-
1
-
-
51149106585
-
Sister chromatid cohesion: a simple concept with a complex reality
-
doi:10.1146/annurev.cellbio.24.110707.175350
-
Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE, (2008) Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 24: 105-129. doi:10.1146/annurev.cellbio.24.110707.175350. PubMed: 18616427.
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 105-129
-
-
Onn, I.1
Heidinger-Pauli, J.M.2
Guacci, V.3
Unal, E.4
Koshland, D.E.5
-
2
-
-
54849432275
-
Mechanisms of sister chromatid pairing
-
doi:10.1016/S1937-6448(08)01005-8
-
Skibbens RV, (2008) Mechanisms of sister chromatid pairing. Int Rev Cell Mol Biol 269: 283-339. doi:10.1016/S1937-6448(08)01005-8. PubMed: 18779060.
-
(2008)
Int Rev Cell Mol Biol
, vol.269
, pp. 283-339
-
-
Skibbens, R.V.1
-
3
-
-
77951181571
-
Regulators of the cohesin network
-
doi:10.1146/annurev-biochem-061708-092640
-
Xiong B, Gerton JL, (2010) Regulators of the cohesin network. Annu Rev Biochem 79: 131-153. doi:10.1146/annurev-biochem-061708-092640. PubMed: 20331362.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 131-153
-
-
Xiong, B.1
Gerton, J.L.2
-
4
-
-
84875603839
-
Cohesin codes - interpreting chromatin architecture and the many facets of cohesin function
-
doi:10.1242/jcs.116566
-
Rudra S, Skibbens RV, (2013) Cohesin codes- interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126: 31-41. doi:10.1242/jcs.116566. PubMed: 23516328.
-
(2013)
J Cell Sci
, vol.126
, pp. 31-41
-
-
Rudra, S.1
Skibbens, R.V.2
-
5
-
-
2642542322
-
Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B
-
doi:10.1038/ng1364
-
Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, et al. (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36: 631-635. doi:10.1038/ng1364. PubMed: 15146186.
-
(2004)
Nat Genet
, vol.36
, pp. 631-635
-
-
Krantz, I.D.1
McCallum, J.2
DeScipio, C.3
Kaur, M.4
Gillis, L.A.5
-
6
-
-
4544253309
-
NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations
-
doi:10.1086/424698
-
Gillis LA, McCallum J, Kaur M, DeScipio C, Yaeger D, et al. (2004) NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Hum Genet 75: 610-623. doi:10.1086/424698. PubMed: 15318302.
-
(2004)
Am J Hum Genet
, vol.75
, pp. 610-623
-
-
Gillis, L.A.1
McCallum, J.2
Kaur, M.3
DeScipio, C.4
Yaeger, D.5
-
7
-
-
2642565901
-
NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome
-
doi:10.1038/ng1363
-
Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T, (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36: 636-641. doi:10.1038/ng1363. PubMed: 15146185.
-
(2004)
Nat Genet
, vol.36
, pp. 636-641
-
-
Tonkin, E.T.1
Wang, T.J.2
Lisgo, S.3
Bamshad, M.J.4
Strachan, T.5
-
8
-
-
20944444999
-
Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion
-
doi:10.1038/ng1548
-
Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, et al. (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37: 468-470. doi:10.1038/ng1548. PubMed: 15821733.
-
(2005)
Nat Genet
, vol.37
, pp. 468-470
-
-
Vega, H.1
Waisfisz, Q.2
Gordillo, M.3
Sakai, N.4
Yanagihara, I.5
-
9
-
-
28144464283
-
Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation
-
doi:10.1086/498695
-
Schüle B, Oviedo A, Johnston K, Pai S, Francke U, (2005) Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 77: 1117-1128. doi:10.1086/498695. PubMed: 16380922.
-
(2005)
Am J Hum Genet
, vol.77
, pp. 1117-1128
-
-
Schüle, B.1
Oviedo, A.2
Johnston, K.3
Pai, S.4
Francke, U.5
-
10
-
-
33646379870
-
X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations
-
doi:10.1038/ng1779
-
Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, et al. (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38: 528-530. doi:10.1038/ng1779. PubMed: 16604071.
-
(2006)
Nat Genet
, vol.38
, pp. 528-530
-
-
Musio, A.1
Selicorni, A.2
Focarelli, M.L.3
Gervasini, C.4
Milani, D.5
-
11
-
-
33847196427
-
Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation
-
doi:10.1086/511888
-
Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, et al. (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80: 485-494. doi:10.1086/511888. PubMed: 17273969.
-
(2007)
Am J Hum Genet
, vol.80
, pp. 485-494
-
-
Deardorff, M.A.1
Kaur, M.2
Yaeger, D.3
Rampuria, A.4
Korolev, S.5
-
12
-
-
68849111709
-
Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies
-
doi:10.1371/journal.pone.0005232
-
Zhang B, Chang J, Fu M, Huang J, Kashyap R, et al. (2009) Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies. PLOS ONE 4(5):: e5232. doi:10.1371/journal.pone.0005232. PubMed: 19412548.
-
(2009)
PLOS ONE
, vol.4
-
-
Zhang, B.1
Chang, J.2
Fu, M.3
Huang, J.4
Kashyap, R.5
-
13
-
-
76049096485
-
Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1
-
doi:10.1016/j.ajhg.2010.01.008
-
van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, et al. (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86: 262-266. doi:10.1016/j.ajhg.2010.01.008. PubMed: 20137776.
-
(2010)
Am J Hum Genet
, vol.86
, pp. 262-266
-
-
van der Lelij, P.1
Chrzanowska, K.H.2
Godthelp, B.C.3
Rooimans, M.A.4
Oostra, A.B.5
-
14
-
-
25144457604
-
The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J
-
doi:10.1038/ng1625
-
Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, et al. (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 37: 934-935. doi:10.1038/ng1625. PubMed: 16116423.
-
(2005)
Nat Genet
, vol.37
, pp. 934-935
-
-
Levitus, M.1
Waisfisz, Q.2
Godthelp, B.C.3
de Vries, Y.4
Hussain, S.5
-
15
-
-
24944575242
-
BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ
-
doi:10.1016/j.ccr.2005.08.004
-
Litman R, Peng M, Jin Z, Zhang F, Zhang J, et al. (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8: 255-265. doi:10.1016/j.ccr.2005.08.004. PubMed: 16153896.
-
(2005)
Cancer Cell
, vol.8
, pp. 255-265
-
-
Litman, R.1
Peng, M.2
Jin, Z.3
Zhang, F.4
Zhang, J.5
-
16
-
-
84862142852
-
RAD21 mutations cause a human cohesinopathy
-
doi:10.1016/j.ajhg.2012.04.019
-
Deardorff MA, Wilde JJ, Albrecht M, Dickinson E, Tennstedt S, et al. (2012) RAD21 mutations cause a human cohesinopathy. Am J Hum Genet 90(6):: 1014-1027. doi:10.1016/j.ajhg.2012.04.019. PubMed: 22633399.
-
(2012)
Am J Hum Genet
, vol.90
, pp. 1014-1027
-
-
Deardorff, M.A.1
Wilde, J.J.2
Albrecht, M.3
Dickinson, E.4
Tennstedt, S.5
-
17
-
-
84866183822
-
HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle
-
doi:10.1038/nature11316
-
Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, et al. (2012) HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489(7415):: 313-317. doi:10.1038/nature11316. PubMed: 22885700.
-
(2012)
Nature
, vol.489
, pp. 313-317
-
-
Deardorff, M.A.1
Bando, M.2
Nakato, R.3
Watrin, E.4
Itoh, T.5
-
18
-
-
84855870632
-
ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex
-
doi:10.1093/nar/gkr749
-
Möckel C, Lammens K, Schele A, Hopfner KP, (2012) ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 40: 914-927. doi:10.1093/nar/gkr749. PubMed: 21937514.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 914-927
-
-
Möckel, C.1
Lammens, K.2
Schele, A.3
Hopfner, K.P.4
-
19
-
-
84863726680
-
Structure of Mre11-Nbs1 complex yields insights into Ataxia-Telangiectasia-like disease mutations and DNA damage signaling
-
doi:10.1038/nsmb.2323
-
Schiller CB, Lammens K, Guerini I, Coordes B, Feldmann H, et al. (2012) Structure of Mre11-Nbs1 complex yields insights into Ataxia-Telangiectasia-like disease mutations and DNA damage signaling. Nat Struct Mol Biol 19: 693-700. doi:10.1038/nsmb.2323. PubMed: 22705791.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 693-700
-
-
Schiller, C.B.1
Lammens, K.2
Guerini, I.3
Coordes, B.4
Feldmann, H.5
-
20
-
-
20544454613
-
Rings, bracelet or snaps: fashionable alternatives for SMC complexes
-
doi:10.1098/rstb.2004.1609
-
Huang CE, Milutinovich M, Koshland D, (2005) Rings, bracelet or snaps: fashionable alternatives for SMC complexes. Philos Trans R Soc Lond B Biol Sci 360: 537-542. doi:10.1098/rstb.2004.1609. PubMed: 15897179.
-
(2005)
Philos Trans R Soc Lond B Biol Sci
, vol.360
, pp. 537-542
-
-
Huang, C.E.1
Milutinovich, M.2
Koshland, D.3
-
21
-
-
47549115780
-
The cohesin ring concatenates sister DNA molecules
-
doi:10.1038/nature07098
-
Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K, (2008) The cohesin ring concatenates sister DNA molecules. Nature 454: 297-301. doi:10.1038/nature07098. PubMed: 18596691.
-
(2008)
Nature
, vol.454
, pp. 297-301
-
-
Haering, C.H.1
Farcas, A.M.2
Arumugam, P.3
Metson, J.4
Nasmyth, K.5
-
22
-
-
77956182276
-
Buck the establishment: reinventing sister chromatid cohesion
-
doi:10.1016/j.tcb.2010.06.003
-
Skibbens RV, (2010) Buck the establishment: reinventing sister chromatid cohesion. Trends Cell Biol 20: 507-513. doi:10.1016/j.tcb.2010.06.003. PubMed: 20620062.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 507-513
-
-
Skibbens, R.V.1
-
23
-
-
80053495083
-
Cohesin: a catenase with separate entry and exit gates?
-
doi:10.1038/ncb2349
-
Nasmyth K, (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13: 1170-1177. doi:10.1038/ncb2349. PubMed: 21968990.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1170-1177
-
-
Nasmyth, K.1
-
24
-
-
79952784242
-
Cohesin loading and sliding
-
doi:10.1242/jcs.073866
-
Ocampo-Hafalla MT, Uhlmann F, (2011) Cohesin loading and sliding. J Cell Sci 124: 685-691. doi:10.1242/jcs.073866. PubMed: 21321326.
-
(2011)
J Cell Sci
, vol.124
, pp. 685-691
-
-
Ocampo-Hafalla, M.T.1
Uhlmann, F.2
-
25
-
-
0033082232
-
Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery
-
doi:10.1101/gad.13.3.307
-
Skibbens RV, Corson LB, Koshland D, Hieter P, (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13: 307-319. doi:10.1101/gad.13.3.307. PubMed: 9990855.
-
(1999)
Genes Dev
, vol.13
, pp. 307-319
-
-
Skibbens, R.V.1
Corson, L.B.2
Koshland, D.3
Hieter, P.4
-
26
-
-
0033083727
-
Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication
-
Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, et al. (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13: 320-333.
-
(1999)
Genes Dev
, vol.13
, pp. 320-333
-
-
Toth, A.1
Ciosk, R.2
Uhlmann, F.3
Galova, M.4
Schleiffer, A.5
-
27
-
-
0344442375
-
Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains
-
doi:10.1093/nar/gkg811
-
Bellows AM, Kenna MA, Cassimeris L, Skibbens RV, (2003) Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res 31: 6334-6343. doi:10.1093/nar/gkg811. PubMed: 14576321.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 6334-6343
-
-
Bellows, A.M.1
Kenna, M.A.2
Cassimeris, L.3
Skibbens, R.V.4
-
28
-
-
0344663967
-
Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila
-
doi:10.1016/j.cub.2003.11.018
-
Williams BC, Garrett-Engele CM, Li Z, Williams EV, Rosenman ED, et al. (2003) Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr Biol 13: 2025-2036. doi:10.1016/j.cub.2003.11.018. PubMed: 14653991.
-
(2003)
Curr Biol
, vol.13
, pp. 2025-2036
-
-
Williams, B.C.1
Garrett-Engele, C.M.2
Li, Z.3
Williams, E.V.4
Rosenman, E.D.5
-
29
-
-
23044514962
-
Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion
-
doi:10.1091/mbc.E04-12-1063
-
Hou F, Zou H, (2005) Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16: 3908-3918. doi:10.1091/mbc.E04-12-1063. PubMed: 15958495.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 3908-3918
-
-
Hou, F.1
Zou, H.2
-
30
-
-
0037133040
-
Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion
-
doi:10.1016/S0960-9822(02)00681-4
-
Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, et al. (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12: 323-328. doi:10.1016/S0960-9822(02)00681-4. PubMed: 11864574.
-
(2002)
Curr Biol
, vol.12
, pp. 323-328
-
-
Ivanov, D.1
Schleiffer, A.2
Eisenhaber, F.3
Mechtler, K.4
Haering, C.H.5
-
31
-
-
48249132443
-
Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion
-
doi:10.1126/science.1157774
-
Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, et al. (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321: 563-566. doi:10.1126/science.1157774. PubMed: 18653893.
-
(2008)
Science
, vol.321
, pp. 563-566
-
-
Rolef Ben-Shahar, T.1
Heeger, S.2
Lehane, C.3
East, P.4
Flynn, H.5
-
32
-
-
48249142388
-
A molecular determinant for the establishment of sister chromatid cohesion
-
doi:10.1126/science.1157880
-
Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, et al. (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321: 566-569. doi:10.1126/science.1157880. PubMed: 18653894.
-
(2008)
Science
, vol.321
, pp. 566-569
-
-
Unal, E.1
Heidinger-Pauli, J.M.2
Kim, W.3
Guacci, V.4
Onn, I.5
-
33
-
-
46149100946
-
Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast
-
doi:10.1016/j.molcel.2008.06.006
-
Zhang J, Shi X, Li Y, Kim BJ, Jia J, et al. (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31: 143-151. doi:10.1016/j.molcel.2008.06.006. PubMed: 18614053.
-
(2008)
Mol Cell
, vol.31
, pp. 143-151
-
-
Zhang, J.1
Shi, X.2
Li, Y.3
Kim, B.J.4
Jia, J.5
-
34
-
-
0037383721
-
Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different Replication Factor C complexes
-
doi:10.1128/MCB.23.8.2999-3007.2003
-
Kenna MA, Skibbens RV, (2003) Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different Replication Factor C complexes. Mol Cell Biol 23: 2999-3007. doi:10.1128/MCB.23.8.2999-3007.2003. PubMed: 12665596.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2999-3007
-
-
Kenna, M.A.1
Skibbens, R.V.2
-
35
-
-
33747882922
-
PCNA controls establishment of sister chromatid cohesion during S phase
-
doi:10.1016/j.molcel.2006.07.007
-
Moldovan GL, Pfander B, Jentsch S, (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23: 723-732. doi:10.1016/j.molcel.2006.07.007. PubMed: 16934511.
-
(2006)
Mol Cell
, vol.23
, pp. 723-732
-
-
Moldovan, G.L.1
Pfander, B.2
Jentsch, S.3
-
36
-
-
33846472968
-
A multi-step pathway for the establishment of sister chromatid cohesion
-
doi:10.1371/journal.pgen.0030012
-
Milutinovich M, Unal E, Ward C, Skibbens RV, Koshland D, (2007) A multi-step pathway for the establishment of sister chromatid cohesion. PLOS Genet 3: e12. doi:10.1371/journal.pgen.0030012. PubMed: 17238288.
-
(2007)
PLOS Genet
, vol.3
-
-
Milutinovich, M.1
Unal, E.2
Ward, C.3
Skibbens, R.V.4
Koshland, D.5
-
37
-
-
61849181988
-
The Elg1-RFC clamp-loading complex performs a role in sister chromatid cohesion
-
doi:10.1371/journal.pone.0004707
-
Maradeo ME, Skibbens RV, (2009) The Elg1-RFC clamp-loading complex performs a role in sister chromatid cohesion. PLOS ONE 4: e4707. doi:10.1371/journal.pone.0004707. PubMed: 19262753.
-
(2009)
PLOS ONE
, vol.4
-
-
Maradeo, M.E.1
Skibbens, R.V.2
-
38
-
-
78149449851
-
Replication Factor C complexes play unique pro- and anti-establishment roles in sister chromatid cohesion
-
doi:10.1371/journal.pone.0015381
-
Maradeo ME, Skibbens RV, (2010) Replication Factor C complexes play unique pro- and anti-establishment roles in sister chromatid cohesion. PLOS ONE 5: e15381. doi:10.1371/journal.pone.0015381. PubMed: 21060875.
-
(2010)
PLOS ONE
, vol.5
-
-
Maradeo, M.E.1
Skibbens, R.V.2
-
39
-
-
84867270264
-
Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery
-
doi:10.1074/jbc.M112.400192
-
Song J, Lafont A, Chen J, Wu FM, Shirahige K, et al. (2012) Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery. J Biol Chem 287: 34325-34336. doi:10.1074/jbc.M112.400192. PubMed: 22896698.
-
(2012)
J Biol Chem
, vol.287
, pp. 34325-34336
-
-
Song, J.1
Lafont, A.2
Chen, J.3
Wu, F.M.4
Shirahige, K.5
-
40
-
-
34548210050
-
Fork it over: the cohesion establishment factor Ctf7p and DNA replication
-
doi:10.1242/jcs.011999
-
Skibbens RV, Maradeo M, Eastman L, (2007) Fork it over: the cohesion establishment factor Ctf7p and DNA replication. J Cell Sci 120: 2471-2477. doi:10.1242/jcs.011999. PubMed: 17646671.
-
(2007)
J Cell Sci
, vol.120
, pp. 2471-2477
-
-
Skibbens, R.V.1
Maradeo, M.2
Eastman, L.3
-
41
-
-
0032497566
-
Cohesion between sister chromatids must be established during DNA replication
-
doi:10.1016/S0960-9822(98)70463-4
-
Uhlmann F, Nasmyth K, (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8: 1095-1101. doi:10.1016/S0960-9822(98)70463-4. PubMed: 9778527.
-
(1998)
Curr Biol
, vol.8
, pp. 1095-1101
-
-
Uhlmann, F.1
Nasmyth, K.2
-
42
-
-
0033859660
-
Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins
-
doi:10.1016/S1097-2765(00)80420-7
-
Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, et al. (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5: 243-254. doi:10.1016/S1097-2765(00)80420-7. PubMed: 10882066.
-
(2000)
Mol Cell
, vol.5
, pp. 243-254
-
-
Ciosk, R.1
Shirayama, M.2
Shevchenko, A.3
Tanaka, T.4
Toth, A.5
-
43
-
-
33646178283
-
A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4
-
doi:10.1016/j.cub.2006.03.037
-
Bernard P, Drogat J, Maure JF, Dheur S, Vaur S, et al. (2006) A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr Biol 16: 875-881. doi:10.1016/j.cub.2006.03.037. PubMed: 16682348.
-
(2006)
Curr Biol
, vol.16
, pp. 875-881
-
-
Bernard, P.1
Drogat, J.2
Maure, J.F.3
Dheur, S.4
Vaur, S.5
-
44
-
-
33646199189
-
Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression
-
doi:10.1016/j.cub.2006.03.049
-
Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, et al. (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16: 863-874. doi:10.1016/j.cub.2006.03.049. PubMed: 16682347.
-
(2006)
Curr Biol
, vol.16
, pp. 863-874
-
-
Watrin, E.1
Schleiffer, A.2
Tanaka, K.3
Eisenhaber, F.4
Nasmyth, K.5
-
45
-
-
33748424969
-
Establishment of sister chromatid cohesion at the S. cerevisiae replication fork
-
doi:10.1016/j.molcel.2006.08.018
-
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, et al. (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23: 787-799. doi:10.1016/j.molcel.2006.08.018. PubMed: 16962805.
-
(2006)
Mol Cell
, vol.23
, pp. 787-799
-
-
Lengronne, A.1
McIntyre, J.2
Katou, Y.3
Kanoh, Y.4
Hopfner, K.P.5
-
46
-
-
0030886602
-
A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae
-
doi:10.1016/S0092-8674(01)80008-8
-
Guacci V, Koshland D, Strunnikov A, (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47-57. doi:10.1016/S0092-8674(01)80008-8. PubMed: 9335334.
-
(1997)
Cell
, vol.91
, pp. 47-57
-
-
Guacci, V.1
Koshland, D.2
Strunnikov, A.3
-
47
-
-
0030885925
-
Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
-
doi:10.1016/S0092-8674(01)80007-6
-
Michaelis C, Ciosk R, Nasmyth K, (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91: 35-45. doi:10.1016/S0092-8674(01)80007-6. PubMed: 9335333.
-
(1997)
Cell
, vol.91
, pp. 35-45
-
-
Michaelis, C.1
Ciosk, R.2
Nasmyth, K.3
-
48
-
-
0037459376
-
Chromosomal cohesin forms a ring
-
doi:10.1016/S0092-8674(03)00162-4
-
Gruber S, Haering CH, Nasmyth K, (2003) Chromosomal cohesin forms a ring. Cell 112: 765-777. doi:10.1016/S0092-8674(03)00162-4. PubMed: 12654244.
-
(2003)
Cell
, vol.112
, pp. 765-777
-
-
Gruber, S.1
Haering, C.H.2
Nasmyth, K.3
-
49
-
-
0036242551
-
Molecular architecture of SMC proteins and the yeast cohesin complex
-
doi:10.1016/S1097-2765(02)00515-4
-
Haering CH, Löwe J, Hochwagen A, Nasmyth K, (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9: 773-788. doi:10.1016/S1097-2765(02)00515-4. PubMed: 11983169.
-
(2002)
Mol Cell
, vol.9
, pp. 773-788
-
-
Haering, C.H.1
Löwe, J.2
Hochwagen, A.3
Nasmyth, K.4
-
50
-
-
1642360837
-
Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion
-
doi:10.1534/genetics.166.1.33
-
Skibbens RV, (2004) Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166: 33-42. doi:10.1534/genetics.166.1.33. PubMed: 15020404.
-
(2004)
Genetics
, vol.166
, pp. 33-42
-
-
Skibbens, R.V.1
-
51
-
-
12144286837
-
Identification of protein complexes required for efficient sister chromatid cohesion
-
doi:10.1091/mbc.E03-08-0619
-
Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, et al. (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15: 1736-1745. doi:10.1091/mbc.E03-08-0619. PubMed: 14742714.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1736-1745
-
-
Mayer, M.L.1
Pot, I.2
Chang, M.3
Xu, H.4
Aneliunas, V.5
-
52
-
-
4444292553
-
Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II
-
doi:10.1242/jcs.01231
-
Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, et al. (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117: 3547-3559. doi:10.1242/jcs.01231. PubMed: 15226378.
-
(2004)
J Cell Sci
, vol.117
, pp. 3547-3559
-
-
Petronczki, M.1
Chwalla, B.2
Siomos, M.F.3
Yokobayashi, S.4
Helmhart, W.5
-
53
-
-
33845657930
-
The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells
-
doi:10.1242/jcs.03262
-
Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, et al. (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119: 4857-4865. doi:10.1242/jcs.03262. PubMed: 17105772.
-
(2006)
J Cell Sci
, vol.119
, pp. 4857-4865
-
-
Parish, J.L.1
Rosa, J.2
Wang, X.3
Lahti, J.M.4
Doxsey, S.J.5
-
54
-
-
34548251989
-
Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation
-
doi:10.4161/cc.6.13.4411
-
Inoue A, Li T, Roby SK, Valentine MB, Inoue M, et al. (2007) Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6: 1646-1654. doi:10.4161/cc.6.13.4411. PubMed: 17611414.
-
(2007)
Cell Cycle
, vol.6
, pp. 1646-1654
-
-
Inoue, A.1
Li, T.2
Roby, S.K.3
Valentine, M.B.4
Inoue, M.5
-
55
-
-
0031022335
-
Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1
-
doi:10.1074/jbc.272.6.3823
-
Amann J, Kidd VJ, Lahti JM, (1997) Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1. J Biol Chem 272: 3823-3832. doi:10.1074/jbc.272.6.3823. PubMed: 9013641.
-
(1997)
J Biol Chem
, vol.272
, pp. 3823-3832
-
-
Amann, J.1
Kidd, V.J.2
Lahti, J.M.3
-
56
-
-
1442281478
-
The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations
-
doi:10.1073/pnas.0308717101
-
Cantor S, Drapkin R, Zhang F, Lin Y, Han J, et al. (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci U S A 101: 2357-2362. doi:10.1073/pnas.0308717101. PubMed: 14983014.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 2357-2362
-
-
Cantor, S.1
Drapkin, R.2
Zhang, F.3
Lin, Y.4
Han, J.5
-
57
-
-
20644461718
-
BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function
-
doi:10.1016/S0092-8674(01)00304-X
-
Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, et al. (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105: 149-160. doi:10.1016/S0092-8674(01)00304-X. PubMed: 11301010.
-
(2001)
Cell
, vol.105
, pp. 149-160
-
-
Cantor, S.B.1
Bell, D.W.2
Ganesan, S.3
Kass, E.M.4
Drapkin, R.5
-
58
-
-
33645728557
-
BACH1 is a DNA repair protein supporting BRCA1 damage response
-
doi:10.1038/sj.onc.1209257
-
Peng M, Litman R, Jin Z, Fong G, Cantor SB, (2006) BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene 25: 2245-2253. doi:10.1038/sj.onc.1209257. PubMed: 16462773.
-
(2006)
Oncogene
, vol.25
, pp. 2245-2253
-
-
Peng, M.1
Litman, R.2
Jin, Z.3
Fong, G.4
Cantor, S.B.5
-
59
-
-
34948855936
-
FANCJ (BACH1) helicase forms DNA damage inducible foci with Replication Protein A and interacts physically and functionally with the single-stranded DNA-binding protein
-
doi:10.1182/blood-2006-11-057273
-
Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, et al. (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with Replication Protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110: 2390-2398. doi:10.1182/blood-2006-11-057273. PubMed: 17596542.
-
(2007)
Blood
, vol.110
, pp. 2390-2398
-
-
Gupta, R.1
Sharma, S.2
Sommers, J.A.3
Kenny, M.K.4
Cantor, S.B.5
-
60
-
-
31144452919
-
Assessing the link between BACH1 and BRCA1 in the FA pathway
-
doi:10.4161/cc.5.2.2338
-
Cantor SB, Andreassen PR, (2006) Assessing the link between BACH1 and BRCA1 in the FA pathway. Cell Cycle 5: 164-167. doi:10.4161/cc.5.2.2338. PubMed: 16357529.
-
(2006)
Cell Cycle
, vol.5
, pp. 164-167
-
-
Cantor, S.B.1
Andreassen, P.R.2
-
61
-
-
80054973810
-
Mutations in BRIP1 confer high risk of ovarian cancer
-
doi:10.1038/ng.955
-
Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, et al. (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43: 1104-1107. doi:10.1038/ng.955. PubMed: 21964575.
-
(2011)
Nat Genet
, vol.43
, pp. 1104-1107
-
-
Rafnar, T.1
Gudbjartsson, D.F.2
Sulem, P.3
Jonasdottir, A.4
Sigurdsson, A.5
-
62
-
-
51049121966
-
Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1
-
Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, et al. (2008) Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem 283: 20925-20936.
-
(2008)
J Biol Chem
, vol.283
, pp. 20925-20936
-
-
Farina, A.1
Shin, J.H.2
Kim, D.H.3
Bermudez, V.P.4
Kelman, Z.5
-
63
-
-
84861918348
-
Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis
-
doi:10.4161/cc.20547
-
Rudra S, Skibbens RV, (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11: 2114-2121. doi:10.4161/cc.20547. PubMed: 22592531.
-
(2012)
Cell Cycle
, vol.11
, pp. 2114-2121
-
-
Rudra, S.1
Skibbens, R.V.2
-
64
-
-
33846323201
-
Chl1 and Ctf4 are required for damage-induced recombinations
-
doi:10.1016/j.bbrc.2006.12.185
-
Ogiwara H, Ui A, Lai MS, Enomoto T, Seki M, (2007) Chl1 and Ctf4 are required for damage-induced recombinations. Biochem Biophys Res Commun 354: 222-226. doi:10.1016/j.bbrc.2006.12.185. PubMed: 17222391.
-
(2007)
Biochem Biophys Res Commun
, vol.354
, pp. 222-226
-
-
Ogiwara, H.1
Ui, A.2
Lai, M.S.3
Enomoto, T.4
Seki, M.5
-
65
-
-
0025597055
-
The CHL1 (CTF1) gene product of Saccharomyces cereivisiae is important for chromosome transmission and normal cell cycle progression in G2/M
-
Gerring SL, Spencer F, Hieter P, (1990) The CHL1 (CTF1) gene product of Saccharomyces cereivisiae is important for chromosome transmission and normal cell cycle progression in G2/M. EMBO J 9: 4347-4358. PubMed: 2265610.
-
(1990)
EMBO J
, vol.9
, pp. 4347-4358
-
-
Gerring, S.L.1
Spencer, F.2
Hieter, P.3
-
66
-
-
0033756308
-
Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis
-
doi:10.1128/MCB.20.22.8602-8612.2000
-
Méndez J, Stillman B, (2000) Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602-8612. doi:10.1128/MCB.20.22.8602-8612.2000. PubMed: 11046155.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 8602-8612
-
-
Méndez, J.1
Stillman, B.2
-
67
-
-
77149171759
-
Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion
-
doi:10.1242/jcs.057984
-
Leman AR, Noguchi C, Lee CY, Noguchi E, (2010) Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123: 660-670. doi:10.1242/jcs.057984. PubMed: 20124417.
-
(2010)
J Cell Sci
, vol.123
, pp. 660-670
-
-
Leman, A.R.1
Noguchi, C.2
Lee, C.Y.3
Noguchi, E.4
-
68
-
-
1642423537
-
S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion
-
doi:10.1091/mbc.E03-09-0637
-
Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, et al. (2004) S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15: 1724-1735. doi:10.1091/mbc.E03-09-0637. PubMed: 14742710.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1724-1735
-
-
Warren, C.D.1
Eckley, D.M.2
Lee, M.S.3
Hanna, J.S.4
Hughes, A.5
-
69
-
-
46349085795
-
The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity
-
doi:10.1093/hmg/ddn116
-
Gordillo M, Vega H, Trainer AH, Hou F, Sakai N, et al. (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17: 2172-2180. doi:10.1093/hmg/ddn116. PubMed: 18411254.
-
(2008)
Hum Mol Genet
, vol.17
, pp. 2172-2180
-
-
Gordillo, M.1
Vega, H.2
Trainer, A.H.3
Hou, F.4
Sakai, N.5
-
70
-
-
0034722387
-
Chromosomal addresses of the cohesin component Mcd1p
-
doi:10.1083/jcb.151.5.1047
-
Laloraya S, Guacci V, Koshland D, (2000) Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151: 1047-1056. doi:10.1083/jcb.151.5.1047. PubMed: 11086006.
-
(2000)
J Cell Biol
, vol.151
, pp. 1047-1056
-
-
Laloraya, S.1
Guacci, V.2
Koshland, D.3
-
71
-
-
19344366459
-
Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
-
doi:10.1371/journal.pbio.0020259
-
Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, et al. (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLOS Biol 2: E259. doi:10.1371/journal.pbio.0020259. PubMed: 15309048.
-
(2004)
PLOS Biol
, vol.2
-
-
Glynn, E.F.1
Megee, P.C.2
Yu, H.G.3
Mistrot, C.4
Unal, E.5
-
72
-
-
70349613201
-
The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes
-
doi:10.1101/gad.1819409
-
Kogut I, Wang J, Guacci V, Mistry RK, Megee PC, (2009) The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev 23: 2345-2357. doi:10.1101/gad.1819409. PubMed: 19797771.
-
(2009)
Genes Dev
, vol.23
, pp. 2345-2357
-
-
Kogut, I.1
Wang, J.2
Guacci, V.3
Mistry, R.K.4
Megee, P.C.5
-
73
-
-
0033197708
-
The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences
-
doi:10.1016/S1097-2765(00)80347-0
-
Megee PC, Mistrot C, Guacci V, Koshland D, (1999) The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol Cell 4: 445-450. doi:10.1016/S1097-2765(00)80347-0. PubMed: 10518226.
-
(1999)
Mol Cell
, vol.4
, pp. 445-450
-
-
Megee, P.C.1
Mistrot, C.2
Guacci, V.3
Koshland, D.4
-
74
-
-
0033578935
-
Identification of cohesin association sites at centromeres and along chromosome arms
-
doi:10.1016/S0092-8674(00)81518-4
-
Tanaka T, Cosma MP, Wirth K, Nasmyth K, (1999) Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98: 847-858. doi:10.1016/S0092-8674(00)81518-4. PubMed: 10499801.
-
(1999)
Cell
, vol.98
, pp. 847-858
-
-
Tanaka, T.1
Cosma, M.P.2
Wirth, K.3
Nasmyth, K.4
-
75
-
-
1142298825
-
The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis
-
doi:10.1038/nature02312
-
Kitajima TS, Kawashima SA, Watanabe Y, (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510-517. doi:10.1038/nature02312. PubMed: 14730319.
-
(2004)
Nature
, vol.427
, pp. 510-517
-
-
Kitajima, T.S.1
Kawashima, S.A.2
Watanabe, Y.3
-
76
-
-
70349149020
-
Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1
-
doi:10.1101/gad.1844309
-
Shintomi K, Hirano T, (2009) Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev 23: 2224-2236. doi:10.1101/gad.1844309. PubMed: 19696148.
-
(2009)
Genes Dev
, vol.23
, pp. 2224-2236
-
-
Shintomi, K.1
Hirano, T.2
-
77
-
-
77953132992
-
Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair
-
doi:10.1016/j.cub.2010.04.018
-
Heidinger-Pauli JM, Mert O, Davenport C, Guacci V, Koshland D, (2010) Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol 20: 957-963. doi:10.1016/j.cub.2010.04.018. PubMed: 20451387.
-
(2010)
Curr Biol
, vol.20
, pp. 957-963
-
-
Heidinger-Pauli, J.M.1
Mert, O.2
Davenport, C.3
Guacci, V.4
Koshland, D.5
-
78
-
-
84863323911
-
Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction
-
doi:10.1038/embor.2012.72
-
Vaur S, Feytout A, Vazquez S, Javerzat JP, (2012) Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep 13: 645-652. doi:10.1038/embor.2012.72. PubMed: 22640989.
-
(2012)
EMBO Rep
, vol.13
, pp. 645-652
-
-
Vaur, S.1
Feytout, A.2
Vazquez, S.3
Javerzat, J.P.4
-
79
-
-
80053174123
-
Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest
-
doi:10.1186/1471-2350-12-83
-
Laha S, Das SP, Hajra S, Sanyal K, Sinha P, (2011) Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest. BMC Genet 12: 83. doi:10.1186/1471-2350-12-83. PubMed: 21943249.
-
(2011)
BMC Genet
, vol.12
, pp. 83
-
-
Laha, S.1
Das, S.P.2
Hajra, S.3
Sanyal, K.4
Sinha, P.5
-
80
-
-
0033670940
-
Holding your own: establishing sister chromatid cohesion
-
doi:10.1101/gr.153600
-
Skibbens RV, (2000) Holding your own: establishing sister chromatid cohesion. Genome Res 10: 1664-1671. doi:10.1101/gr.153600. PubMed: 11076851.
-
(2000)
Genome Res
, vol.10
, pp. 1664-1671
-
-
Skibbens, R.V.1
-
81
-
-
3242880374
-
Cohesin relocation from sites of chromosomal loading to places of convergent transcription
-
doi:10.1038/nature02742
-
Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, et al. (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430: 573-578. doi:10.1038/nature02742. PubMed: 15229615.
-
(2004)
Nature
, vol.430
, pp. 573-578
-
-
Lengronne, A.1
Katou, Y.2
Mori, S.3
Yokobayashi, S.4
Kelly, G.P.5
-
82
-
-
84857223788
-
Cohesin-independent segregation of sister chromatids in budding yeast
-
doi:10.1091/mbc.E11-08-0696
-
Guacci V, Koshland D, (2012) Cohesin-independent segregation of sister chromatids in budding yeast. Mol Biol Cell 23: 729-739. doi:10.1091/mbc.E11-08-0696. PubMed: 22190734.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 729-739
-
-
Guacci, V.1
Koshland, D.2
-
83
-
-
20744435871
-
Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex
-
doi:10.1128/MCB.25.13.5445-5455.2005
-
Bylund GO, Burgers PM, (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25: 5445-5455. doi:10.1128/MCB.25.13.5445-5455.2005. PubMed: 15964801.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 5445-5455
-
-
Bylund, G.O.1
Burgers, P.M.2
-
84
-
-
34548074957
-
In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae
-
doi:10.1038/sj.emboj.7601793
-
Mc Intyre J, Muller EG, Weitzer S, Snydsman BE, Davis TN, et al. (2007) In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J 26: 3783-3793. doi:10.1038/sj.emboj.7601793. PubMed: 17660750.
-
(2007)
EMBO J
, vol.26
, pp. 3783-3793
-
-
Mc Intyre, J.1
Muller, E.G.2
Weitzer, S.3
Snydsman, B.E.4
Davis, T.N.5
-
85
-
-
79951500316
-
Okazaki fragment maturation: nucleases take centre stage
-
doi:10.1093/jmcb/mjq048
-
Zheng L, Shen B, (2011) Okazaki fragment maturation: nucleases take centre stage. J Mol Cell Biol 3: 23-30. doi:10.1093/jmcb/mjq048. PubMed: 21278448.
-
(2011)
J Mol Cell Biol
, vol.3
, pp. 23-30
-
-
Zheng, L.1
Shen, B.2
-
86
-
-
33746486793
-
Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
-
doi:10.1016/j.cub.2006.06.068
-
Gerlich D, Koch B, Dupeux F, Peters JM, Ellenberg J, (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr Biol 16: 1571-1578. doi:10.1016/j.cub.2006.06.068. PubMed: 16890534.
-
(2006)
Curr Biol
, vol.16
, pp. 1571-1578
-
-
Gerlich, D.1
Koch, B.2
Dupeux, F.3
Peters, J.M.4
Ellenberg, J.5
-
87
-
-
84875164760
-
The Replication Fork: Understanding the eukaryotic replication machinery and the challenges to genome duplication
-
doi:10.3390/genes4010001
-
Leman AR, Noguchi E, (2013) The Replication Fork: Understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4: 1-32. doi:10.3390/genes4010001. PubMed: 23599899.
-
(2013)
Genes (Basel)
, vol.4
, pp. 1-32
-
-
Leman, A.R.1
Noguchi, E.2
-
88
-
-
63049136577
-
Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins
-
doi:10.1007/s10577-008-9007-9
-
McNairn AJ, Gerton JL, (2009) Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins. Chromosome Res 17: 155-163. doi:10.1007/s10577-008-9007-9. PubMed: 19308698.
-
(2009)
Chromosome Res
, vol.17
, pp. 155-163
-
-
McNairn, A.J.1
Gerton, J.L.2
-
89
-
-
78049391383
-
Dosage-sensitive regulation of cohesin chromosome binding and dynamics by Nipped-B, Pds5, and Wapl
-
doi:10.1128/MCB.00642-10
-
Gause M, Misulovin Z, Bilyeu A, Dorsett D, (2010) Dosage-sensitive regulation of cohesin chromosome binding and dynamics by Nipped-B, Pds5, and Wapl. Mol Cell Biol 30: 4940-4951. doi:10.1128/MCB.00642-10. PubMed: 20696838.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4940-4951
-
-
Gause, M.1
Misulovin, Z.2
Bilyeu, A.3
Dorsett, D.4
-
90
-
-
79961052054
-
In vitro assembly of physiological cohesin/DNA complexes
-
doi:10.1073/pnas.1107504108
-
Onn I, Koshland D, (2011) In vitro assembly of physiological cohesin/DNA complexes. Proc Natl Acad Sci U S A 108: 12198-12205. doi:10.1073/pnas.1107504108. PubMed: 21670264.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 12198-12205
-
-
Onn, I.1
Koshland, D.2
-
91
-
-
0034651623
-
Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase
-
doi:10.1093/nar/28.4.917
-
Hirota Y, Lahti JM, (2000) Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res 28: 917-924. doi:10.1093/nar/28.4.917. PubMed: 10648783.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 917-924
-
-
Hirota, Y.1
Lahti, J.M.2
-
92
-
-
84862908251
-
Biochemical characterization of Warsaw breakage syndrome helicase
-
doi:10.1074/jbc.M111.276022
-
Wu Y, Sommers JA, Khan I, de Winter JP, Brosh RM Jr, (2012) Biochemical characterization of Warsaw breakage syndrome helicase. J Biol Chem 287: 1007-1021. doi:10.1074/jbc.M111.276022. PubMed: 22102414.
-
(2012)
J Biol Chem
, vol.287
, pp. 1007-1021
-
-
Wu, Y.1
Sommers, J.A.2
Khan, I.3
de Winter, J.P.4
Brosh Jr., R.M.5
-
93
-
-
44949114282
-
FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability
-
doi:10.1128/MCB.02210-07
-
Wu Y, Shin-Ya K, Brosh RM Jr, (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28: 4116-4128. doi:10.1128/MCB.02210-07. PubMed: 18426915.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 4116-4128
-
-
Wu, Y.1
Shin-Ya, K.2
Brosh Jr., R.M.3
-
94
-
-
84861551208
-
DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster
-
doi:10.1093/nar/gks039
-
Wu Y, Brosh RM Jr, (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res 40: 4247-4260. doi:10.1093/nar/gks039. PubMed: 22287629.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4247-4260
-
-
Wu, Y.1
Brosh Jr., R.M.2
-
96
-
-
84871607211
-
Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome
-
doi:10.1002/humu.22226
-
Capo-Chichi JM, Bharti SK, Sommers JA, Yammine T, Chouery E, et al. (2013) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome. Hum Mutat 34: 103-107. doi:10.1002/humu.22226. PubMed: 23033317.
-
(2013)
Hum Mutat
, vol.34
, pp. 103-107
-
-
Capo-Chichi, J.M.1
Bharti, S.K.2
Sommers, J.A.3
Yammine, T.4
Chouery, E.5
-
97
-
-
80052607856
-
Mammalian ChlR1 has a role in heterochromatin organization
-
doi:10.1016/j.yexcr.2011.08.006
-
Inoue A, Hyle J, Lechner MS, Lahti JM, (2011) Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 317: 2522-2535. doi:10.1016/j.yexcr.2011.08.006. PubMed: 21854770.
-
(2011)
Exp Cell Res
, vol.317
, pp. 2522-2535
-
-
Inoue, A.1
Hyle, J.2
Lechner, M.S.3
Lahti, J.M.4
-
98
-
-
0034735519
-
Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae
-
doi:10.1083/jcb.151.3.613
-
Hartman T, Stead K, Koshland D, Guacci V, (2000) Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151: 613-626. doi:10.1083/jcb.151.3.613. PubMed: 11062262.
-
(2000)
J Cell Biol
, vol.151
, pp. 613-626
-
-
Hartman, T.1
Stead, K.2
Koshland, D.3
Guacci, V.4
-
99
-
-
62549130668
-
Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction
-
doi:10.1016/j.cub.2009.01.062
-
Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K, (2009) Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 19: 492-497. doi:10.1016/j.cub.2009.01.062. PubMed: 19268589.
-
(2009)
Curr Biol
, vol.19
, pp. 492-497
-
-
Sutani, T.1
Kawaguchi, T.2
Kanno, R.3
Itoh, T.4
Shirahige, K.5
-
100
-
-
62549149415
-
Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity
-
doi:10.1016/j.molcel.2009.02.028
-
Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, et al. (2009) Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33: 763-774. doi:10.1016/j.molcel.2009.02.028. PubMed: 19328069.
-
(2009)
Mol Cell
, vol.33
, pp. 763-774
-
-
Rowland, B.D.1
Roig, M.B.2
Nishino, T.3
Kurze, A.4
Uluocak, P.5
-
101
-
-
84862690412
-
Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes)
-
doi:10.1111/j.1440-169X.2012.01362.x
-
Morita A, Nakahira K, Hasegawa T, Uchida K, Taniguchi Y, et al. (2012) Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes). Dev Growth Differ 54: 588-604. doi:10.1111/j.1440-169X.2012.01362.x. PubMed: 22694322.
-
(2012)
Dev Growth Differ
, vol.54
, pp. 588-604
-
-
Morita, A.1
Nakahira, K.2
Hasegawa, T.3
Uchida, K.4
Taniguchi, Y.5
-
102
-
-
84863848262
-
The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions
-
doi:10.4161/nucl.20440
-
Whelan G, Kreidl E, Peters JM, Eichele G, (2012) The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions. Nucleus 3: 330-334. doi:10.4161/nucl.20440. PubMed: 22614755.
-
(2012)
Nucleus
, vol.3
, pp. 330-334
-
-
Whelan, G.1
Kreidl, E.2
Peters, J.M.3
Eichele, G.4
-
103
-
-
63049116550
-
Heterochromatin and the cohesion of sister chromatids
-
doi:10.1007/s10577-008-9012-z
-
Gartenberg M, (2009) Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17: 229-238. doi:10.1007/s10577-008-9012-z. PubMed: 19308703.
-
(2009)
Chromosome Res
, vol.17
, pp. 229-238
-
-
Gartenberg, M.1
-
104
-
-
79953162010
-
Cohesin: genomic insights into controlling gene transcription and development
-
doi:10.1016/j.gde.2011.01.018
-
Dorsett D, (2011) Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 21: 199-206. doi:10.1016/j.gde.2011.01.018. PubMed: 21324671.
-
(2011)
Curr Opin Genet Dev
, vol.21
, pp. 199-206
-
-
Dorsett, D.1
-
105
-
-
84883154551
-
A genetic screen to discover pathways affecting cohesin function in Schizosaccharomyces pombe identifies chromatin effectors
-
Chen Z, McCrosky S, Guo W, Li H, Gerton JL, (2012) A genetic screen to discover pathways affecting cohesin function in Schizosaccharomyces pombe identifies chromatin effectors. G3 (Bethesda) 2: 1161-1168.
-
(2012)
G3 (Bethesda)
, vol.2
, pp. 1161-1168
-
-
Chen, Z.1
McCrosky, S.2
Guo, W.3
Li, H.4
Gerton, J.L.5
-
106
-
-
84876807755
-
Disease-causing missense mutations in human DNA helicase disorders
-
doi:10.1016/j.mrrev.2012.12.004
-
Suhasini AN, Brosh RM Jr, (2013) Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 752: 138-152. doi:10.1016/j.mrrev.2012.12.004. PubMed: 23276657.
-
(2013)
Mutat Res
, vol.752
, pp. 138-152
-
-
Suhasini, A.N.1
Brosh Jr., R.M.2
-
107
-
-
84876458231
-
An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae
-
doi:10.1007/s00412-013-0396-y
-
Borges V, Smith DJ, Whitehouse I, Uhlmann F, (2013) An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122: 121-134. doi:10.1007/s00412-013-0396-y. PubMed: 23334284.
-
(2013)
Chromosoma
, vol.122
, pp. 121-134
-
-
Borges, V.1
Smith, D.J.2
Whitehouse, I.3
Uhlmann, F.4
-
108
-
-
0026441119
-
Evidence that Pob1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo
-
Miles J, Formosa T, (1992) Evidence that Pob1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol Cell Biol 12: 5724-5735. PubMed: 1448101.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 5724-5735
-
-
Miles, J.1
Formosa, T.2
-
109
-
-
0035051062
-
Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
-
doi:10.1128/MCB.21.9.3144-3158.2001
-
Hanna JS, Kroll ES, Lundblad V, Spencer FA, (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21: 3144-3158. doi:10.1128/MCB.21.9.3144-3158.2001. PubMed: 11287619.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3144-3158
-
-
Hanna, J.S.1
Kroll, E.S.2
Lundblad, V.3
Spencer, F.A.4
|