메뉴 건너뛰기




Volumn 2015, Issue 4, 2015, Pages 1-22

A simple biophysical model emulates budding yeast chromosome condensation

Author keywords

[No Author keywords available]

Indexed keywords

CONDENSIN; DNA TOPOISOMERASE (ATP HYDROLYSING); ADENOSINE TRIPHOSPHATASE; DNA BINDING PROTEIN; MULTIPROTEIN COMPLEX; NUCLEOSOME; PROTEIN BINDING; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84929149353     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.05565     Document Type: Article
Times cited : (77)

References (66)
  • 1
    • 0037017393 scopus 로고    scopus 로고
    • Condensin and cohesin display different arm conformations with characteristic hinge angles
    • Anderson DE, Losada A, Erickson HP, Hirano T. 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. The Journal of Cell Biology 156:419–424. doi:10.1083/jcb.200111002.
    • (2002) The Journal of Cell Biology , vol.156 , pp. 419-424
    • Anderson, D.E.1    Losada, A.2    Erickson, H.P.3    Hirano, T.4
  • 6
    • 9344239339 scopus 로고    scopus 로고
    • Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by hihg-resolution imaging techniques
    • Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM. 2004. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by hihg-resolution imaging techniques. Proceedings of the National Academy of Sciences of USA 101:16495–16500. doi:10.1073/pnas.0402766101.
    • (2004) Proceedings of the National Academy of Sciences of USA , vol.101 , pp. 16495-16500
    • Bystricky, K.1    Heun, P.2    Gehlen, L.3    Langowski, J.4    Gasser, S.M.5
  • 7
    • 84891810056 scopus 로고    scopus 로고
    • Condensin aids sister chromatid decatenation by topoisomerase II
    • Charbin A, Bouchoux C, Uhlmann F. 2014. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Research 42:340–348. doi:10.1093/nar/gkt882.
    • (2014) Nucleic Acids Research , vol.42 , pp. 340-348
    • Charbin, A.1    Bouchoux, C.2    Uhlmann, F.3
  • 8
    • 79961029402 scopus 로고    scopus 로고
    • Condensin structures chromosomal DNA through topological links
    • Cuylen S, Metz J, Haering CH. 2011. Condensin structures chromosomal DNA through topological links. Nature Structural & Molecular Biology 18:894–901. doi:10.1038/nsmb.2087.
    • (2011) Nature Structural & Molecular Biology , vol.18 , pp. 894-901
    • Cuylen, S.1    Metz, J.2    Haering, C.H.3
  • 10
    • 58049192401 scopus 로고    scopus 로고
    • Mappin in vivo chromatin interactions in yeast suggests an extended chromatin fibre with regional variation in compaction
    • Dekker J. 2008. Mappin in vivo chromatin interactions in yeast suggests an extended chromatin fibre with regional variation in compaction. The Journal of Biological Chemistry 283:34532–34540. doi:10.1074/jbc.M806479200.
    • (2008) The Journal of Biological Chemistry , vol.283 , pp. 34532-34540
    • Dekker, J.1
  • 11
    • 84878011578 scopus 로고    scopus 로고
    • Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data
    • Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics 14:390–403. doi:10.1038/nrg3454.
    • (2013) Nature Reviews Genetics , vol.14 , pp. 390-403
    • Dekker, J.1    Marti-Renom, M.A.2    Mirny, L.A.3
  • 12
    • 79960369239 scopus 로고    scopus 로고
    • Monte carlo simulations indicate that chromatin nanostructure is accessible by light microscopy
    • Diesinger PM, Heermann DW. 2010. Monte carlo simulations indicate that chromatin nanostructure is accessible by light microscopy. PMC Biophys 3:11. doi:10.1186/1757-5036-3-11.
    • (2010) PMC Biophys , vol.3 , pp. 11
    • Diesinger, P.M.1    Heermann, D.W.2
  • 13
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3    Kim, A.4    Li, Y.5    Shen, Y.6    Hu, M.7    Liu, J.S.8    Ren, B.9
  • 15
    • 34548745169 scopus 로고    scopus 로고
    • Choreography for nucleosomes: The conformational freedom of the nucleosomal filament and its limitations
    • Engelhardt M. 2007. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations. Nucleic Acids Research 35:e106. doi:10.1093/nar/gkm560.
    • (2007) Nucleic Acids Research , vol.35
    • Engelhardt, M.1
  • 16
    • 0037165965 scopus 로고    scopus 로고
    • Visualizing chromatin dynamics in interphase nuclei
    • Gasser SM. 2002. Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–1416. doi:10.1126/science.1067703.
    • (2002) Science , vol.296 , pp. 1412-1416
    • Gasser, S.M.1
  • 18
    • 32944477078 scopus 로고    scopus 로고
    • Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells
    • Gerlich D, Hirota T, Koch B, Peters J-M, Ellenberg J. 2006. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Current Biology 16:333–344. doi:10.1016/j.cub.2005.12.040.
    • (2006) Current Biology , vol.16 , pp. 333-344
    • Gerlich, D.1    Hirota, T.2    Koch, B.3    Peters, J.-M.4    Ellenberg, J.5
  • 19
    • 84900297485 scopus 로고    scopus 로고
    • Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
    • Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963. doi:10.1016/j.cell.2014.03.025.
    • (2014) Cell , vol.157 , pp. 950-963
    • Giorgetti, L.1    Galupa, R.2    Nora, E.P.3    Piolot, T.4    Lam, F.5    Dekker, J.6    Tiana, G.7    Heard, E.8
  • 20
    • 0030084649 scopus 로고    scopus 로고
    • Computer simulations of polymer chain relaxation via Brownian motion
    • Grassia P, Hinch EJ. 1996. Computer simulations of polymer chain relaxation via Brownian motion. Journal of Fluid Mechanics 308:255–288. doi:10.1017/S0022112096001474.
    • (1996) Journal of Fluid Mechanics , vol.308 , pp. 255-288
    • Grassia, P.1    Hinch, E.J.2
  • 22
    • 0028174255 scopus 로고
    • Chromosome condensation and sister chromatid pairing in budding yeast
    • Guacci V, Hogan E, Koshland D. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. The Journal of Cell Biology 125:517–530. doi:10.1083/jcb.125.3.517.
    • (1994) The Journal of Cell Biology , vol.125 , pp. 517-530
    • Guacci, V.1    Hogan, E.2    Koshland, D.3
  • 23
    • 50049112678 scopus 로고    scopus 로고
    • Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes
    • Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes & Development 22: 2204–2214. doi:10.1101/gad.1675908.
    • (2008) Genes & Development , vol.22 , pp. 2204-2214
    • Haeusler, R.A.1    Pratt-Hyatt, M.2    Good, P.D.3    Gipson, T.A.4    Engelke, D.R.5
  • 24
    • 0037087623 scopus 로고    scopus 로고
    • C. Elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis
    • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ. 2002. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes & Development 16:729–742. doi:10.1101/gad.968302.
    • (2002) Genes & Development , vol.16 , pp. 729-742
    • Hagstrom, K.A.1    Holmes, V.F.2    Cozzarelli, N.R.3    Meyer, B.J.4
  • 26
    • 52049084405 scopus 로고    scopus 로고
    • The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes
    • Haruki H, Nishikawa J, Laemmli UK. 2008. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Molecular Cell 31:925–932. doi:10.1016/j.molcel.2008.07.020.
    • (2008) Molecular Cell , vol.31 , pp. 925-932
    • Haruki, H.1    Nishikawa, J.2    Laemmli, U.K.3
  • 28
    • 0027943721 scopus 로고
    • A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
    • Hirano T, Mitchison TJ. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458. doi:10.1016/0092-8674(94)90254-2.
    • (1994) Cell , vol.79 , pp. 449-458
    • Hirano, T.1    Mitchison, T.J.2
  • 29
    • 13444302537 scopus 로고    scopus 로고
    • Distinct functions of condensin I and II in mitotic chromosome assembly
    • Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. 2004. Distinct functions of condensin I and II in mitotic chromosome assembly. Journal of Cell Science 117:6435–6445. doi:10.1242/jcs.01604.
    • (2004) Journal of Cell Science , vol.117 , pp. 6435-6445
    • Hirota, T.1    Gerlich, D.2    Koch, B.3    Ellenberg, J.4    Peters, J.M.5
  • 30
    • 0041440100 scopus 로고    scopus 로고
    • Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes
    • Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC. 2003. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Developmental Cell 5:323–336. doi:10.1016/S1534-5807(03)00199-0.
    • (2003) Developmental Cell , vol.5 , pp. 323-336
    • Hudson, D.F.1    Vagnarelli, P.2    Gassmann, R.3    Earnshaw, W.C.4
  • 31
    • 34347247308 scopus 로고    scopus 로고
    • The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography
    • König P, Braunfeld MB, Sedat JW, Agard DA. 2007. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116:349–372. doi:10.1007/s00412-007-0101-0.
    • (2007) Chromosoma , vol.116 , pp. 349-372
    • König, P.1    Braunfeld, M.B.2    Sedat, J.W.3    Agard, D.A.4
  • 32
    • 84872099346 scopus 로고    scopus 로고
    • Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
    • Lopez-Serra L, Lengronne A, Borges V, Kelly G, Uhlmann F. 2013. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Current Biology 23:64–69. doi:10.1016/j.cub.2012.11.030.
    • (2013) Current Biology , vol.23 , pp. 64-69
    • Lopez-Serra, L.1    Lengronne, A.2    Borges, V.3    Kelly, G.4    Uhlmann, F.5
  • 33
    • 1842411320 scopus 로고    scopus 로고
    • Cyrstal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Cyrstal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260. doi:10.1038/38444.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 34
    • 84904172931 scopus 로고    scopus 로고
    • Chromatin as dynamic 10-nm fibres
    • Maeshima K, Imai R, Tamura S, Nozaki T. 2014. Chromatin as dynamic 10-nm fibres. Chromosoma 123:225–237. doi:10.1007/s00412-014-0460-2.
    • (2014) Chromosoma , vol.123 , pp. 225-237
    • Maeshima, K.1    Imai, R.2    Tamura, S.3    Nozaki, T.4
  • 35
    • 0037387829 scopus 로고    scopus 로고
    • A two-step scaffolding model for mitotic chromosome assembly
    • Maeshima K, Laemmli UK. 2003. A two-step scaffolding model for mitotic chromosome assembly. Developmental Cell 4:467–480. doi:10.1016/S1534-5807(03)00092-3.
    • (2003) Developmental Cell , vol.4 , pp. 467-480
    • Maeshima, K.1    Laemmli, U.K.2
  • 36
    • 0030730114 scopus 로고    scopus 로고
    • Polymer models of meiotic and mitotic chromosomes
    • Marko JF, Siggia ED. 1997. Polymer models of meiotic and mitotic chromosomes. Molecular Biology of the Cell 8: 2217–2231. doi:10.1091/mbc.8.11.2217.
    • (1997) Molecular Biology of the Cell , vol.8 , pp. 2217-2231
    • Marko, J.F.1    Siggia, E.D.2
  • 38
    • 34347405054 scopus 로고    scopus 로고
    • Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase
    • Mora-Bermúdez F, Gerlich D, Ellenberg J. 2006. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nature Cell Biology 9:822–831. doi:10.1038/ncb1606.
    • (2006) Nature Cell Biology , vol.9 , pp. 822-831
    • Mora-Bermúdez, F.1    Gerlich, D.2    Ellenberg, J.3
  • 39
    • 84892617115 scopus 로고    scopus 로고
    • Biochemical reconstitution of topological DNA binding by the cohesin ring
    • Murayama Y, Uhlmann F. 2014. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505:367–371. doi:10.1038/nature12867.
    • (2014) Nature , vol.505 , pp. 367-371
    • Murayama, Y.1    Uhlmann, F.2
  • 40
    • 22244481613 scopus 로고    scopus 로고
    • The structure and function of SMC and kleisin complexes
    • Nasmyth K, Haering CH. 2005. The structure and function of SMC and kleisin complexes. Annual Review of Biochemistry 74:595–648. doi:10.1146/annurev.biochem.74.082803.133219.
    • (2005) Annual Review of Biochemistry , vol.74 , pp. 595-648
    • Nasmyth, K.1    Haering, C.H.2
  • 42
    • 84924589156 scopus 로고    scopus 로고
    • Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility
    • Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T. 2015. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–1144. doi:10.1016/j.cell.2015.02.001.
    • (2015) Cell , vol.160 , pp. 1135-1144
    • Ngo, T.T.1    Zhang, Q.2    Zhou, R.3    Yodh, J.G.4    Ha, T.5
  • 44
    • 26444433291 scopus 로고    scopus 로고
    • The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis
    • Oliveira RA, Coelho PA, Sunkel CE. 2005. The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Molecular and Cellular Biology 25:8971–8984. doi:10.1128/MCB.25.20.8971-8984.2005.
    • (2005) Molecular and Cellular Biology , vol.25 , pp. 8971-8984
    • Oliveira, R.A.1    Coelho, P.A.2    Sunkel, C.E.3
  • 45
    • 84862212431 scopus 로고    scopus 로고
    • Facile synthesis of budding yeast a-factor and its use to synchronize cells of a mating type
    • O’Reilly N, Charbin A, Lopez-Serra L, Uhlmann F. 2012. Facile synthesis of budding yeast a-factor and its use to synchronize cells of a mating type. Yeast 29:233–240. doi:10.1002/yea.2906.
    • (2012) Yeast , vol.29 , pp. 233-240
    • O’Reilly, N.1    Charbin, A.2    Lopez-Serra, L.3    Uhlmann, F.4
  • 46
    • 0037180450 scopus 로고    scopus 로고
    • Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold
    • Poirier MG, Marko JF. 2002. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proceedings of the National Academy of Sciences of USA 99:15393–15397. doi:10.1073/pnas.232442599.
    • (2002) Proceedings of the National Academy of Sciences of USA , vol.99 , pp. 15393-15397
    • Poirier, M.G.1    Marko, J.F.2
  • 47
    • 0242443693 scopus 로고    scopus 로고
    • Force fields for protein simulations
    • Ponder JW, Case DA. 2003. Force fields for protein simulations. Advances in Protein Chemistry 66:27–85. doi:10.1016/S0065-3233(03)66002-X.
    • (2003) Advances in Protein Chemistry , vol.66 , pp. 27-85
    • Ponder, J.W.1    Case, D.A.2
  • 49
    • 0029161043 scopus 로고
    • Estimating friction coefficients fo mixed globular/chain molecules, such as protein/DNA complexes
    • Robert CH. 1995. Estimating friction coefficients fo mixed globular/chain molecules, such as protein/DNA complexes. Biophysical Journal 69:840–848. doi:10.1016/S0006-3495(95)79957-X.
    • (1995) Biophysical Journal , vol.69 , pp. 840-848
    • Robert, C.H.1
  • 50
    • 41549103314 scopus 로고    scopus 로고
    • Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae
    • Rohner S, Gasser SM, Meister P. 2008. Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae. Yeast 25:235–239. doi:10.1002/yea.1580.
    • (2008) Yeast , vol.25 , pp. 235-239
    • Rohner, S.1    Gasser, S.M.2    Meister, P.3
  • 51
    • 0028081446 scopus 로고
    • Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis
    • Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M. 1994. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. The EMBO Journal 13:4938–4952.
    • (1994) The EMBO Journal , vol.13 , pp. 4938-4952
    • Saka, Y.1    Sutani, T.2    Yamashita, Y.3    Saitoh, S.4    Takeuchi, M.5    Nakaseko, Y.6    Yanagida, M.7
  • 52
    • 70450257681 scopus 로고    scopus 로고
    • Mesoscale simulations of two nucleosome-repeat length oligonucleosomes
    • Schlick T, Perisić O. 2009. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Physical Chemistry Chemical Physics 11:10729–10737. doi:10.1039/b918629h.
    • (2009) Physical Chemistry Chemical Physics , vol.11 , pp. 10729-10737
    • Schlick, T.1    Perisi, O.2
  • 53
    • 67849124322 scopus 로고    scopus 로고
    • Detection of gene loops by 3C in yeast
    • Singh BN, Ansari A, Hampsey M. 2009. Detection of gene loops by 3C in yeast. Methods 48:361–367. doi:10.1016/j.ymeth.2009.02.018.
    • (2009) Methods , vol.48 , pp. 361-367
    • Singh, B.N.1    Ansari, A.2    Hampsey, M.3
  • 54
    • 84870310006 scopus 로고    scopus 로고
    • Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation
    • Splinter E, de Wit E, van de Werken HJ, Klous P, de Laat W. 2012. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58:221–230. doi:10.1016/j.ymeth.2012.04.009.
    • (2012) Methods , vol.58 , pp. 221-230
    • Splinter, E.1    De Wit, E.2    Van De Werken, H.J.3    Klous, P.4    De Laat, W.5
  • 56
    • 0028942904 scopus 로고
    • SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
    • Strunnikov AV, Hogan E, Koshland D. 1995. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes & Development 9:587–599. doi:10.1101/gad.9.5.587.
    • (1995) Genes & Development , vol.9 , pp. 587-599
    • Strunnikov, A.V.1    Hogan, E.2    Koshland, D.3
  • 57
    • 0037349338 scopus 로고    scopus 로고
    • The making of the mitotic chromosome: Modern insights into classical questions
    • Swedlow JR, Hirano T. 2003. The making of the mitotic chromosome: modern insights into classical questions. Molecular Cell 11:557–569. doi:10.1016/S1097-2765(03)00103-5.
    • (2003) Molecular Cell , vol.11 , pp. 557-569
    • Swedlow, J.R.1    Hirano, T.2
  • 58
    • 79959549133 scopus 로고    scopus 로고
    • Condensin association with histone H2A shapes mitotic chromosomes
    • Tada K, Susumu H, Sakuno T, Watanabe Y. 2011. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–483. doi:10.1038/nature10179.
    • (2011) Nature , vol.474 , pp. 477-483
    • Tada, K.1    Susumu, H.2    Sakuno, T.3    Watanabe, Y.4
  • 59
    • 84870491262 scopus 로고    scopus 로고
    • Condensin, chromatin crossbarring and chromosome condensation
    • Thadani R, Uhlmann F, Heeger S. 2012. Condensin, chromatin crossbarring and chromosome condensation. Current Biology 22:R1012–R1021. doi:10.1016/j.cub.2012.10.023.
    • (2012) Current Biology , vol.22 , pp. R1012-R1021
    • Thadani, R.1    Uhlmann, F.2    Heeger, S.3
  • 60
    • 84863540362 scopus 로고    scopus 로고
    • Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
    • Tjong H, Gong K, Chen L, Alber F. 2012. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Research 22:1295–1305. doi:10.1101/gr.129437.111.
    • (2012) Genome Research , vol.22 , pp. 1295-1305
    • Tjong, H.1    Gong, K.2    Chen, L.3    Alber, F.4
  • 61
    • 84856002587 scopus 로고    scopus 로고
    • Dynamical modeling of three-dimensional genome organization in interphase budding yeast
    • Tokuda N, Terada TP, Sasai M. 2012. Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophysical Journal 102:296–304. doi:10.1016/j.bpj.2011.12.005.
    • (2012) Biophysical Journal , vol.102 , pp. 296-304
    • Tokuda, N.1    Terada, T.P.2    Sasai, M.3
  • 62
  • 63
    • 23344442664 scopus 로고    scopus 로고
    • Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome
    • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A. 2005. Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Molecular and Cellular Biology 25:7216–7225. doi:10.1128/MCB.25.16.7216-7225.2005.
    • (2005) Molecular and Cellular Biology , vol.25 , pp. 7216-7225
    • Wang, B.D.1    Eyre, D.2    Basrai, M.3    Lichten, M.4    Strunnikov, A.5
  • 66
    • 84455173322 scopus 로고    scopus 로고
    • Loops determine the mechanical properties of mitotic chromosomes
    • Zhang H, Heermann DW. 2011. Loops determine the mechanical properties of mitotic chromosomes. PLOS ONE 6:e29225. doi:10.1371/journal.pone.0029225.
    • (2011) PLOS ONE , vol.6
    • Zhang, H.1    Heermann, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.