메뉴 건너뛰기




Volumn 17, Issue 7, 2016, Pages 399-412

SMC complexes: From DNA to chromosomes

Author keywords

[No Author keywords available]

Indexed keywords

COHESIN; CONDENSIN; DNA; ADENOSINE TRIPHOSPHATASE; DNA BINDING PROTEIN; MULTIPROTEIN COMPLEX;

EID: 84963507392     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.30     Document Type: Review
Times cited : (395)

References (208)
  • 1
    • 0033558878 scopus 로고    scopus 로고
    • The boundaries of the silenced HMR domain in Saccharomyces cerevisiae
    • Donze, D., Adams, C. R., Rine, J., & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698-708 (1999
    • (1999) Genes Dev , vol.13 , pp. 698-708
    • Donze, D.1    Adams, C.R.2    Rine, J.3    Kamakaka, R.T.4
  • 2
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by CCCTC-binding factor
    • Wendt, K. S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801 (2008
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1
  • 3
    • 38849121606 scopus 로고    scopus 로고
    • Cohesins functionally associate with CTCF on mammalian chromosome arms
    • Parelho, V., et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433 (2008
    • (2008) Cell , vol.132 , pp. 422-433
    • Parelho, V.1
  • 4
    • 0033538518 scopus 로고    scopus 로고
    • A central role for cohesins in sister chromatid cohesin, formation of axial elements, and recombination during yeast meiosis
    • Klein, F., et al. A central role for cohesins in sister chromatid cohesin, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91-103 (1999
    • (1999) Cell , vol.98 , pp. 91-103
    • Klein, F.1
  • 5
    • 0033614934 scopus 로고    scopus 로고
    • Cohesin Rec8 is required for reductional chromosome segregation at meiosis
    • Watanabe, Y., & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461-464 (1999
    • (1999) Nature , vol.400 , pp. 461-464
    • Watanabe, Y.1    Nurse, P.2
  • 6
    • 84859619817 scopus 로고    scopus 로고
    • The ancient and evolving roles of cohesin in gene expression and DNA repair
    • Dorsett, D., & Ström, L. The ancient and evolving roles of cohesin in gene expression and DNA repair. Curr. Biol. 22, R240-R250 (2012
    • (2012) Curr. Biol , vol.22 , pp. R240-R250
    • Dorsett, D.1    Ström, L.2
  • 7
    • 84883212203 scopus 로고    scopus 로고
    • Cohesin in development and disease
    • Rameseiro, S., Cuadrado, A., & Losada, A. Cohesin in development and disease. Development 140, 3715-3718 (2013
    • (2013) Development , vol.140 , pp. 3715-3718
    • Rameseiro, S.1    Cuadrado, A.2    Losada, A.3
  • 8
    • 84887627069 scopus 로고    scopus 로고
    • Meiosis I: When chromosomes undergo extreme makeover
    • Miller, M. P., Amon, A., & Ünal, E. Meiosis I: when chromosomes undergo extreme makeover. Curr. Opin. Cell Biol. 25, 687-696 (2013
    • (2013) Curr. Opin. Cell Biol , vol.25 , pp. 687-696
    • Miller, M.P.1    Amon, A.2    Ünal, E.3
  • 10
    • 0026069582 scopus 로고
    • The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of e coli
    • Niki, H., Jaffé, A., Imamura, R., Ogura, T., & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E coli. EMBO J. 10, 183-193 (1991
    • (1991) EMBO J. , vol.10 , pp. 183-193
    • Niki, H.1    Jaffé, A.2    Imamura, R.3    Ogura, T.4    Hiraga, S.5
  • 11
    • 0027097480 scopus 로고
    • E coli MukB protein involved in chromosome partition forms a homodimer with a rod-And-hinge structure having DNA binding and ATP/GTP binding activities
    • Niki, H., et al. E coli MukB protein involved in chromosome partition forms a homodimer with a rod-And-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11, 5101-5109 (1992
    • (1992) EMBO J. , vol.11 , pp. 5101-5109
    • Niki, H.1
  • 12
    • 0027759461 scopus 로고
    • SMC1: An essential yeast gene encoding a putative head-rod-Tail protein is required for nuclear division and defines a new ubiquitous protein family
    • Strunnikov, A. V., Larionov, V. L., & Koshland, D. SMC1: an essential yeast gene encoding a putative head-rod-Tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123, 1635-1648 (1993
    • (1993) J. Cell Biol , vol.123 , pp. 1635-1648
    • Strunnikov, A.V.1    Larionov, V.L.2    Koshland, D.3
  • 13
    • 0028081446 scopus 로고
    • Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis
    • Saka, Y., et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938-4952 (1994
    • (1994) EMBO J. , vol.13 , pp. 4938-4952
    • Saka, Y.1
  • 14
    • 0027943721 scopus 로고
    • A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
    • Hirano, T., & Mitchison, T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449-458 (1994
    • (1994) Cell , vol.79 , pp. 449-458
    • Hirano, T.1    Mitchison, T.J.2
  • 15
    • 0028109863 scopus 로고
    • ScII: An abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure
    • Saitoh, N., Goldberg, I. G., Wood, E. R., & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303-318 (1994
    • (1994) J. Cell Biol , vol.127 , pp. 303-318
    • Saitoh, N.1    Goldberg, I.G.2    Wood, E.R.3    Earnshaw, W.C.4
  • 16
    • 0028942904 scopus 로고
    • SMC2 a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
    • Strunnikov, A., Hogan, E., & Koshland, D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9, 587-599 (1995
    • (1995) Genes Dev , vol.9 , pp. 587-599
    • Strunnikov, A.1    Hogan, E.2    Koshland, D.3
  • 17
    • 0028104856 scopus 로고
    • DPY 27: A chromosome condensation protein homolog that regulates C elegans dosage compensation through association with the X chromosome
    • Chuang, P. T., Albertson, D. G., & Meyer, B. J. DPY 27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459-474 (1994
    • (1994) Cell , vol.79 , pp. 459-474
    • Chuang, P.T.1    Albertson, D.G.2    Meyer, B.J.3
  • 18
    • 0028850628 scopus 로고
    • The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair
    • Lehmann, A. R., et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067-7080 (1995
    • (1995) Mol. Cell. Biol , vol.15 , pp. 7067-7080
    • Lehmann, A.R.1
  • 19
    • 0030830639 scopus 로고    scopus 로고
    • Condensins chromosome condensation protein complexes containing XCAP C XCAP e and a Xenopus homolog of the Drosophila barren protein
    • Hirano, T., Kobayashi, R., & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP C, XCAP E and a Xenopus homolog of the Drosophila barren protein. Cell 89, 511-521 (1997
    • (1997) Cell , vol.89 , pp. 511-521
    • Hirano, T.1    Kobayashi, R.2    Hirano, M.3
  • 20
    • 0030885925 scopus 로고    scopus 로고
    • Cohesins chromosomal proteins that prevent premature separation of sister chromatids
    • Michaelis, C., Ciosk, R., & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45 (1997
    • (1997) Cell , vol.91 , pp. 35-45
    • Michaelis, C.1    Ciosk, R.2    Nasmyth, K.3
  • 21
    • 0030886602 scopus 로고    scopus 로고
    • A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S cerevisiae
    • Guacci, V., Koshland, D., & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell 91, 47-57 (1997
    • (1997) Cell , vol.91 , pp. 47-57
    • Guacci, V.1    Koshland, D.2    Strunnikov, A.3
  • 22
    • 0032127940 scopus 로고    scopus 로고
    • Identification of Xenopus SMC protein complexes required for sister chromatid cohesion
    • Losada, A., Hirano, M., & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986-1997 (1998
    • (1998) Genes Dev , vol.12 , pp. 1986-1997
    • Losada, A.1    Hirano, M.2    Hirano, T.3
  • 23
    • 0033083727 scopus 로고    scopus 로고
    • Yeast cohesin complex requires a conserved protein Eco1p (Ctf7) to establish cohesion between sister chromatids during DNA replication
    • Tóth, A., et al. Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320-333 (1999
    • (1999) Genes Dev , vol.13 , pp. 320-333
    • Tóth, A.1
  • 24
    • 0034599577 scopus 로고    scopus 로고
    • A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair complex
    • Fousteri, M. I., & Lehmann, A. R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair complex. EMBO J. 19, 1691-1702 (2000
    • (2000) EMBO J. , vol.19 , pp. 1691-1702
    • Fousteri, M.I.1    Lehmann, A.R.2
  • 25
    • 84872099346 scopus 로고    scopus 로고
    • Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
    • Lopez-Serra, L., Lengronne, A., Borges, V., Kelly, G., & Uhlmann, F. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr. Biol. 23, 64-69 (2013
    • (2013) Curr. Biol , vol.23 , pp. 64-69
    • Lopez-Serra, L.1    Lengronne, A.2    Borges, V.3    Kelly, G.4    Uhlmann, F.5
  • 26
    • 84885592677 scopus 로고    scopus 로고
    • Wapl is an essential regulator of chromatin structure and chromosome segregation
    • Tedeschi, A., et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564-568 (2013
    • (2013) Nature , vol.501 , pp. 564-568
    • Tedeschi, A.1
  • 27
    • 0027059030 scopus 로고
    • Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand-break repair
    • Birkenbihl, R. P., & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand-break repair. Nucleic Acids Res. 20, 6605-6611 (1992
    • (1992) Nucleic Acids Res , vol.20 , pp. 6605-6611
    • Birkenbihl, R.P.1    Subramani, S.2
  • 28
    • 0034312307 scopus 로고    scopus 로고
    • Characterization of fission yeast cohesin: Essential anaphase proteolysis of Rad21 phosphorylated in the S phase
    • Tomonaga, T., et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757-2770 (2000
    • (2000) Genes Dev , vol.14 , pp. 2757-2770
    • Tomonaga, T.1
  • 29
    • 0035954251 scopus 로고    scopus 로고
    • Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
    • Sjögren, C., & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995 (2001
    • (2001) Curr. Biol , vol.11 , pp. 991-995
    • Sjögren, C.1    Nasmyth, K.2
  • 30
    • 0037046553 scopus 로고    scopus 로고
    • Cnd2 has dual roles in mitotic condensation and interphase
    • Aono, N., Sutani, T., Tomonaga, T., Mochida, S., & Yanagida, M. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417, 197-202 (2002
    • (2002) Nature , vol.417 , pp. 197-202
    • Aono, N.1    Sutani, T.2    Tomonaga, T.3    Mochida, S.4    Yanagida, M.5
  • 31
    • 0032497566 scopus 로고    scopus 로고
    • Cohesion between sister chromatids must be established during DNA replication
    • Uhlmann, F., & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095-1101 (1998
    • (1998) Curr. Biol , vol.8 , pp. 1095-1101
    • Uhlmann, F.1    Nasmyth, K.2
  • 32
    • 0033168496 scopus 로고    scopus 로고
    • Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1
    • Uhlmann, F., Lottspeich, F., & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37-42 (1999
    • (1999) Nature , vol.400 , pp. 37-42
    • Uhlmann, F.1    Lottspeich, F.2    Nasmyth, K.3
  • 33
    • 0034721669 scopus 로고    scopus 로고
    • Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
    • Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V., & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375-386 (2000
    • (2000) Cell , vol.103 , pp. 375-386
    • Uhlmann, F.1    Wernic, D.2    Poupart, M.A.3    Koonin, E.V.4    Nasmyth, K.5
  • 34
    • 0034721656 scopus 로고    scopus 로고
    • Two distinct pathways remove mammalian cohesin complexes from chromosome arms in prophase and from centromeres in anaphase
    • Waizenegger, I. C., Hauf, S., Meinke, A., & Peters, J. M. Two distinct pathways remove mammalian cohesin complexes from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399-410 (2000
    • (2000) Cell , vol.103 , pp. 399-410
    • Waizenegger, I.C.1    Hauf, S.2    Meinke, A.3    Peters, J.M.4
  • 35
    • 0037017393 scopus 로고    scopus 로고
    • Condensin and cohesin display different arm conformations with characteristic hinge angles
    • Anderson, D. E., Losada, A., Erickson, H. P., & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419-424 (2002
    • (2002) J. Cell Biol , vol.156 , pp. 419-424
    • Anderson, D.E.1    Losada, A.2    Erickson, H.P.3    Hirano, T.4
  • 36
    • 0036242551 scopus 로고    scopus 로고
    • Molecular architecture of SMC proteins and the yeast cohesin complex
    • Haering, C. H., Löwe, J., Hochwagen, A., & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773-788 (2002
    • (2002) Mol. Cell , vol.9 , pp. 773-788
    • Haering, C.H.1    Löwe, J.2    Hochwagen, A.3    Nasmyth, K.4
  • 37
    • 4644220369 scopus 로고    scopus 로고
    • Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases
    • Lammens, A., Schele, A., & Hopfner, K. P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778-1782 (2004
    • (2004) Curr. Biol , vol.14 , pp. 1778-1782
    • Lammens, A.1    Schele, A.2    Hopfner, K.P.3
  • 38
    • 79151480827 scopus 로고    scopus 로고
    • ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex
    • Hu, B., et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12-24 (2011
    • (2011) Curr. Biol , vol.21 , pp. 12-24
    • Hu, B.1
  • 40
    • 33847199666 scopus 로고    scopus 로고
    • And subunit geometry of human condensin complexes
    • Onn, I., Aono, N., Hirano, M., & Hirano, T. Reconstitution and subunit geometry of human condensin complexes. EMBO J. 26, 1024-1034 (2007
    • (2007) EMBO J. , vol.26 , pp. 1024-1034
    • Onn, I.1    Aono, N.2    Hirano, M.3    Reconstitution, H.T.4
  • 41
    • 84911413825 scopus 로고    scopus 로고
    • Characterization of a DNA exit gate in the human cohesin ring
    • Huis in ?t Veld, P. J., et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346, 968-972 (2014
    • (2014) Science , vol.346 , pp. 968-972
  • 42
    • 4644244326 scopus 로고    scopus 로고
    • Structure and stability of cohesin?s Smc1 kleisin interaction
    • Haering, C. H., et al. Structure and stability of cohesin?s Smc1 kleisin interaction. Mol. Cell 15, 951-964 (2004
    • (2004) Mol. Cell , vol.15 , pp. 951-964
    • Haering, C.H.1
  • 43
    • 84875165205 scopus 로고    scopus 로고
    • An asymmetric SMC-kleisin bridge in prokaryotic condensin
    • Bürmann, F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20, 371-379 (2013
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 371-379
    • Bürmann, F.1
  • 44
    • 84907295977 scopus 로고    scopus 로고
    • Closing the cohesin ring: Structure and function of its Smc3 kleisin interface
    • Gligoris, T. G., et al. Closing the cohesin ring: structure and function of its Smc3 kleisin interface. Science 346, 963-967 (2014
    • (2014) Science , vol.346 , pp. 963-967
    • Gligoris, T.G.1
  • 45
    • 84922327650 scopus 로고    scopus 로고
    • Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion
    • Hara, K., et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864-870 (2014
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 864-870
    • Hara, K.1
  • 46
    • 67649809770 scopus 로고    scopus 로고
    • Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5 6 subcomplex and the hinge regions of Smc5 and Smc6
    • Duan, X., et al. Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5 6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284, 8507-8515 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 8507-8515
    • Duan, X.1
  • 47
    • 84950266410 scopus 로고    scopus 로고
    • DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism
    • Murayama, Y., & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628-1640 (2015
    • (2015) Cell , vol.163 , pp. 1628-1640
    • Murayama, Y.1    Uhlmann, F.2
  • 48
    • 0035678054 scopus 로고    scopus 로고
    • Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis
    • Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673-745 (2001
    • (2001) Annu. Rev. Genet , vol.35 , pp. 673-745
    • Nasmyth, K.1
  • 50
    • 84892617115 scopus 로고    scopus 로고
    • Biochemical reconstitution of topological DNA binding by the cohesin ring
    • Murayama, Y., & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367-371 (2014
    • (2014) Nature , vol.505 , pp. 367-371
    • Murayama, Y.1    Uhlmann, F.2
  • 51
    • 79961029402 scopus 로고    scopus 로고
    • Condensin structures chromosomal DNA through topological links
    • Cuylen, S., Metz, J., & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894-901 (2011
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 894-901
    • Cuylen, S.1    Metz, J.2    Haering, C.H.3
  • 52
    • 84940793917 scopus 로고    scopus 로고
    • The Smc5/6 complex is an ATP-dependent intermolecular DNA linker
    • Kanno, T., Berta, D. G., & Sjögren, C. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep. 12, 1471-1482 (2015
    • (2015) Cell Rep , vol.12 , pp. 1471-1482
    • Kanno, T.1    Berta, D.G.2    Sjögren, C.3
  • 53
    • 84930616986 scopus 로고    scopus 로고
    • SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
    • Wilhelm, L., et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4, e06659 (2015
    • (2015) ELife , vol.4 , pp. e06659
    • Wilhelm, L.1
  • 54
    • 0242540364 scopus 로고    scopus 로고
    • A model for ATP hydrolysis-dependent binding of cohesin to DNA
    • Weitzer, S., Lehane, C., & Uhlmann, F. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr. Biol. 13, 1930-1940 (2003
    • (2003) Curr. Biol , vol.13 , pp. 1930-1940
    • Weitzer, S.1    Lehane, C.2    Uhlmann, F.3
  • 55
    • 0037459376 scopus 로고    scopus 로고
    • Chromosomal cohesin forms a ring
    • Gruber, S., Haering, C. H., & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765-777 (2003
    • (2003) Cell , vol.112 , pp. 765-777
    • Gruber, S.1    Haering, C.H.2    Nasmyth, K.3
  • 56
    • 75949117626 scopus 로고    scopus 로고
    • Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei
    • Oliveira, R. A., Hamilton, R. S., Pauli, A., Davis, I., & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185-192 (2010
    • (2010) Nat. Cell Biol , vol.12 , pp. 185-192
    • Oliveira, R.A.1    Hamilton, R.S.2    Pauli, A.3    Davis, I.4    Nasmyth, K.5
  • 57
    • 32944477078 scopus 로고    scopus 로고
    • Condensin i stabilizes chromosomes mechanically through a dynamic interaction in live cells
    • Gerlich, D., Hirota, T., Koch, B., Peters, J. M., & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333-344 (2006
    • (2006) Curr. Biol , vol.16 , pp. 333-344
    • Gerlich, D.1    Hirota, T.2    Koch, B.3    Peters, J.M.4    Ellenberg, J.5
  • 58
    • 33746486793 scopus 로고    scopus 로고
    • Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
    • Gerlich, D., Koch, B., Dupeux, F., Peters, J. M., & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571-1578 (2006
    • (2006) Curr. Biol , vol.16 , pp. 1571-1578
    • Gerlich, D.1    Koch, B.2    Dupeux, F.3    Peters, J.M.4    Ellenberg, J.5
  • 59
    • 84867760568 scopus 로고    scopus 로고
    • In vivo architecture and action of bacterial structural maintenance of chromosome proteins
    • Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C., & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528-531 (2012
    • (2012) Science , vol.338 , pp. 528-531
    • Badrinarayanan, A.1    Reyes-Lamothe, R.2    Uphoff, S.3    Leake, M.C.4    Sherratt, D.J.5
  • 60
    • 84865689123 scopus 로고    scopus 로고
    • Cohesin?s DNA exit gate is distinct from its entrance gate and is regulated by acetylation
    • Chan, K. L., et al. Cohesin?s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961-974 (2012
    • (2012) Cell , vol.150 , pp. 961-974
    • Chan, K.L.1
  • 61
    • 84926365170 scopus 로고    scopus 로고
    • Balancing acts of two HEAT subunits of condensin i support dynamic assembly of chromosome axes
    • Kinoshita, K., Kobayashi, T. J., & Hirano, T. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev. Cell 33, 94-106 (2015
    • (2015) Dev. Cell , vol.33 , pp. 94-106
    • Kinoshita, K.1    Kobayashi, T.J.2    Hirano, T.3
  • 62
    • 33750021276 scopus 로고    scopus 로고
    • Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
    • Gruber, S., et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523-537 (2006
    • (2006) Cell , vol.127 , pp. 523-537
    • Gruber, S.1
  • 63
    • 84875213862 scopus 로고    scopus 로고
    • Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate
    • Buheitel, J., & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32, 666-676 (2013
    • (2013) EMBO J. , vol.32 , pp. 666-676
    • Buheitel, J.1    Stemmann, O.2
  • 64
    • 84919371771 scopus 로고    scopus 로고
    • Structure of the Rad50 DNA double-strand break repair protein in complex with DNA
    • Rojowska, A., et al. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J. 33, 2847-2859 (2014
    • (2014) EMBO J. , vol.33 , pp. 2847-2859
    • Rojowska, A.1
  • 65
    • 0033859660 scopus 로고    scopus 로고
    • Cohesin?s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins
    • Ciosk, R., et al. Cohesin?s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243-254 (2000
    • (2000) Mol. Cell , vol.5 , pp. 243-254
    • Ciosk, R.1
  • 66
    • 33646178283 scopus 로고    scopus 로고
    • A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4
    • Bernard, P., et al. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr. Biol. 16, 875-881 (2006
    • (2006) Curr. Biol , vol.16 , pp. 875-881
    • Bernard, P.1
  • 67
    • 0036006301 scopus 로고    scopus 로고
    • Condensin architecture and interaction with DNA: Regulatory non-SMC subunits bind to the head of SMC heterodimer
    • Yoshimura, S. H., et al. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12, 508-513 (2002
    • (2002) Curr. Biol , vol.12 , pp. 508-513
    • Yoshimura, S.H.1
  • 68
    • 0037507259 scopus 로고    scopus 로고
    • Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein-protein assembly
    • Sakai, A., Hizume, K., Sutani, T., Takeyasu, K., & Yanagida, M. Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein-protein assembly. EMBO J. 22, 2764-2775 (2003
    • (2003) EMBO J. , vol.22 , pp. 2764-2775
    • Sakai, A.1    Hizume, K.2    Sutani, T.3    Takeyasu, K.4    Yanagida, M.5
  • 69
    • 34548074957 scopus 로고    scopus 로고
    • In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae
    • Mc Intyre, J., et al. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J. 26, 3783-3793 (2007
    • (2007) EMBO J. , vol.26 , pp. 3783-3793
    • Mc Intyre, J.1
  • 70
    • 0035916338 scopus 로고    scopus 로고
    • Intermolecular DNA interactions stimulated by the cohesin complex in vitro: Implications for sister chromatid cohesion
    • Losada, A., & Hirano, T. Intermolecular DNA interactions stimulated by the cohesin complex in vitro: implications for sister chromatid cohesion. Curr. Biol. 11, 268-272 (2001
    • (2001) Curr. Biol , vol.11 , pp. 268-272
    • Losada, A.1    Hirano, T.2
  • 71
    • 77949570558 scopus 로고    scopus 로고
    • Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo
    • Petrushenko, Z. M., Cui, Y., She, W., & Rybenkov, V. V. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 29, 1126-1135 (2010
    • (2010) EMBO J. , vol.29 , pp. 1126-1135
    • Petrushenko, Z.M.1    Cui, Y.2    She, W.3    Rybenkov, V.V.4
  • 72
    • 36249021097 scopus 로고    scopus 로고
    • Displacement and re accumulation of centromeric cohesin during transient pre-Anaphase centromere splitting
    • Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K., & Uhlmann, F. Displacement and re accumulation of centromeric cohesin during transient pre-Anaphase centromere splitting. Chromosoma 116, 531-544 (2007
    • (2007) Chromosoma , vol.116 , pp. 531-544
    • Ocampo-Hafalla, M.T.1    Katou, Y.2    Shirahige, K.3    Uhlmann, F.4
  • 73
    • 50049126078 scopus 로고    scopus 로고
    • Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes
    • Dambrosio, C., et al. Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215-2227 (2008
    • (2008) Genes Dev , vol.22 , pp. 2215-2227
    • Dambrosio, C.1
  • 74
    • 84908335938 scopus 로고    scopus 로고
    • The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement
    • Jeppsson, K., et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 10, e1004680 (2014
    • (2014) PLoS Genet , vol.10 , pp. e1004680
    • Jeppsson, K.1
  • 75
    • 65549135760 scopus 로고    scopus 로고
    • Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B subtilis
    • Gruber, S., & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-696 (2009
    • (2009) Cell , vol.137 , pp. 685-696
    • Gruber, S.1    Errington, J.2
  • 76
    • 0000818409 scopus 로고    scopus 로고
    • Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
    • Tanaka, T., Fuchs, J., Loidl, J., & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2, 492-499 (2000
    • (2000) Nat. Cell Biol , vol.2 , pp. 492-499
    • Tanaka, T.1    Fuchs, J.2    Loidl, J.3    Nasmyth, K.4
  • 77
    • 65649107604 scopus 로고    scopus 로고
    • Condensin regulates the stiffness of vertebrate centromeres
    • Ribeiro, S. A., et al. Condensin regulates the stiffness of vertebrate centromeres. Mol. Biol. Cell 20, 2371-2380 (2009
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2371-2380
    • Ribeiro, S.A.1
  • 78
    • 84954317413 scopus 로고    scopus 로고
    • ChromoShake: A chromosome dynamics simulator reveals chromatin loops stiffen centromeric chromatin
    • Lawrimore, J., et al. ChromoShake: a chromosome dynamics simulator reveals chromatin loops stiffen centromeric chromatin. Mol. Biol. Cell 27, 153-166 (2016
    • (2016) Mol. Biol. Cell , vol.27 , pp. 153-166
    • Lawrimore, J.1
  • 79
    • 84876129123 scopus 로고    scopus 로고
    • Cohesin-dependent associatin of Scc2/4 with the centromere initiates pericentromeric cohesion establishment
    • Fernius, J., et al. Cohesin-dependent associatin of Scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr. Biol. 23, 599-606 (2013
    • (2013) Curr. Biol , vol.23 , pp. 599-606
    • Fernius, J.1
  • 80
    • 84878877755 scopus 로고    scopus 로고
    • Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7 Dbf4 kinase recruitment
    • Natsume, T., et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7 Dbf4 kinase recruitment. Mol. Cell 50, 661-674 (2013
    • (2013) Mol. Cell , vol.50 , pp. 661-674
    • Natsume, T.1
  • 81
    • 84903468580 scopus 로고    scopus 로고
    • Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation
    • Peplowska, K., Wallek, A. U., & Storchova, Z. Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation. PLoS Genet. 10, e1004411 (2014
    • (2014) PLoS Genet , vol.10 , pp. e1004411
    • Peplowska, K.1    Wallek, A.U.2    Storchova, Z.3
  • 82
    • 84898739128 scopus 로고    scopus 로고
    • Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere
    • Verzijlbergen, K. F., et al. Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. eLife 3, e01374 (2014
    • (2014) ELife , vol.3 , pp. e01374
    • Verzijlbergen, K.F.1
  • 83
    • 3242880374 scopus 로고    scopus 로고
    • Cohesin relocation from sites of chromosomal loading to places of convergent transcription
    • Lengronne, A., et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573-578 (2004
    • (2004) Nature , vol.430 , pp. 573-578
    • Lengronne, A.1
  • 84
    • 77957139539 scopus 로고    scopus 로고
    • Mediator and cohesin connect gene expression and chromatin architecture
    • Kagey, M. H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435 (2010
    • (2010) Nature , vol.467 , pp. 430-435
    • Kagey, M.H.1
  • 85
    • 84889582440 scopus 로고    scopus 로고
    • Genome-wide analysis of condensin binding in Caenorhabditis elegans
    • Kranz, A. L., et al. Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol. 14, R112 (2013
    • (2013) Genome Biol , vol.14 , pp. R112
    • Kranz, A.L.1
  • 86
    • 84922068409 scopus 로고    scopus 로고
    • The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions
    • Lopez-Serra, L., Kelly, G., Patel, H., Stewart, A., & Uhlmann, F. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat. Genet. 46, 1147-1151 (2014
    • (2014) Nat. Genet , vol.46 , pp. 1147-1151
    • Lopez-Serra, L.1    Kelly, G.2    Patel, H.3    Stewart, A.4    Uhlmann, F.5
  • 87
    • 84901735084 scopus 로고    scopus 로고
    • A cohesin-independent role for NIPBL at promoters provides insight in CdLS
    • Zuin, J., et al. A cohesin-independent role for NIPBL at promoters provides insight in CdLS. PLoS Genet. 10, e1004153 (2014
    • (2014) PLoS Genet , vol.10 , pp. e1004153
    • Zuin, J.1
  • 88
    • 84938547194 scopus 로고    scopus 로고
    • Structural studies reveal the functional modularity of the Scc2 Scc4 cohesin loader
    • Chao, W. C. H., et al. Structural studies reveal the functional modularity of the Scc2 Scc4 cohesin loader. Cell Rep. 12, 719-725 (2015
    • (2015) Cell Rep , vol.12 , pp. 719-725
    • Chao, W.C.H.1
  • 89
    • 85015083969 scopus 로고    scopus 로고
    • Structural evidence for Scc4 dependent localization of cohesin loading
    • Hinshaw, S. M., Makrantoni, V., Kerr, A., Marston, A. L., & Harrison, S. C. Structural evidence for Scc4 dependent localization of cohesin loading. eLife 4, e06057 (2015
    • (2015) ELife , vol.4 , pp. e06057
    • Hinshaw, S.M.1    Makrantoni, V.2    Kerr, A.3    Marston, A.L.4    Harrison, S.C.5
  • 90
    • 47549096990 scopus 로고    scopus 로고
    • Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts
    • Takahashi, T. S., Basu, A., Bermudez, V., Hurwitz, J., & Walter, J. C. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev. 22, 1894-1905 (2008
    • (2008) Genes Dev , vol.22 , pp. 1894-1905
    • Takahashi, T.S.1    Basu, A.2    Bermudez, V.3    Hurwitz, J.4    Walter, J.C.5
  • 91
    • 84860507563 scopus 로고    scopus 로고
    • Cohesin SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres
    • Remeseiro, S., et al. Cohesin SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076-2089 (2012
    • (2012) EMBO J. , vol.31 , pp. 2076-2089
    • Remeseiro, S.1
  • 93
    • 84887819535 scopus 로고    scopus 로고
    • Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres
    • Carretero, M., Ruiz-Torres, M., Rodríguez Corsino, M., Barthelemy, I., & Losada, A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32, 2938-2949 (2013
    • (2013) EMBO J. , vol.32 , pp. 2938-2949
    • Carretero, M.1    Ruiz-Torres, M.2    Rodríguez Corsino, M.3    Barthelemy, I.4    Losada, A.5
  • 94
    • 66249086197 scopus 로고    scopus 로고
    • Conserved features of cohesin binding along fission yeast chromosomes
    • Schmidt, C. K., Brookes, N., & Uhlmann, F. Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol. 10, R52 (2009
    • (2009) Genome Biol , vol.10 , pp. R52
    • Schmidt, C.K.1    Brookes, N.2    Uhlmann, F.3
  • 95
    • 50049112678 scopus 로고    scopus 로고
    • Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes
    • Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A., & Engelke, D. R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204-2214 (2008
    • (2008) Genes Dev , vol.22 , pp. 2204-2214
    • Haeusler, R.A.1    Pratt-Hyatt, M.2    Good, P.D.3    Gipson, T.A.4    Engelke, D.R.5
  • 96
    • 63649098077 scopus 로고    scopus 로고
    • The cis element and factors required for condensin recruitment to chromosomes
    • Johzuka, K., & Horiuchi, T. The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34, 26-35 (2009
    • (2009) Mol. Cell , vol.34 , pp. 26-35
    • Johzuka, K.1    Horiuchi, T.2
  • 97
    • 79959549133 scopus 로고    scopus 로고
    • Condensin association with histone H2A shapes mitotic chromosomes
    • Tada, K., Susumu, H., Sakuno, T., & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477-483 (2011
    • (2011) Nature , vol.474 , pp. 477-483
    • Tada, K.1    Susumu, H.2    Sakuno, T.3    Watanabe, Y.4
  • 98
    • 84940888891 scopus 로고    scopus 로고
    • Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes
    • Iwasaki, O., et al. Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes. Mol. Cell 59, 755-767 (2015
    • (2015) Mol. Cell , vol.59 , pp. 755-767
    • Iwasaki, O.1
  • 99
    • 84885135720 scopus 로고    scopus 로고
    • Condensin i associates with structural and gene regulatory regions in vertebrate chromosomes
    • Kim, J. H., et al. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat. Commun. 4, 2537 (2013
    • (2013) Nat. Commun , vol.4 , pp. 2537
    • Kim, J.H.1
  • 100
    • 84937904648 scopus 로고    scopus 로고
    • Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation
    • Sutani, T., et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat. Commun. 6, 7815 (2015
    • (2015) Nat. Commun , vol.6 , pp. 7815
    • Sutani, T.1
  • 101
    • 0141987890 scopus 로고    scopus 로고
    • Differential contributions of condensin i and condensin II to mitotic chromosome architecture in vertebrate cells
    • Ono, T., et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109-121 (2003
    • (2003) Cell , vol.115 , pp. 109-121
    • Ono, T.1
  • 102
    • 38349177548 scopus 로고    scopus 로고
    • Association of cohesin and Nipped B with transcriptionally active regions of the Drosophila melanogaster genome
    • Misulovin, Z., et al. Association of cohesin and Nipped B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117, 89-102 (2008
    • (2008) Chromosoma , vol.117 , pp. 89-102
    • Misulovin, Z.1
  • 103
    • 82555176440 scopus 로고    scopus 로고
    • PolII caught speeding by single gene imaging
    • Cannon, D., & Chubb, J. R. PolII caught speeding by single gene imaging. EMBO Rep. 12, 1208-1210 (2011
    • (2011) EMBO Rep , vol.12 , pp. 1208-1210
    • Cannon, D.1    Chubb, J.R.2
  • 104
    • 84866183822 scopus 로고    scopus 로고
    • HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle
    • Deardorff, M. A., et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489, 313-317 (2012
    • (2012) Nature , vol.489 , pp. 313-317
    • Deardorff, M.A.1
  • 105
    • 84930277562 scopus 로고    scopus 로고
    • RNA pol II transcript abundance controls condensin accumulation at mitotically up regulated and heat-shock-inducible genes in fission yeast
    • Nakazawa, N., et al. RNA pol II transcript abundance controls condensin accumulation at mitotically up regulated and heat-shock-inducible genes in fission yeast. Genes Cells 20, 481-499 (2015
    • (2015) Genes Cells , vol.20 , pp. 481-499
    • Nakazawa, N.1
  • 106
    • 56549108671 scopus 로고    scopus 로고
    • Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively
    • Pebernard, S., Schaffer, L., Campbell, D., Head, S. R., & Boddy, M. N. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J. 27, 3011-3023 (2008
    • (2008) EMBO J. , vol.27 , pp. 3011-3023
    • Pebernard, S.1    Schaffer, L.2    Campbell, D.3    Head, S.R.4    Boddy, M.N.5
  • 107
    • 67650997080 scopus 로고    scopus 로고
    • Cohesins form chromosomal cis interactions at the developmentally regulated IFNG locus
    • Hadjur, S., et al. Cohesins form chromosomal cis interactions at the developmentally regulated IFNG locus. Nature 460, 410-413 (2009
    • (2009) Nature , vol.460 , pp. 410-413
    • Hadjur, S.1
  • 108
    • 73649145481 scopus 로고    scopus 로고
    • Cohesin is required for higher-order chromatin conformation at the imprinted IGF2 H19 locus
    • Nativio, R., et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2 H19 locus. PLoS Genet. 5, e1000739 (2009
    • (2009) PLoS Genet , vol.5 , pp. e1000739
    • Nativio, R.1
  • 109
    • 84966350662 scopus 로고    scopus 로고
    • Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle
    • Iwasaki, O., Corcoran, C. J., & Noma, K. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkv1502 (2016
    • (2016) Nucleic Acids Res
    • Iwasaki, O.1    Corcoran, C.J.2    Noma, K.3
  • 110
    • 0037180450 scopus 로고    scopus 로고
    • Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold
    • Poirier, M. G., & Marko, J. F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl Acad. Sci. USA 99, 15393-15397 (2002
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 15393-15397
    • Poirier, M.G.1    Marko, J.F.2
  • 111
    • 34347247308 scopus 로고    scopus 로고
    • The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by em tomography
    • König, P., Braunfeld, M. B., Sedat, J. W., & Agard, D. A. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116, 349-372 (2007
    • (2007) Chromosoma , vol.116 , pp. 349-372
    • König, P.1    Braunfeld, M.B.2    Sedat, J.W.3    Agard, D.A.4
  • 112
    • 84859421494 scopus 로고    scopus 로고
    • Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30 nm chromatin structure
    • Nishino, Y., et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30 nm chromatin structure. EMBO J. 31, 1644-1653 (2012
    • (2012) EMBO J. , vol.31 , pp. 1644-1653
    • Nishino, Y.1
  • 113
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes
    • Sanborn, A. L., et al. Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456-E6465 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1
  • 114
    • 84870491262 scopus 로고    scopus 로고
    • Condensin chromatin crossbarring and chromosome condensation
    • Thadani, R., Uhlmann, F., & Heeger, S. Condensin, chromatin crossbarring and chromosome condensation. Curr. Biol. 22, R1012-R1021 (2012
    • (2012) Curr. Biol , vol.22 , pp. R1012-R1021
    • Thadani, R.1    Uhlmann, F.2    Heeger, S.3
  • 115
    • 84929149353 scopus 로고    scopus 로고
    • A simple biophysical model emulates budding yeast chromosome condensation
    • Cheng, T. M. K., et al. A simple biophysical model emulates budding yeast chromosome condensation. eLife 4, e05565 (2015
    • (2015) ELife , vol.4 , pp. e05565
    • Cheng, T.M.K.1
  • 116
    • 84938683625 scopus 로고    scopus 로고
    • Reconstitution of mitotic chromatids with a minimum set of purified factors
    • Shintomi, K., Takahashi, T. S., & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014-1023 (2015
    • (2015) Nat. Cell Biol , vol.17 , pp. 1014-1023
    • Shintomi, K.1    Takahashi, T.S.2    Hirano, T.3
  • 117
    • 0033597962 scopus 로고    scopus 로고
    • 13S condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation
    • Kimura, K., Rybenkov, V. V., Crisona, N. J., Hirano, T., & Cozzarelli, N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239-248 (1999
    • (1999) Cell , vol.98 , pp. 239-248
    • Kimura, K.1    Rybenkov, V.V.2    Crisona, N.J.3    Hirano, T.4    Cozzarelli, N.R.5
  • 118
    • 84923763345 scopus 로고    scopus 로고
    • Condensins and the evolution of torsion-mediated genome organization
    • Hirano, T. Condensins and the evolution of torsion-mediated genome organization. Trends Cell Biol. 24, 727-733 (2014
    • (2014) Trends Cell Biol , vol.24 , pp. 727-733
    • Hirano, T.1
  • 119
    • 84871208196 scopus 로고    scopus 로고
    • Self-organization of domain structures by DNA-loop-extruding enzymes
    • Alipour, E., & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202-11212 (2012
    • (2012) Nucleic Acids Res , vol.40 , pp. 11202-11212
    • Alipour, E.1    Marko, J.F.2
  • 120
    • 84940986924 scopus 로고    scopus 로고
    • SMC condensin: Promoting cohesion of replicon arms
    • Bürmann, F., & Gruber, S. SMC condensin: promoting cohesion of replicon arms. Nat. Struct. Mol. Biol. 22, 653-655 (2015
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 653-655
    • Bürmann, F.1    Gruber, S.2
  • 121
    • 84939550260 scopus 로고    scopus 로고
    • Condensin-And replication-mediated bacterial chromosome folding and origin condensation revealed by Hi C and super-resolution imaging
    • Marbouty, M., et al. Condensin-And replication-mediated bacterial chromosome folding and origin condensation revealed by Hi C and super-resolution imaging. Mol. Cell 59, 588-602 (2015
    • (2015) Mol. Cell , vol.59 , pp. 588-602
    • Marbouty, M.1
  • 122
    • 84938848092 scopus 로고    scopus 로고
    • Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis
    • Wang, X., et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29, 1661-1675 (2015
    • (2015) Genes Dev , vol.29 , pp. 1661-1675
    • Wang, X.1
  • 123
    • 0030730114 scopus 로고    scopus 로고
    • Polymer models of meiotic and mitotic chromosomes
    • Marko, J. F., & Siggia, E. D. Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell 8, 2217-2231 (1997
    • (1997) Mol. Biol. Cell , vol.8 , pp. 2217-2231
    • Marko, J.F.1    Siggia, E.D.2
  • 124
    • 0037087623 scopus 로고    scopus 로고
    • C elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis
    • Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R., & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729-742 (2002
    • (2002) Genes Dev , vol.16 , pp. 729-742
    • Hagstrom, K.A.1    Holmes, V.F.2    Cozzarelli, N.R.3    Meyer, B.J.4
  • 125
    • 0041440100 scopus 로고    scopus 로고
    • Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes
    • Hudson, D. F., Vagnarelli, P., Gassmann, R., & Earnshaw, W. C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323-336 (2003
    • (2003) Dev. Cell , vol.5 , pp. 323-336
    • Hudson, D.F.1    Vagnarelli, P.2    Gassmann, R.3    Earnshaw, W.C.4
  • 126
    • 47049085406 scopus 로고    scopus 로고
    • Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation
    • Dambrosio, C., Kelly, G., Shirahige, K., & Uhlmann, F. Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr. Biol. 18, 1084-1089 (2008
    • (2008) Curr. Biol , vol.18 , pp. 1084-1089
    • Dambrosio, C.1    Kelly, G.2    Shirahige, K.3    Uhlmann, F.4
  • 127
    • 79952514729 scopus 로고    scopus 로고
    • Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes
    • Baxter, J., et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331, 1328-1332 (2011
    • (2011) Science , vol.331 , pp. 1328-1332
    • Baxter, J.1
  • 128
    • 84891810056 scopus 로고    scopus 로고
    • Condensin AIDS sister chromatid decatenation by topoisomerase II
    • Charbin, A., Bouchoux, C., & Uhlmann, F Condensin Aids Sister Chromatid Decatenation by Topoisomerase II. Nucleic Acids Res. 42, 340-348 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. 340-348
    • Charbin, A.1    Bouchoux, C.2    Uhlmann, F.3
  • 129
    • 84942061078 scopus 로고    scopus 로고
    • The mechanism of DNA replication termination in vertebrates
    • Dewar, J. M., Budzowska, M., & Walter, J. C. The mechanism of DNA replication termination in vertebrates. Nature 525, 345-350 (2015
    • (2015) Nature , vol.525 , pp. 345-350
    • Dewar, J.M.1    Budzowska, M.2    Walter, J.C.3
  • 130
    • 78650438598 scopus 로고    scopus 로고
    • Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction
    • Li, Y., et al. Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc. Natl Acad. Sci. USA 107, 18832-18837 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 18832-18837
    • Li, Y.1
  • 131
    • 84875159535 scopus 로고    scopus 로고
    • The MukB-ParC interaction affects intramolecular, not intermolecular, activities of topoisomerase IV
    • Hayama, R., Bahng, S., Karasu, M. E., & Marians, K. J. The MukB-ParC interaction affects intramolecular, not intermolecular, activities of topoisomerase IV. J. Biol. Chem. 288, 7653-7661 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 7653-7661
    • Hayama, R.1    Bahng, S.2    Karasu, M.E.3    Marians, K.J.4
  • 132
    • 0037416210 scopus 로고    scopus 로고
    • A role of topoisomerase II in linking DNA replication to chromosome condensation
    • Cuvier, O., & Hirano, T. A role of topoisomerase II in linking DNA replication to chromosome condensation. J. Cell. Biol. 160, 645-655 (2003
    • (2003) J. Cell. Biol , vol.160 , pp. 645-655
    • Cuvier, O.1    Hirano, T.2
  • 133
    • 33751237384 scopus 로고    scopus 로고
    • Wapl controls the dynamic association of cohesin with chromatin
    • Kueng, S., et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955-967 (2006
    • (2006) Cell , vol.127 , pp. 955-967
    • Kueng, S.1
  • 134
    • 84857223788 scopus 로고    scopus 로고
    • Cohesin-independent segregation of sister chromatids in budding yeast
    • Guacci, V., & Koshland, D. Cohesin-independent segregation of sister chromatids in budding yeast. Mol. Biol. Cell 23, 729-739 (2012
    • (2012) Mol. Biol. Cell , vol.23 , pp. 729-739
    • Guacci, V.1    Koshland, D.2
  • 135
    • 33748424969 scopus 로고    scopus 로고
    • Establishment of sister chromatid cohesion at the S cerevisiae replication fork
    • Lengronne, A., et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23, 787-799 (2006
    • (2006) Mol. Cell , vol.23 , pp. 787-799
    • Lengronne, A.1
  • 136
    • 33747882922 scopus 로고    scopus 로고
    • PCNA controls establishment of sister chromatid cohesion during S phase
    • Moldovan, G. L., Pfander, B., & Jentsch, S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723-732 (2006
    • (2006) Mol. Cell , vol.23 , pp. 723-732
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 137
    • 48249132443 scopus 로고    scopus 로고
    • Eco1 dependent cohesin acetylation during establishment of sister chromatid cohesion
    • Ben-Shahar, T. R., et al. Eco1 dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563-566 (2008
    • (2008) Science , vol.321 , pp. 563-566
    • Ben-Shahar, T.R.1
  • 138
    • 48249142388 scopus 로고    scopus 로고
    • A molecular determinant for the establishment of sister chromatid cohesion
    • Ünal, E., et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566-569 (2008
    • (2008) Science , vol.321 , pp. 566-569
    • Ünal, E.1
  • 139
    • 46149100946 scopus 로고    scopus 로고
    • Acetylation of smc3 by eco1 is required for s phase sister chromatid cohesion in both human and yeast
    • Zhang, J., et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143-151 (2008
    • (2008) Mol. Cell , vol.31 , pp. 143-151
    • Zhang, J.1
  • 140
    • 62549149415 scopus 로고    scopus 로고
    • Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity
    • Rowland, B. D., et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763-774 (2009
    • (2009) Mol. Cell , vol.33 , pp. 763-774
    • Rowland, B.D.1
  • 141
    • 62549130668 scopus 로고    scopus 로고
    • Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction
    • Sutani, T., Kawaguchi, T., Kanno, R., Itoh, T., & Shirahige, K. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19, 492-497 (2009
    • (2009) Curr. Biol , vol.19 , pp. 492-497
    • Sutani, T.1    Kawaguchi, T.2    Kanno, R.3    Itoh, T.4    Shirahige, K.5
  • 142
    • 84895455197 scopus 로고    scopus 로고
    • Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components
    • Alabert, C., et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281-291 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 281-291
    • Alabert, C.1
  • 143
    • 84955308895 scopus 로고    scopus 로고
    • The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering
    • Çamdere, G., Guacci, V., Stricklin, J., & Koshland, D. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. eLife 4, e11315 (2015
    • (2015) ELife , vol.4 , pp. e11315
    • Çamdere, G.1    Guacci, V.2    Stricklin, J.3    Koshland, D.4
  • 144
    • 33751087042 scopus 로고    scopus 로고
    • Condensin is required for chromosome arm cohesion during mitosis
    • Lam, W. W., Peterson, E. A., Yeung, M., & Lavoie, B. D. Condensin is required for chromosome arm cohesion during mitosis. Genes. Dev. 20, 2973-2984 (2006
    • (2006) Genes. Dev , vol.20 , pp. 2973-2984
    • Lam, W.W.1    Peterson, E.A.2    Yeung, M.3    Lavoie, B.D.4
  • 145
    • 84907991087 scopus 로고    scopus 로고
    • Cohesin?s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation
    • Ladurner, R., et al. Cohesin?s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr. Biol. 24, 2228-2237 (2014
    • (2014) Curr. Biol , vol.24 , pp. 2228-2237
    • Ladurner, R.1
  • 146
    • 23044514962 scopus 로고    scopus 로고
    • Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion
    • Hou, F., & Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908-3918 (2005
    • (2005) Mol. Biol. Cell , vol.16 , pp. 3908-3918
    • Hou, F.1    Zou, H.2
  • 147
    • 84937513375 scopus 로고    scopus 로고
    • Esco1 acetylates cohesin via a mechanism different from that of Esco2
    • Minamino, M., et al. Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr. Biol. 25, 1694-1704 (2015
    • (2015) Curr. Biol , vol.25 , pp. 1694-1704
    • Minamino, M.1
  • 148
    • 84861909407 scopus 로고    scopus 로고
    • The prereplication complex recruits XEco2 to chromatin to promote cohesin acetylation in Xenopus egg extracts
    • Higashi, T. L., et al. The prereplication complex recruits XEco2 to chromatin to promote cohesin acetylation in Xenopus egg extracts. Curr. Biol. 22, 977-988 (2012
    • (2012) Curr. Biol , vol.22 , pp. 977-988
    • Higashi, T.L.1
  • 149
    • 84867270264 scopus 로고    scopus 로고
    • Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery
    • Song, J., et al. Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery. J. Biol. Chem. 287, 34325-34336 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 34325-34336
    • Song, J.1
  • 150
    • 77956501610 scopus 로고    scopus 로고
    • Hos1 deacetylates Smc3 to close the cohesin acetylation cycle
    • Borges, V., et al. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol. Cell 39, 677-688 (2010
    • (2010) Mol. Cell , vol.39 , pp. 677-688
    • Borges, V.1
  • 151
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7
    • Ünal, E., Heidinger-Pauli, J. M., & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248 (2007
    • (2007) Science , vol.317 , pp. 245-248
    • Ünal, E.1    Heidinger-Pauli, J.M.2    Koshland, D.3
  • 152
    • 34447549077 scopus 로고    scopus 로고
    • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
    • Ström, L., et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245 (2007
    • (2007) Science , vol.317 , pp. 242-245
    • Ström, L.1
  • 153
    • 79955514366 scopus 로고    scopus 로고
    • Cdk1 dependent destruction of Eco1 prevents cohesion establishment after S phase
    • Lyons, N. A., & Morgan, D. O. Cdk1 dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol. Cell 42, 378-389 (2011
    • (2011) Mol. Cell , vol.42 , pp. 378-389
    • Lyons, N.A.1    Morgan, D.O.2
  • 154
    • 65549132836 scopus 로고    scopus 로고
    • Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage
    • Heidinger-Pauli, J. M., Ünal, E., & Koshland, D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol. Cell 34, 311-321 (2009
    • (2009) Mol. Cell , vol.34 , pp. 311-321
    • Heidinger-Pauli, J.M.1    Ünal, E.2    Koshland, D.3
  • 155
    • 78650562335 scopus 로고    scopus 로고
    • Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion
    • Lafont, A. L., Song, J., & Rankin, S. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc. Natl Acad. Sci. USA 107, 20364-20369 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 20364-20369
    • Lafont, A.L.1    Song, J.2    Rankin, S.3
  • 156
    • 79251530771 scopus 로고    scopus 로고
    • Sororin mediates sister chromatid cohesion by antagonizing Wapl
    • Nishiyama, T., et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737-749 (2010
    • (2010) Cell , vol.143 , pp. 737-749
    • Nishiyama, T.1
  • 157
    • 0037143442 scopus 로고    scopus 로고
    • Regulation of human separase by securin binding and autocleavage
    • Waizenegger, I. C., Gimenez-Abian, J. F., Wernic, D., & Peters, J. M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368-1378 (2002
    • (2002) Curr. Biol , vol.12 , pp. 1368-1378
    • Waizenegger, I.C.1    Gimenez-Abian, J.F.2    Wernic, D.3    Peters, J.M.4
  • 158
    • 84871712829 scopus 로고    scopus 로고
    • Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis
    • Liu, H., Rankin, S., & Yu, H. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15, 40-49 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 40-49
    • Liu, H.1    Rankin, S.2    Yu, H.3
  • 159
    • 84882321047 scopus 로고    scopus 로고
    • Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin
    • Nishiyama, T., Sykora, M. M., Huis in ?t Veld, P. J., Mechtler, K., & Peters, J. M. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc. Natl Acad. Sci. USA 110, 13404-13409 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 13404-13409
    • Nishiyama, T.1    Sykora, M.M.2    Huisint Veld, P.J.3    Mechtler, K.4    Peters, J.M.5
  • 160
    • 80053587192 scopus 로고    scopus 로고
    • Cohesin?s concatenation of sister DNAs maintains their intertwining
    • Farcas, A. M., Uluocak, P., Helmhart, W., & Nasmyth, K. Cohesin?s concatenation of sister DNAs maintains their intertwining. Mol. Cell 44, 97-107 (2011
    • (2011) Mol. Cell , vol.44 , pp. 97-107
    • Farcas, A.M.1    Uluocak, P.2    Helmhart, W.3    Nasmyth, K.4
  • 161
    • 84886296451 scopus 로고    scopus 로고
    • WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy
    • Haarhuis, J. H. I., et al. WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy. Curr. Biol. 23, 2071-2077 (2013
    • (2013) Curr. Biol , vol.23 , pp. 2071-2077
    • Haarhuis, J.H.I.1
  • 162
    • 0035947084 scopus 로고    scopus 로고
    • Identification of RFC(Ctf18p, Ctf8p, Dcc1p): An alternative RFC complex required for sister chromatid cohesion in S Cerevisiae
    • Mayer, M. L., Gygi, S. P., Aebersold, R., & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959-970 (2001
    • (2001) Mol. Cell , vol.7 , pp. 959-970
    • Mayer, M.L.1    Gygi, S.P.2    Aebersold, R.3    Hieter, P.4
  • 163
    • 0035051062 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
    • Hanna, J. S., Kroll, E. S., Lundblad, V., & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144-3158 (2001
    • (2001) Mol. Cell. Biol , vol.21 , pp. 3144-3158
    • Hanna, J.S.1    Kroll, E.S.2    Lundblad, V.3    Spencer, F.A.4
  • 164
    • 1642423537 scopus 로고    scopus 로고
    • S phase checkpoint genes safeguard high-fidelity sister chromatid cohesion
    • Warren, C. D., et al. S phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol. Biol. Cell 15, 1724-1735 (2004
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1724-1735
    • Warren, C.D.1
  • 165
    • 3543031002 scopus 로고    scopus 로고
    • Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage
    • Xu, H., Boone, C., & Klein, H. L. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol. Cell. Biol. 24, 7082-7090 (2004
    • (2004) Mol. Cell. Biol , vol.24 , pp. 7082-7090
    • Xu, H.1    Boone, C.2    Klein, H.L.3
  • 166
    • 1642360837 scopus 로고    scopus 로고
    • Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion
    • Skibbens, R. V. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166, 33-42 (2004
    • (2004) Genetics , vol.166 , pp. 33-42
    • Skibbens, R.V.1
  • 167
    • 77956509746 scopus 로고    scopus 로고
    • An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion
    • Beckouët, F., et al. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol. Cell 39, 689-699 (2010
    • (2010) Mol. Cell , vol.39 , pp. 689-699
    • Beckouët, F.1
  • 168
    • 84876458231 scopus 로고    scopus 로고
    • An Eco1 independent sister chromatid cohesion establishment pathway in S cerevisiae
    • Borges, V., Smith, D. J., Whitehouse, I., & Uhlmann, F. An Eco1 independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122, 121-134 (2013
    • (2013) Chromosoma , vol.122 , pp. 121-134
    • Borges, V.1    Smith, D.J.2    Whitehouse, I.3    Uhlmann, F.4
  • 169
    • 51049121966 scopus 로고    scopus 로고
    • Studies with the human cohesion establishment factor
    • Farina, A., et al. Studies with the human cohesion establishment factor, ChlR1. J. Biol. Chem. 283, 20925-20936 (2008
    • (2008) ChlR1. J. Biol. Chem , vol.283 , pp. 20925-20936
    • Farina, A.1
  • 170
    • 71249085585 scopus 로고    scopus 로고
    • Tipin/Tim1/And1 protein complex promotes Pola chromatin binding and sister chromatid cohesion
    • Errico, A., et al. Tipin/Tim1/And1 protein complex promotes Pola chromatin binding and sister chromatid cohesion. EMBO J. 28, 3681-3692 (2009
    • (2009) EMBO J. , vol.28 , pp. 3681-3692
    • Errico, A.1
  • 171
    • 68049100418 scopus 로고    scopus 로고
    • Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts
    • Tanaka, H., et al. Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts. Genes Cells 14, 949-963 (2009
    • (2009) Genes Cells , vol.14 , pp. 949-963
    • Tanaka, H.1
  • 173
    • 0042337435 scopus 로고    scopus 로고
    • The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA
    • Bermudez, V. P., et al. The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc. Natl Acad. Sci. USA 100, 10237-10242 (2003
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 10237-10242
    • Bermudez, V.P.1
  • 174
    • 20744435871 scopus 로고    scopus 로고
    • Replication protein A directed unloading of PCNA by the Ctf18 cohesion establishment complex
    • Bylund, G. O., & Burgers, P. M. J. Replication protein A directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol. Cell. Biol. 25, 5445-5455 (2005
    • (2005) Mol. Cell. Biol , vol.25 , pp. 5445-5455
    • Bylund, G.O.1    Burgers, P.M.J.2
  • 175
    • 34547131331 scopus 로고    scopus 로고
    • Genetic dissection of parallel sister-chromatid cohesion pathways
    • Xu, H., Boone, C., & Brown, G. W. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176, 1417-1429 (2007
    • (2007) Genetics , vol.176 , pp. 1417-1429
    • Xu, H.1    Boone, C.2    Brown, G.W.3
  • 176
    • 70350572751 scopus 로고    scopus 로고
    • A key role for Ctf4 in coupling the MCM2 7 helicase to DNA polymerase a within the eukaryotic replisome
    • Gambus, A., et al. A key role for Ctf4 in coupling the MCM2 7 helicase to DNA polymerase a within the eukaryotic replisome. EMBO J. 28, 2992-3004 (2009
    • (2009) EMBO J. , vol.28 , pp. 2992-3004
    • Gambus, A.1
  • 177
    • 84902304914 scopus 로고    scopus 로고
    • A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome
    • Simon, A. C., et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510, 293-297 (2014
    • (2014) Nature , vol.510 , pp. 293-297
    • Simon, A.C.1
  • 178
    • 0016189159 scopus 로고
    • Bisexual mating behavior in a diploid of Saccharomyces cerevisiae: Evidence for genetically controlled non-random chromosome loss during vegetative growth
    • Haber, J. E. Bisexual mating behavior in a diploid of Saccharomyces cerevisiae: evidence for genetically controlled non-random chromosome loss during vegetative growth. Genetics 78, 843-858 (1974
    • (1974) Genetics , vol.78 , pp. 843-858
    • Haber, J.E.1
  • 179
    • 0025597055 scopus 로고
    • The CHL1(CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M
    • Gerring, S L., Spencer, F., & Hieter, P. the CHL1(CTF1) Gene Product of Saccharomyces Cerevisiae Is Important for Chromosome Transmission and Normal Cell Cycle Progression in G2/M. EMBO J. 9, 4347-4358 (1990
    • (1990) EMBO J. , vol.9 , pp. 4347-4358
    • Gerring, S.L.1    Spencer, F.2    Hieter, P.3
  • 180
    • 84884659871 scopus 로고    scopus 로고
    • Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae
    • Rudra, S., & Skibbens, R. V. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS ONE 8, e75435 (2013
    • (2013) PLoS ONE , vol.8 , pp. e75435
    • Rudra, S.1    Skibbens, R.V.2
  • 181
    • 33748199605 scopus 로고    scopus 로고
    • Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination
    • De Piccoli, G., et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8, 1032-1034 (2006
    • (2006) Nat. Cell Biol , vol.8 , pp. 1032-1034
    • De Piccoli, G.1
  • 182
    • 78049353613 scopus 로고    scopus 로고
    • The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages
    • Bermúdez-López, M., et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38, 6502-6512 (2010
    • (2010) Nucleic Acids Res , vol.38 , pp. 6502-6512
    • Bermúdez-López, M.1
  • 184
    • 84953385984 scopus 로고    scopus 로고
    • Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance
    • Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P., & Branzei, D. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell 60, 835-846 (2015
    • (2015) Mol. Cell , vol.60 , pp. 835-846
    • Menolfi, D.1    Delamarre, A.2    Lengronne, A.3    Pasero, P.4    Branzei, D.5
  • 185
    • 38549138271 scopus 로고    scopus 로고
    • Smc5/6: A link between DNA repair and unidirectional replication?
    • Murray, J. M., & Carr, A. M. Smc5/6: a link between DNA repair and unidirectional replication? Nat. Rev. Mol. Cell. Biol. 9, 177-182 (2008
    • (2008) Nat. Rev. Mol. Cell. Biol , vol.9 , pp. 177-182
    • Murray, J.M.1    Carr, A.M.2
  • 186
    • 84949220689 scopus 로고    scopus 로고
    • Kite proteins: A superfamily of SMC/kleisin parners conserved across bacteria, archaea, and eukaryotes
    • Palecek, J. J., & Gruber, S. Kite proteins: a superfamily of SMC/kleisin parners conserved across bacteria, archaea, and eukaryotes. Structure 23, 2183-2190 (2015
    • (2015) Structure , vol.23 , pp. 2183-2190
    • Palecek, J.J.1    Gruber, S.2
  • 187
    • 84964765934 scopus 로고    scopus 로고
    • Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA
    • Zabrady, K., et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkv1021 (2015
    • (2015) Nucleic Acids Res
    • Zabrady, K.1
  • 188
    • 69949088463 scopus 로고    scopus 로고
    • Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex
    • Duan, X., et al. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35, 657-668 (2009
    • (2009) Mol. Cell , vol.35 , pp. 657-668
    • Duan, X.1
  • 189
    • 11144324990 scopus 로고    scopus 로고
    • Nse2, a component of the Smc5 6 complex, is a SUMO ligase required for the response to DNA damage
    • Andrews, E. A., et al. Nse2, a component of the Smc5 6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185-196 (2005
    • (2005) Mol. Cell. Biol , vol.25 , pp. 185-196
    • Andrews, E.A.1
  • 190
    • 57349094259 scopus 로고    scopus 로고
    • Nse1 ring-like domain supports functions of the smc5 smc6 holocomplex in genome stability
    • Pebernard, S., Perry, J. J. P., Tainer, J. A., & Boddy, M. N. Nse1 RING-like domain supports functions of the Smc5 Smc6 holocomplex in genome stability. Mol. Biol. Cell 19, 4099-4109 (2008
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4099-4109
    • Pebernard, S.1    Perry, J.J.P.2    Tainer, J.A.3    Boddy, M.N.4
  • 191
    • 10944232673 scopus 로고    scopus 로고
    • Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
    • Ström, L., Lindroos, H. B., Shirahige, K., & Sjögren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015 (2004
    • (2004) Mol. Cell , vol.16 , pp. 1003-1015
    • Ström, L.1    Lindroos, H.B.2    Shirahige, K.3    Sjögren, C.4
  • 192
    • 10944262393 scopus 로고    scopus 로고
    • DNA damage response pathway uses histone modification to assemble a double-stranded break-specific cohesin domain
    • Ünal, E., et al. DNA damage response pathway uses histone modification to assemble a double-stranded break-specific cohesin domain. Mol. Cell 16, 991-1002 (2004
    • (2004) Mol. Cell , vol.16 , pp. 991-1002
    • Ünal, E.1
  • 193
    • 33745217560 scopus 로고    scopus 로고
    • Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways
    • Betts Lindroos, H., et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755-767 (2006
    • (2006) Mol. Cell , vol.22 , pp. 755-767
    • Betts Lindroos, H.1
  • 194
    • 84953636418 scopus 로고    scopus 로고
    • The cohesin complex prevents the end joining of distant double-strand ends
    • Gelot, C., et al. The cohesin complex prevents the end joining of distant double-strand ends. Mol. Cell 61, 15-26 (2016
    • (2016) Mol. Cell , vol.61 , pp. 15-26
    • Gelot, C.1
  • 195
    • 84887064569 scopus 로고    scopus 로고
    • Cohesin and the nucleolus constrain the mobility of spontaneous repair foci
    • Dion, V., Kalck, V., Seeber, A., Schleker, T., & Gasser, S. M. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984-991 (2013
    • (2013) EMBO Rep , vol.14 , pp. 984-991
    • Dion, V.1    Kalck, V.2    Seeber, A.3    Schleker, T.4    Gasser, S.M.5
  • 196
    • 84874349908 scopus 로고    scopus 로고
    • Condensin II initiates sister chromatid resolution during S phase
    • Ono, T., Yamashita, D., & Hirano, T. Condensin II initiates sister chromatid resolution during S phase. J. Cell Biol. 200, 429-441 (2013
    • (2013) J. Cell Biol , vol.200 , pp. 429-441
    • Ono, T.1    Yamashita, D.2    Hirano, T.3
  • 197
    • 58149152843 scopus 로고    scopus 로고
    • Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions
    • Woo, J. S., et al. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell 136, 85-96 (2009
    • (2009) Cell , vol.136 , pp. 85-96
    • Woo, J.S.1
  • 199
    • 80051874823 scopus 로고    scopus 로고
    • Mutational inactivation of STAG2 causes aneuploidy in human cancer
    • Solomon, D. A., et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039-1043 (2011
    • (2011) Science , vol.333 , pp. 1039-1043
    • Solomon, D.A.1
  • 201
    • 84925840671 scopus 로고    scopus 로고
    • Germline gain of function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin
    • Izumi, K., et al. Germline gain of function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet. 47, 338-344 (2015
    • (2015) Nat. Genet , vol.47 , pp. 338-344
    • Izumi, K.1
  • 202
    • 20944444999 scopus 로고    scopus 로고
    • Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion
    • Vega, H., et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat. Genet. 37, 468-470 (2005
    • (2005) Nat. Genet , vol.37 , pp. 468-470
    • Vega, H.1
  • 203
    • 84941081850 scopus 로고    scopus 로고
    • Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells
    • Rahman, S., Jones, M. J., & Jallepalli, P. V. Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells. Proc. Natl Acad. Sci. USA 112, 11270-11275 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 11270-11275
    • Rahman, S.1    Jones, M.J.2    Jallepalli, P.V.3
  • 204
    • 76049096485 scopus 로고    scopus 로고
    • Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1
    • van der Lelij, P., et al. Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am. J. Hum. Genet. 86, 262-266 (2010
    • (2010) Am. J. Hum. Genet , vol.86 , pp. 262-266
    • Van Der Lelij, P.1
  • 205
    • 80053980085 scopus 로고    scopus 로고
    • MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II
    • Yamashita, D., et al. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194, 841-854 (2011
    • (2011) J Cell Biol , vol.194 , pp. 841-854
    • Yamashita, D.1
  • 206
    • 0035101613 scopus 로고    scopus 로고
    • Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with polycomb and maintain Fab 7 PRE silencing
    • Lupo, R., Breiling, A., Bianchi, M. E., & Orlando, V. Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with polycomb and maintain Fab 7 PRE silencing. Mol. Cell 7, 127-136 (2001
    • (2001) Mol. Cell , vol.7 , pp. 127-136
    • Lupo, R.1    Breiling, A.2    Bianchi, M.E.3    Orlando, V.4
  • 207
    • 0036182726 scopus 로고    scopus 로고
    • Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior
    • Bhalla, N., Biggins, S., & Murray, A. W. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol. Biol. Cell 13, 632-645 (2002
    • (2002) Mol. Biol. Cell , vol.13 , pp. 632-645
    • Bhalla, N.1    Biggins, S.2    Murray, A.W.3
  • 208
    • 84907008348 scopus 로고    scopus 로고
    • Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
    • Payne, F., et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Invest. 124, 4028-4038 (2014
    • (2014) J. Clin. Invest , vol.124 , pp. 4028-4038
    • Payne, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.