
-
Postreplicative formation of cohesion is required for repair and induced by a single DNA break
-
Ström, L., et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245 (2007
-
(2007)
Science
, vol.317
, pp. 242-245
-
-
Ström, L.1
-
153
-
-
79955514366
-
Cdk1 dependent destruction of Eco1 prevents cohesion establishment after S phase
-
Lyons, N. A., & Morgan, D. O. Cdk1 dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol. Cell 42, 378-389 (2011
-
(2011)
Mol. Cell
, vol.42
, pp. 378-389
-
-
Lyons, N.A.1
Morgan, D.O.2
-
154
-
-
65549132836
-
Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage
-
Heidinger-Pauli, J. M., Ünal, E., & Koshland, D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol. Cell 34, 311-321 (2009
-
(2009)
Mol. Cell
, vol.34
, pp. 311-321
-
-
Heidinger-Pauli, J.M.1
Ünal, E.2
Koshland, D.3
-
155
-
-
78650562335
-
Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion
-
Lafont, A. L., Song, J., & Rankin, S. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc. Natl Acad. Sci. USA 107, 20364-20369 (2010
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 20364-20369
-
-
Lafont, A.L.1
Song, J.2
Rankin, S.3
-
156
-
-
79251530771
-
Sororin mediates sister chromatid cohesion by antagonizing Wapl
-
Nishiyama, T., et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737-749 (2010
-
(2010)
Cell
, vol.143
, pp. 737-749
-
-
Nishiyama, T.1
-
157
-
-
0037143442
-
Regulation of human separase by securin binding and autocleavage
-
Waizenegger, I. C., Gimenez-Abian, J. F., Wernic, D., & Peters, J. M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368-1378 (2002
-
(2002)
Curr. Biol
, vol.12
, pp. 1368-1378
-
-
Waizenegger, I.C.1
Gimenez-Abian, J.F.2
Wernic, D.3
Peters, J.M.4
-
158
-
-
84871712829
-
Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis
-
Liu, H., Rankin, S., & Yu, H. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15, 40-49 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 40-49
-
-
Liu, H.1
Rankin, S.2
Yu, H.3
-
159
-
-
84882321047
-
Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin
-
Nishiyama, T., Sykora, M. M., Huis in ?t Veld, P. J., Mechtler, K., & Peters, J. M. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc. Natl Acad. Sci. USA 110, 13404-13409 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 13404-13409
-
-
Nishiyama, T.1
Sykora, M.M.2
Huisint Veld, P.J.3
Mechtler, K.4
Peters, J.M.5
-
160
-
-
80053587192
-
Cohesin?s concatenation of sister DNAs maintains their intertwining
-
Farcas, A. M., Uluocak, P., Helmhart, W., & Nasmyth, K. Cohesin?s concatenation of sister DNAs maintains their intertwining. Mol. Cell 44, 97-107 (2011
-
(2011)
Mol. Cell
, vol.44
, pp. 97-107
-
-
Farcas, A.M.1
Uluocak, P.2
Helmhart, W.3
Nasmyth, K.4
-
161
-
-
84886296451
-
WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy
-
Haarhuis, J. H. I., et al. WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy. Curr. Biol. 23, 2071-2077 (2013
-
(2013)
Curr. Biol
, vol.23
, pp. 2071-2077
-
-
Haarhuis, J.H.I.1
-
162
-
-
0035947084
-
Identification of RFC(Ctf18p, Ctf8p, Dcc1p): An alternative RFC complex required for sister chromatid cohesion in S Cerevisiae
-
Mayer, M. L., Gygi, S. P., Aebersold, R., & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959-970 (2001
-
(2001)
Mol. Cell
, vol.7
, pp. 959-970
-
-
Mayer, M.L.1
Gygi, S.P.2
Aebersold, R.3
Hieter, P.4
-
163
-
-
0035051062
-
Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
-
Hanna, J. S., Kroll, E. S., Lundblad, V., & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144-3158 (2001
-
(2001)
Mol. Cell. Biol
, vol.21
, pp. 3144-3158
-
-
Hanna, J.S.1
Kroll, E.S.2
Lundblad, V.3
Spencer, F.A.4
-
164
-
-
1642423537
-
S phase checkpoint genes safeguard high-fidelity sister chromatid cohesion
-
Warren, C. D., et al. S phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol. Biol. Cell 15, 1724-1735 (2004
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1724-1735
-
-
Warren, C.D.1
-
165
-
-
3543031002
-
Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage
-
Xu, H., Boone, C., & Klein, H. L. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol. Cell. Biol. 24, 7082-7090 (2004
-
(2004)
Mol. Cell. Biol
, vol.24
, pp. 7082-7090
-
-
Xu, H.1
Boone, C.2
Klein, H.L.3
-
166
-
-
1642360837
-
Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion
-
Skibbens, R. V. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166, 33-42 (2004
-
(2004)
Genetics
, vol.166
, pp. 33-42
-
-
Skibbens, R.V.1
-
167
-
-
77956509746
-
An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion
-
Beckouët, F., et al. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol. Cell 39, 689-699 (2010
-
(2010)
Mol. Cell
, vol.39
, pp. 689-699
-
-
Beckouët, F.1
-
168
-
-
84876458231
-
An Eco1 independent sister chromatid cohesion establishment pathway in S cerevisiae
-
Borges, V., Smith, D. J., Whitehouse, I., & Uhlmann, F. An Eco1 independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122, 121-134 (2013
-
(2013)
Chromosoma
, vol.122
, pp. 121-134
-
-
Borges, V.1
Smith, D.J.2
Whitehouse, I.3
Uhlmann, F.4
-
169
-
-
51049121966
-
Studies with the human cohesion establishment factor
-
Farina, A., et al. Studies with the human cohesion establishment factor, ChlR1. J. Biol. Chem. 283, 20925-20936 (2008
-
(2008)
ChlR1. J. Biol. Chem
, vol.283
, pp. 20925-20936
-
-
Farina, A.1
-
170
-
-
71249085585
-
Tipin/Tim1/And1 protein complex promotes Pola chromatin binding and sister chromatid cohesion
-
Errico, A., et al. Tipin/Tim1/And1 protein complex promotes Pola chromatin binding and sister chromatid cohesion. EMBO J. 28, 3681-3692 (2009
-
(2009)
EMBO J.
, vol.28
, pp. 3681-3692
-
-
Errico, A.1
-
171
-
-
68049100418
-
Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts
-
Tanaka, H., et al. Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts. Genes Cells 14, 949-963 (2009
-
(2009)
Genes Cells
, vol.14
, pp. 949-963
-
-
Tanaka, H.1
-
172
-
-
70449659953
-
Cohesin acetylation speeds the replication fork
-
Terret, M. E., Sherwood, R., Rahman, S., Qin, J., & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. Nature 462, 231-234 (2009
-
(2009)
Nature
, vol.462
, pp. 231-234
-
-
Terret, M.E.1
Sherwood, R.2
Rahman, S.3
Qin, J.4
Jallepalli, P.V.5
-
173
-
-
0042337435
-
The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA
-
Bermudez, V. P., et al. The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc. Natl Acad. Sci. USA 100, 10237-10242 (2003
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10237-10242
-
-
Bermudez, V.P.1
-
174
-
-
20744435871
-
Replication protein A directed unloading of PCNA by the Ctf18 cohesion establishment complex
-
Bylund, G. O., & Burgers, P. M. J. Replication protein A directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol. Cell. Biol. 25, 5445-5455 (2005
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 5445-5455
-
-
Bylund, G.O.1
Burgers, P.M.J.2
-
175
-
-
34547131331
-
Genetic dissection of parallel sister-chromatid cohesion pathways
-
Xu, H., Boone, C., & Brown, G. W. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176, 1417-1429 (2007
-
(2007)
Genetics
, vol.176
, pp. 1417-1429
-
-
Xu, H.1
Boone, C.2
Brown, G.W.3
-
176
-
-
70350572751
-
A key role for Ctf4 in coupling the MCM2 7 helicase to DNA polymerase a within the eukaryotic replisome
-
Gambus, A., et al. A key role for Ctf4 in coupling the MCM2 7 helicase to DNA polymerase a within the eukaryotic replisome. EMBO J. 28, 2992-3004 (2009
-
(2009)
EMBO J.
, vol.28
, pp. 2992-3004
-
-
Gambus, A.1
-
177
-
-
84902304914
-
A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome
-
Simon, A. C., et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510, 293-297 (2014
-
(2014)
Nature
, vol.510
, pp. 293-297
-
-
Simon, A.C.1
-
178
-
-
0016189159
-
Bisexual mating behavior in a diploid of Saccharomyces cerevisiae: Evidence for genetically controlled non-random chromosome loss during vegetative growth
-
Haber, J. E. Bisexual mating behavior in a diploid of Saccharomyces cerevisiae: evidence for genetically controlled non-random chromosome loss during vegetative growth. Genetics 78, 843-858 (1974
-
(1974)
Genetics
, vol.78
, pp. 843-858
-
-
Haber, J.E.1
-
179
-
-
0025597055
-
The CHL1(CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M
-
Gerring, S L., Spencer, F., & Hieter, P. the CHL1(CTF1) Gene Product of Saccharomyces Cerevisiae Is Important for Chromosome Transmission and Normal Cell Cycle Progression in G2/M. EMBO J. 9, 4347-4358 (1990
-
(1990)
EMBO J.
, vol.9
, pp. 4347-4358
-
-
Gerring, S.L.1
Spencer, F.2
Hieter, P.3
-
180
-
-
84884659871
-
Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae
-
Rudra, S., & Skibbens, R. V. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS ONE 8, e75435 (2013
-
(2013)
PLoS ONE
, vol.8
, pp. e75435
-
-
Rudra, S.1
Skibbens, R.V.2
-
181
-
-
33748199605
-
Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination
-
De Piccoli, G., et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8, 1032-1034 (2006
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 1032-1034
-
-
De Piccoli, G.1
-
182
-
-
78049353613
-
The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages
-
Bermúdez-López, M., et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38, 6502-6512 (2010
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6502-6512
-
-
Bermúdez-López, M.1
-
184
-
-
84953385984
-
Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance
-
Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P., & Branzei, D. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell 60, 835-846 (2015
-
(2015)
Mol. Cell
, vol.60
, pp. 835-846
-
-
Menolfi, D.1
Delamarre, A.2
Lengronne, A.3
Pasero, P.4
Branzei, D.5
-
185
-
-
38549138271
-
Smc5/6: A link between DNA repair and unidirectional replication?
-
Murray, J. M., & Carr, A. M. Smc5/6: a link between DNA repair and unidirectional replication? Nat. Rev. Mol. Cell. Biol. 9, 177-182 (2008
-
(2008)
Nat. Rev. Mol. Cell. Biol
, vol.9
, pp. 177-182
-
-
Murray, J.M.1
Carr, A.M.2
-
186
-
-
84949220689
-
Kite proteins: A superfamily of SMC/kleisin parners conserved across bacteria, archaea, and eukaryotes
-
Palecek, J. J., & Gruber, S. Kite proteins: a superfamily of SMC/kleisin parners conserved across bacteria, archaea, and eukaryotes. Structure 23, 2183-2190 (2015
-
(2015)
Structure
, vol.23
, pp. 2183-2190
-
-
Palecek, J.J.1
Gruber, S.2
-
187
-
-
84964765934
-
Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA
-
Zabrady, K., et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkv1021 (2015
-
(2015)
Nucleic Acids Res
-
-
Zabrady, K.1
-
188
-
-
69949088463
-
Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex
-
Duan, X., et al. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35, 657-668 (2009
-
(2009)
Mol. Cell
, vol.35
, pp. 657-668
-
-
Duan, X.1
-
189
-
-
11144324990
-
Nse2, a component of the Smc5 6 complex, is a SUMO ligase required for the response to DNA damage
-
Andrews, E. A., et al. Nse2, a component of the Smc5 6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185-196 (2005
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 185-196
-
-
Andrews, E.A.1
-
190
-
-
57349094259
-
Nse1 ring-like domain supports functions of the smc5 smc6 holocomplex in genome stability
-
Pebernard, S., Perry, J. J. P., Tainer, J. A., & Boddy, M. N. Nse1 RING-like domain supports functions of the Smc5 Smc6 holocomplex in genome stability. Mol. Biol. Cell 19, 4099-4109 (2008
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4099-4109
-
-
Pebernard, S.1
Perry, J.J.P.2
Tainer, J.A.3
Boddy, M.N.4
-
191
-
-
10944232673
-
Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
-
Ström, L., Lindroos, H. B., Shirahige, K., & Sjögren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015 (2004
-
(2004)
Mol. Cell
, vol.16
, pp. 1003-1015
-
-
Ström, L.1
Lindroos, H.B.2
Shirahige, K.3
Sjögren, C.4
-
192
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-stranded break-specific cohesin domain
-
Ünal, E., et al. DNA damage response pathway uses histone modification to assemble a double-stranded break-specific cohesin domain. Mol. Cell 16, 991-1002 (2004
-
(2004)
Mol. Cell
, vol.16
, pp. 991-1002
-
-
Ünal, E.1
-
193
-
-
33745217560
-
Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways
-
Betts Lindroos, H., et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755-767 (2006
-
(2006)
Mol. Cell
, vol.22
, pp. 755-767
-
-
Betts Lindroos, H.1
-
194
-
-
84953636418
-
The cohesin complex prevents the end joining of distant double-strand ends
-
Gelot, C., et al. The cohesin complex prevents the end joining of distant double-strand ends. Mol. Cell 61, 15-26 (2016
-
(2016)
Mol. Cell
, vol.61
, pp. 15-26
-
-
Gelot, C.1
-
195
-
-
84887064569
-
Cohesin and the nucleolus constrain the mobility of spontaneous repair foci
-
Dion, V., Kalck, V., Seeber, A., Schleker, T., & Gasser, S. M. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984-991 (2013
-
(2013)
EMBO Rep
, vol.14
, pp. 984-991
-
-
Dion, V.1
Kalck, V.2
Seeber, A.3
Schleker, T.4
Gasser, S.M.5
-
196
-
-
84874349908
-
Condensin II initiates sister chromatid resolution during S phase
-
Ono, T., Yamashita, D., & Hirano, T. Condensin II initiates sister chromatid resolution during S phase. J. Cell Biol. 200, 429-441 (2013
-
(2013)
J. Cell Biol
, vol.200
, pp. 429-441
-
-
Ono, T.1
Yamashita, D.2
Hirano, T.3
-
197
-
-
58149152843
-
Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions
-
Woo, J. S., et al. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell 136, 85-96 (2009
-
(2009)
Cell
, vol.136
, pp. 85-96
-
-
Woo, J.S.1
-
198
-
-
80051565296
-
A new family of bacterial condensins
-
Petrushenko, Z. M., She, W., & Rybenkov, V. V. A new family of bacterial condensins. Mol. Microbiol. 81, 881-896 (2011
-
(2011)
Mol. Microbiol
, vol.81
, pp. 881-896
-
-
Petrushenko, Z.M.1
She, W.2
Rybenkov, V.V.3
-
199
-
-
80051874823
-
Mutational inactivation of STAG2 causes aneuploidy in human cancer
-
Solomon, D. A., et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039-1043 (2011
-
(2011)
Science
, vol.333
, pp. 1039-1043
-
-
Solomon, D.A.1
-
201
-
-
84925840671
-
Germline gain of function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin
-
Izumi, K., et al. Germline gain of function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet. 47, 338-344 (2015
-
(2015)
Nat. Genet
, vol.47
, pp. 338-344
-
-
Izumi, K.1
-
202
-
-
20944444999
-
Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion
-
Vega, H., et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat. Genet. 37, 468-470 (2005
-
(2005)
Nat. Genet
, vol.37
, pp. 468-470
-
-
Vega, H.1
-
203
-
-
84941081850
-
Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells
-
Rahman, S., Jones, M. J., & Jallepalli, P. V. Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells. Proc. Natl Acad. Sci. USA 112, 11270-11275 (2015
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 11270-11275
-
-
Rahman, S.1
Jones, M.J.2
Jallepalli, P.V.3
-
204
-
-
76049096485
-
Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1
-
van der Lelij, P., et al. Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am. J. Hum. Genet. 86, 262-266 (2010
-
(2010)
Am. J. Hum. Genet
, vol.86
, pp. 262-266
-
-
Van Der Lelij, P.1
-
205
-
-
80053980085
-
MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II
-
Yamashita, D., et al. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194, 841-854 (2011
-
(2011)
J Cell Biol
, vol.194
, pp. 841-854
-
-
Yamashita, D.1
-
206
-
-
0035101613
-
Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with polycomb and maintain Fab 7 PRE silencing
-
Lupo, R., Breiling, A., Bianchi, M. E., & Orlando, V. Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with polycomb and maintain Fab 7 PRE silencing. Mol. Cell 7, 127-136 (2001
-
(2001)
Mol. Cell
, vol.7
, pp. 127-136
-
-
Lupo, R.1
Breiling, A.2
Bianchi, M.E.3
Orlando, V.4
-
207
-
-
0036182726
-
Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior
-
Bhalla, N., Biggins, S., & Murray, A. W. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol. Biol. Cell 13, 632-645 (2002
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 632-645
-
-
Bhalla, N.1
Biggins, S.2
Murray, A.W.3
-
208
-
-
84907008348
-
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
-
Payne, F., et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Invest. 124, 4028-4038 (2014
-
(2014)
J. Clin. Invest
, vol.124
, pp. 4028-4038
-
-
Payne, F.1
|