-
1
-
-
0037017393
-
Condensin and cohesin display different arm conformations with characteristic hinge angles
-
Anderson DE, Losada A, Erickson HP, Hirano T. 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. The Journal of Cell Biology 156:419–424. doi:10.1083/jcb.200111002.
-
(2002)
The Journal of Cell Biology
, vol.156
, pp. 419-424
-
-
Anderson, D.E.1
Losada, A.2
Erickson, H.P.3
Hirano, T.4
-
3
-
-
84867070913
-
Complexity of chromatin folding is captured by the strings and binders switch model
-
Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, Pombo A, Nicodemi M. 2012. Complexity of chromatin folding is captured by the strings and binders switch model. Proceedings of the National Academy of Sciences of USA 109:18173–18178. doi:10.1073/pnas.1204799109.
-
(2012)
Proceedings of the National Academy of Sciences of USA
, vol.109
, pp. 18173-18178
-
-
Barbieri, M.1
Chotalia, M.2
Fraser, J.3
Lavitas, L.M.4
Dostie, J.5
Pombo, A.6
Nicodemi, M.7
-
4
-
-
0032564478
-
Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin
-
Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL. 1998. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proceedings of the National Academy of Sciences of USA 95: 14173–14178. doi:10.1073/pnas.95.24.14173.
-
(1998)
Proceedings of the National Academy of Sciences of USA
, vol.95
, pp. 14173-14178
-
-
Bednar, J.1
Horowitz, R.A.2
Grigoryev, S.A.3
Carruthers, L.M.4
Hansen, J.C.5
Koster, A.J.6
Woodcock, C.L.7
-
5
-
-
84884333270
-
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization
-
Brackley CA, Taylor S, Papantonis A, Cook PR, Marenduzzo D. 2013. Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proceedings of the National Academy of Sciences of USA 110:E3605–E3611. doi:10.1073/pnas.1302950110.
-
(2013)
Proceedings of the National Academy of Sciences of USA
, vol.110
, pp. E3605-E3611
-
-
Brackley, C.A.1
Taylor, S.2
Papantonis, A.3
Cook, P.R.4
Marenduzzo, D.5
-
6
-
-
9344239339
-
Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by hihg-resolution imaging techniques
-
Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM. 2004. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by hihg-resolution imaging techniques. Proceedings of the National Academy of Sciences of USA 101:16495–16500. doi:10.1073/pnas.0402766101.
-
(2004)
Proceedings of the National Academy of Sciences of USA
, vol.101
, pp. 16495-16500
-
-
Bystricky, K.1
Heun, P.2
Gehlen, L.3
Langowski, J.4
Gasser, S.M.5
-
7
-
-
84891810056
-
Condensin aids sister chromatid decatenation by topoisomerase II
-
Charbin A, Bouchoux C, Uhlmann F. 2014. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Research 42:340–348. doi:10.1093/nar/gkt882.
-
(2014)
Nucleic Acids Research
, vol.42
, pp. 340-348
-
-
Charbin, A.1
Bouchoux, C.2
Uhlmann, F.3
-
9
-
-
50049126078
-
Identification of cisacting sites for condensin loading onto budding yeast chromosomes
-
D’Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Koster AJ, Woodcock CL. 2008. Identification of cisacting sites for condensin loading onto budding yeast chromosomes. Genes & Development 22:2215–2227. doi:10.1101/gad.1675708.
-
(2008)
Genes & Development
, vol.22
, pp. 2215-2227
-
-
D’Ambrosio, C.1
Schmidt, C.K.2
Katou, Y.3
Kelly, G.4
Itoh, T.5
Koster, A.J.6
Woodcock, C.L.7
-
10
-
-
58049192401
-
Mappin in vivo chromatin interactions in yeast suggests an extended chromatin fibre with regional variation in compaction
-
Dekker J. 2008. Mappin in vivo chromatin interactions in yeast suggests an extended chromatin fibre with regional variation in compaction. The Journal of Biological Chemistry 283:34532–34540. doi:10.1074/jbc.M806479200.
-
(2008)
The Journal of Biological Chemistry
, vol.283
, pp. 34532-34540
-
-
Dekker, J.1
-
11
-
-
84878011578
-
Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data
-
Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics 14:390–403. doi:10.1038/nrg3454.
-
(2013)
Nature Reviews Genetics
, vol.14
, pp. 390-403
-
-
Dekker, J.1
Marti-Renom, M.A.2
Mirny, L.A.3
-
12
-
-
79960369239
-
Monte carlo simulations indicate that chromatin nanostructure is accessible by light microscopy
-
Diesinger PM, Heermann DW. 2010. Monte carlo simulations indicate that chromatin nanostructure is accessible by light microscopy. PMC Biophys 3:11. doi:10.1186/1757-5036-3-11.
-
(2010)
PMC Biophys
, vol.3
, pp. 11
-
-
Diesinger, P.M.1
Heermann, D.W.2
-
13
-
-
84861095603
-
Topological domains in mammalian genomes identified by analysis of chromatin interactions
-
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082.
-
(2012)
Nature
, vol.485
, pp. 376-380
-
-
Dixon, J.R.1
Selvaraj, S.2
Yue, F.3
Kim, A.4
Li, Y.5
Shen, Y.6
Hu, M.7
Liu, J.S.8
Ren, B.9
-
14
-
-
77952744854
-
A three-dimensional model of the yeast genome
-
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS. 2010. A three-dimensional model of the yeast genome. Nature 465:363–367. doi:10.1038/nature08973.
-
(2010)
Nature
, vol.465
, pp. 363-367
-
-
Duan, Z.1
Ronescu, M.2
Schutz, K.3
McIlwain, S.4
Kim, Y.J.5
Lee, C.6
Shendure, J.7
Fields, S.8
Blau, C.A.9
Noble, W.S.10
-
15
-
-
34548745169
-
Choreography for nucleosomes: The conformational freedom of the nucleosomal filament and its limitations
-
Engelhardt M. 2007. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations. Nucleic Acids Research 35:e106. doi:10.1093/nar/gkm560.
-
(2007)
Nucleic Acids Research
, vol.35
-
-
Engelhardt, M.1
-
16
-
-
0037165965
-
Visualizing chromatin dynamics in interphase nuclei
-
Gasser SM. 2002. Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–1416. doi:10.1126/science.1067703.
-
(2002)
Science
, vol.296
, pp. 1412-1416
-
-
Gasser, S.M.1
-
18
-
-
32944477078
-
Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells
-
Gerlich D, Hirota T, Koch B, Peters J-M, Ellenberg J. 2006. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Current Biology 16:333–344. doi:10.1016/j.cub.2005.12.040.
-
(2006)
Current Biology
, vol.16
, pp. 333-344
-
-
Gerlich, D.1
Hirota, T.2
Koch, B.3
Peters, J.-M.4
Ellenberg, J.5
-
19
-
-
84900297485
-
Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
-
Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963. doi:10.1016/j.cell.2014.03.025.
-
(2014)
Cell
, vol.157
, pp. 950-963
-
-
Giorgetti, L.1
Galupa, R.2
Nora, E.P.3
Piolot, T.4
Lam, F.5
Dekker, J.6
Tiana, G.7
Heard, E.8
-
20
-
-
0030084649
-
Computer simulations of polymer chain relaxation via Brownian motion
-
Grassia P, Hinch EJ. 1996. Computer simulations of polymer chain relaxation via Brownian motion. Journal of Fluid Mechanics 308:255–288. doi:10.1017/S0022112096001474.
-
(1996)
Journal of Fluid Mechanics
, vol.308
, pp. 255-288
-
-
Grassia, P.1
Hinch, E.J.2
-
21
-
-
69449098842
-
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions
-
Grigoryev SA, Arya G, Correll S, Woodcock CL, Schlick T. 2009. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proceedings of the National Academy of Sciences of USA 106:13317–13322. doi:10.1073/pnas.0903280106.
-
(2009)
Proceedings of the National Academy of Sciences of USA
, vol.106
, pp. 13317-13322
-
-
Grigoryev, S.A.1
Arya, G.2
Correll, S.3
Woodcock, C.L.4
Schlick, T.5
-
22
-
-
0028174255
-
Chromosome condensation and sister chromatid pairing in budding yeast
-
Guacci V, Hogan E, Koshland D. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. The Journal of Cell Biology 125:517–530. doi:10.1083/jcb.125.3.517.
-
(1994)
The Journal of Cell Biology
, vol.125
, pp. 517-530
-
-
Guacci, V.1
Hogan, E.2
Koshland, D.3
-
23
-
-
50049112678
-
Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes
-
Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes & Development 22: 2204–2214. doi:10.1101/gad.1675908.
-
(2008)
Genes & Development
, vol.22
, pp. 2204-2214
-
-
Haeusler, R.A.1
Pratt-Hyatt, M.2
Good, P.D.3
Gipson, T.A.4
Engelke, D.R.5
-
24
-
-
0037087623
-
C. Elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis
-
Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ. 2002. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes & Development 16:729–742. doi:10.1101/gad.968302.
-
(2002)
Genes & Development
, vol.16
, pp. 729-742
-
-
Hagstrom, K.A.1
Holmes, V.F.2
Cozzarelli, N.R.3
Meyer, B.J.4
-
25
-
-
84887460979
-
High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome
-
Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A. 2013. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Research 23:1829–1838. doi:10.1101/gr.157008.113.
-
(2013)
Genome Research
, vol.23
, pp. 1829-1838
-
-
Hajjoul, H.1
Mathon, J.2
Ranchon, H.3
Goiffon, I.4
Mozziconacci, J.5
Albert, B.6
Carrivain, P.7
Victor, J.M.8
Gadal, O.9
Bystricky, K.10
Bancaud, A.11
-
26
-
-
52049084405
-
The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes
-
Haruki H, Nishikawa J, Laemmli UK. 2008. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Molecular Cell 31:925–932. doi:10.1016/j.molcel.2008.07.020.
-
(2008)
Molecular Cell
, vol.31
, pp. 925-932
-
-
Haruki, H.1
Nishikawa, J.2
Laemmli, U.K.3
-
27
-
-
84871693479
-
Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells
-
Hihara S, Pack CG, Kaizu K, Tani T, Hanafusa T, Nozaki T, Takemoto S, Yoshimi T, Yokota H, Imamoto N, Sako Y, Kinjo M, Takahashi K, Nagai T, Maeshima K. 2012. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Reports 2:1645–1656. doi:10.1016/j.celrep.2012.11.008.
-
(2012)
Cell Reports
, vol.2
, pp. 1645-1656
-
-
Hihara, S.1
Pack, C.G.2
Kaizu, K.3
Tani, T.4
Hanafusa, T.5
Nozaki, T.6
Takemoto, S.7
Yoshimi, T.8
Yokota, H.9
Imamoto, N.10
Sako, Y.11
Kinjo, M.12
Takahashi, K.13
Nagai, T.14
Maeshima, K.15
-
28
-
-
0027943721
-
A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
-
Hirano T, Mitchison TJ. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458. doi:10.1016/0092-8674(94)90254-2.
-
(1994)
Cell
, vol.79
, pp. 449-458
-
-
Hirano, T.1
Mitchison, T.J.2
-
29
-
-
13444302537
-
Distinct functions of condensin I and II in mitotic chromosome assembly
-
Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. 2004. Distinct functions of condensin I and II in mitotic chromosome assembly. Journal of Cell Science 117:6435–6445. doi:10.1242/jcs.01604.
-
(2004)
Journal of Cell Science
, vol.117
, pp. 6435-6445
-
-
Hirota, T.1
Gerlich, D.2
Koch, B.3
Ellenberg, J.4
Peters, J.M.5
-
30
-
-
0041440100
-
Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes
-
Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC. 2003. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Developmental Cell 5:323–336. doi:10.1016/S1534-5807(03)00199-0.
-
(2003)
Developmental Cell
, vol.5
, pp. 323-336
-
-
Hudson, D.F.1
Vagnarelli, P.2
Gassmann, R.3
Earnshaw, W.C.4
-
31
-
-
34347247308
-
The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography
-
König P, Braunfeld MB, Sedat JW, Agard DA. 2007. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116:349–372. doi:10.1007/s00412-007-0101-0.
-
(2007)
Chromosoma
, vol.116
, pp. 349-372
-
-
König, P.1
Braunfeld, M.B.2
Sedat, J.W.3
Agard, D.A.4
-
32
-
-
84872099346
-
Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
-
Lopez-Serra L, Lengronne A, Borges V, Kelly G, Uhlmann F. 2013. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Current Biology 23:64–69. doi:10.1016/j.cub.2012.11.030.
-
(2013)
Current Biology
, vol.23
, pp. 64-69
-
-
Lopez-Serra, L.1
Lengronne, A.2
Borges, V.3
Kelly, G.4
Uhlmann, F.5
-
33
-
-
1842411320
-
Cyrstal structure of the nucleosome core particle at 2.8 Å resolution
-
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Cyrstal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260. doi:10.1038/38444.
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mäder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
34
-
-
84904172931
-
Chromatin as dynamic 10-nm fibres
-
Maeshima K, Imai R, Tamura S, Nozaki T. 2014. Chromatin as dynamic 10-nm fibres. Chromosoma 123:225–237. doi:10.1007/s00412-014-0460-2.
-
(2014)
Chromosoma
, vol.123
, pp. 225-237
-
-
Maeshima, K.1
Imai, R.2
Tamura, S.3
Nozaki, T.4
-
35
-
-
0037387829
-
A two-step scaffolding model for mitotic chromosome assembly
-
Maeshima K, Laemmli UK. 2003. A two-step scaffolding model for mitotic chromosome assembly. Developmental Cell 4:467–480. doi:10.1016/S1534-5807(03)00092-3.
-
(2003)
Developmental Cell
, vol.4
, pp. 467-480
-
-
Maeshima, K.1
Laemmli, U.K.2
-
36
-
-
0030730114
-
Polymer models of meiotic and mitotic chromosomes
-
Marko JF, Siggia ED. 1997. Polymer models of meiotic and mitotic chromosomes. Molecular Biology of the Cell 8: 2217–2231. doi:10.1091/mbc.8.11.2217.
-
(1997)
Molecular Biology of the Cell
, vol.8
, pp. 2217-2231
-
-
Marko, J.F.1
Siggia, E.D.2
-
37
-
-
84923169410
-
Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. Pombe
-
Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N, Folco HD, FitzGerald P, Dekker J, Mirny L, Barrowman J, Grewal SI. 2014. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–435. doi:10.1038/nature13833.
-
(2014)
Nature
, vol.516
, pp. 432-435
-
-
Mizuguchi, T.1
Fudenberg, G.2
Mehta, S.3
Belton, J.M.4
Taneja, N.5
Folco, H.D.6
Fitzgerald, P.7
Dekker, J.8
Mirny, L.9
Barrowman, J.10
Grewal, S.I.11
-
38
-
-
34347405054
-
Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase
-
Mora-Bermúdez F, Gerlich D, Ellenberg J. 2006. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nature Cell Biology 9:822–831. doi:10.1038/ncb1606.
-
(2006)
Nature Cell Biology
, vol.9
, pp. 822-831
-
-
Mora-Bermúdez, F.1
Gerlich, D.2
Ellenberg, J.3
-
39
-
-
84892617115
-
Biochemical reconstitution of topological DNA binding by the cohesin ring
-
Murayama Y, Uhlmann F. 2014. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505:367–371. doi:10.1038/nature12867.
-
(2014)
Nature
, vol.505
, pp. 367-371
-
-
Murayama, Y.1
Uhlmann, F.2
-
40
-
-
22244481613
-
The structure and function of SMC and kleisin complexes
-
Nasmyth K, Haering CH. 2005. The structure and function of SMC and kleisin complexes. Annual Review of Biochemistry 74:595–648. doi:10.1146/annurev.biochem.74.082803.133219.
-
(2005)
Annual Review of Biochemistry
, vol.74
, pp. 595-648
-
-
Nasmyth, K.1
Haering, C.H.2
-
41
-
-
84888018217
-
Organization of the mitotic chromosome
-
Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. 2013. Organization of the mitotic chromosome. Science 342:948–953. doi:10.1126/science.1236083.
-
(2013)
Science
, vol.342
, pp. 948-953
-
-
Naumova, N.1
Imakaev, M.2
Fudenberg, G.3
Zhan, Y.4
Lajoie, B.R.5
Mirny, L.A.6
Dekker, J.7
-
42
-
-
84924589156
-
Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility
-
Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T. 2015. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–1144. doi:10.1016/j.cell.2015.02.001.
-
(2015)
Cell
, vol.160
, pp. 1135-1144
-
-
Ngo, T.T.1
Zhang, Q.2
Zhou, R.3
Yodh, J.G.4
Ha, T.5
-
43
-
-
84859421494
-
Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure
-
Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K. 2012. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. The EMBO Journal 31:1644–1653. doi:10.1038/emboj.2012.35.
-
(2012)
The EMBO Journal
, vol.31
, pp. 1644-1653
-
-
Nishino, Y.1
Eltsov, M.2
Joti, Y.3
Ito, K.4
Takata, H.5
Takahashi, Y.6
Hihara, S.7
Frangakis, A.S.8
Imamoto, N.9
Ishikawa, T.10
Maeshima, K.11
-
44
-
-
26444433291
-
The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis
-
Oliveira RA, Coelho PA, Sunkel CE. 2005. The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Molecular and Cellular Biology 25:8971–8984. doi:10.1128/MCB.25.20.8971-8984.2005.
-
(2005)
Molecular and Cellular Biology
, vol.25
, pp. 8971-8984
-
-
Oliveira, R.A.1
Coelho, P.A.2
Sunkel, C.E.3
-
45
-
-
84862212431
-
Facile synthesis of budding yeast a-factor and its use to synchronize cells of a mating type
-
O’Reilly N, Charbin A, Lopez-Serra L, Uhlmann F. 2012. Facile synthesis of budding yeast a-factor and its use to synchronize cells of a mating type. Yeast 29:233–240. doi:10.1002/yea.2906.
-
(2012)
Yeast
, vol.29
, pp. 233-240
-
-
O’Reilly, N.1
Charbin, A.2
Lopez-Serra, L.3
Uhlmann, F.4
-
46
-
-
0037180450
-
Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold
-
Poirier MG, Marko JF. 2002. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proceedings of the National Academy of Sciences of USA 99:15393–15397. doi:10.1073/pnas.232442599.
-
(2002)
Proceedings of the National Academy of Sciences of USA
, vol.99
, pp. 15393-15397
-
-
Poirier, M.G.1
Marko, J.F.2
-
47
-
-
0242443693
-
Force fields for protein simulations
-
Ponder JW, Case DA. 2003. Force fields for protein simulations. Advances in Protein Chemistry 66:27–85. doi:10.1016/S0065-3233(03)66002-X.
-
(2003)
Advances in Protein Chemistry
, vol.66
, pp. 27-85
-
-
Ponder, J.W.1
Case, D.A.2
-
48
-
-
46249132980
-
PatMaN: Rapid alignment of short sequences to large databases
-
Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J. 2008. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24:1530–1531. doi:10.1093/bioinformatics/btn223.
-
(2008)
Bioinformatics
, vol.24
, pp. 1530-1531
-
-
Prüfer, K.1
Stenzel, U.2
Dannemann, M.3
Green, R.E.4
Lachmann, M.5
Kelso, J.6
-
49
-
-
0029161043
-
Estimating friction coefficients fo mixed globular/chain molecules, such as protein/DNA complexes
-
Robert CH. 1995. Estimating friction coefficients fo mixed globular/chain molecules, such as protein/DNA complexes. Biophysical Journal 69:840–848. doi:10.1016/S0006-3495(95)79957-X.
-
(1995)
Biophysical Journal
, vol.69
, pp. 840-848
-
-
Robert, C.H.1
-
50
-
-
41549103314
-
Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae
-
Rohner S, Gasser SM, Meister P. 2008. Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae. Yeast 25:235–239. doi:10.1002/yea.1580.
-
(2008)
Yeast
, vol.25
, pp. 235-239
-
-
Rohner, S.1
Gasser, S.M.2
Meister, P.3
-
51
-
-
0028081446
-
Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis
-
Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M. 1994. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. The EMBO Journal 13:4938–4952.
-
(1994)
The EMBO Journal
, vol.13
, pp. 4938-4952
-
-
Saka, Y.1
Sutani, T.2
Yamashita, Y.3
Saitoh, S.4
Takeuchi, M.5
Nakaseko, Y.6
Yanagida, M.7
-
52
-
-
70450257681
-
Mesoscale simulations of two nucleosome-repeat length oligonucleosomes
-
Schlick T, Perisić O. 2009. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Physical Chemistry Chemical Physics 11:10729–10737. doi:10.1039/b918629h.
-
(2009)
Physical Chemistry Chemical Physics
, vol.11
, pp. 10729-10737
-
-
Schlick, T.1
Perisi, O.2
-
53
-
-
67849124322
-
Detection of gene loops by 3C in yeast
-
Singh BN, Ansari A, Hampsey M. 2009. Detection of gene loops by 3C in yeast. Methods 48:361–367. doi:10.1016/j.ymeth.2009.02.018.
-
(2009)
Methods
, vol.48
, pp. 361-367
-
-
Singh, B.N.1
Ansari, A.2
Hampsey, M.3
-
54
-
-
84870310006
-
Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation
-
Splinter E, de Wit E, van de Werken HJ, Klous P, de Laat W. 2012. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58:221–230. doi:10.1016/j.ymeth.2012.04.009.
-
(2012)
Methods
, vol.58
, pp. 221-230
-
-
Splinter, E.1
De Wit, E.2
Van De Werken, H.J.3
Klous, P.4
De Laat, W.5
-
56
-
-
0028942904
-
SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
-
Strunnikov AV, Hogan E, Koshland D. 1995. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes & Development 9:587–599. doi:10.1101/gad.9.5.587.
-
(1995)
Genes & Development
, vol.9
, pp. 587-599
-
-
Strunnikov, A.V.1
Hogan, E.2
Koshland, D.3
-
57
-
-
0037349338
-
The making of the mitotic chromosome: Modern insights into classical questions
-
Swedlow JR, Hirano T. 2003. The making of the mitotic chromosome: modern insights into classical questions. Molecular Cell 11:557–569. doi:10.1016/S1097-2765(03)00103-5.
-
(2003)
Molecular Cell
, vol.11
, pp. 557-569
-
-
Swedlow, J.R.1
Hirano, T.2
-
58
-
-
79959549133
-
Condensin association with histone H2A shapes mitotic chromosomes
-
Tada K, Susumu H, Sakuno T, Watanabe Y. 2011. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–483. doi:10.1038/nature10179.
-
(2011)
Nature
, vol.474
, pp. 477-483
-
-
Tada, K.1
Susumu, H.2
Sakuno, T.3
Watanabe, Y.4
-
59
-
-
84870491262
-
Condensin, chromatin crossbarring and chromosome condensation
-
Thadani R, Uhlmann F, Heeger S. 2012. Condensin, chromatin crossbarring and chromosome condensation. Current Biology 22:R1012–R1021. doi:10.1016/j.cub.2012.10.023.
-
(2012)
Current Biology
, vol.22
, pp. R1012-R1021
-
-
Thadani, R.1
Uhlmann, F.2
Heeger, S.3
-
60
-
-
84863540362
-
Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
-
Tjong H, Gong K, Chen L, Alber F. 2012. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Research 22:1295–1305. doi:10.1101/gr.129437.111.
-
(2012)
Genome Research
, vol.22
, pp. 1295-1305
-
-
Tjong, H.1
Gong, K.2
Chen, L.3
Alber, F.4
-
61
-
-
84856002587
-
Dynamical modeling of three-dimensional genome organization in interphase budding yeast
-
Tokuda N, Terada TP, Sasai M. 2012. Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophysical Journal 102:296–304. doi:10.1016/j.bpj.2011.12.005.
-
(2012)
Biophysical Journal
, vol.102
, pp. 296-304
-
-
Tokuda, N.1
Terada, T.P.2
Sasai, M.3
-
63
-
-
23344442664
-
Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome
-
Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A. 2005. Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Molecular and Cellular Biology 25:7216–7225. doi:10.1128/MCB.25.16.7216-7225.2005.
-
(2005)
Molecular and Cellular Biology
, vol.25
, pp. 7216-7225
-
-
Wang, B.D.1
Eyre, D.2
Basrai, M.3
Lichten, M.4
Strunnikov, A.5
-
64
-
-
84867842663
-
A predictive computational model of the dynamic 3D interphase yeast nucleus
-
Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, Fabre E, Zimmer C. 2012. A predictive computational model of the dynamic 3D interphase yeast nucleus. Current Biology 22:1881–1890. doi:10.1016/j.cub.2012.07.069.
-
(2012)
Current Biology
, vol.22
, pp. 1881-1890
-
-
Wong, H.1
Marie-Nelly, H.2
Herbert, S.3
Carrivain, P.4
Blanc, H.5
Koszul, R.6
Fabre, E.7
Zimmer, C.8
-
66
-
-
84455173322
-
Loops determine the mechanical properties of mitotic chromosomes
-
Zhang H, Heermann DW. 2011. Loops determine the mechanical properties of mitotic chromosomes. PLOS ONE 6:e29225. doi:10.1371/journal.pone.0029225.
-
(2011)
PLOS ONE
, vol.6
-
-
Zhang, H.1
Heermann, D.W.2
|