-
1
-
-
17844391253
-
Molecular mechanisms of kinetochore capture by spindle microtubules
-
Tanaka K., Mukae N., Dewar H., van Breugel M., James E.K., Prescott A.R., Antony C., Tanaka T.U. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 2005, 434:987-994.
-
(2005)
Nature
, vol.434
, pp. 987-994
-
-
Tanaka, K.1
Mukae, N.2
Dewar, H.3
van Breugel, M.4
James, E.K.5
Prescott, A.R.6
Antony, C.7
Tanaka, T.U.8
-
2
-
-
84940609880
-
Adaptive changes in the kinetochore architecture facilitate proper spindle assembly
-
Magidson V., Paul R., Yang N., Ault J.G., O'Connell C.B., Tikhonenko I., McEwen B.F., Mogilner A., Khodjakov A. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol 2015, 10.1038/ncb3223.
-
(2015)
Nat Cell Biol
-
-
Magidson, V.1
Paul, R.2
Yang, N.3
Ault, J.G.4
O'Connell, C.B.5
Tikhonenko, I.6
McEwen, B.F.7
Mogilner, A.8
Khodjakov, A.9
-
3
-
-
84871530214
-
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
-
Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013, 14:25-37.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 25-37
-
-
Foley, E.A.1
Kapoor, T.M.2
-
4
-
-
84908151071
-
Signalling dynamics in the spindle checkpoint response
-
London N., Biggins S. Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 2014, 15:736-747.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 736-747
-
-
London, N.1
Biggins, S.2
-
5
-
-
38349037648
-
Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching
-
Maiolica A., Cittaro D., Borsotti D., Sennels L., Ciferri C., Tarricone C., Musacchio A., Rappsilber J. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 2007, 6:2200-2211.
-
(2007)
Mol Cell Proteomics
, vol.6
, pp. 2200-2211
-
-
Maiolica, A.1
Cittaro, D.2
Borsotti, D.3
Sennels, L.4
Ciferri, C.5
Tarricone, C.6
Musacchio, A.7
Rappsilber, J.8
-
6
-
-
77956378429
-
The MIS12 complex is a protein interaction hub for outer kinetochore assembly
-
Petrovic A., Pasqualato S., Dube P., Krenn V., Santaguida S., Cittaro D., Monzani S., Massimiliano L., Keller J., Tarricone A., et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 2010, 190:835-852.
-
(2010)
J Cell Biol
, vol.190
, pp. 835-852
-
-
Petrovic, A.1
Pasqualato, S.2
Dube, P.3
Krenn, V.4
Santaguida, S.5
Cittaro, D.6
Monzani, S.7
Massimiliano, L.8
Keller, J.9
Tarricone, A.10
-
7
-
-
80052849224
-
In vitro centromere and kinetochore assembly on defined chromatin templates
-
Guse A., Carroll C.W., Moree B., Fuller C.J., Straight A.F. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
-
(2011)
Nature
, vol.477
, pp. 354-358
-
-
Guse, A.1
Carroll, C.W.2
Moree, B.3
Fuller, C.J.4
Straight, A.F.5
-
8
-
-
84952641649
-
A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance
-
Westhorpe F.G., Fuller C.J., Straight A.F. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 2015, 209:789-801.
-
(2015)
J Cell Biol
, vol.209
, pp. 789-801
-
-
Westhorpe, F.G.1
Fuller, C.J.2
Straight, A.F.3
-
9
-
-
78649476255
-
Tension directly stabilizes reconstituted kinetochore-microtubule attachments
-
Akiyoshi B., Sarangapani K.K., Powers A.F., Nelson C.R., Reichow S.L., Arellano-Santoyo H., Gonen T., Ranish J.A., Asbury C.L., Biggins S. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 2010, 468:576-579.
-
(2010)
Nature
, vol.468
, pp. 576-579
-
-
Akiyoshi, B.1
Sarangapani, K.K.2
Powers, A.F.3
Nelson, C.R.4
Reichow, S.L.5
Arellano-Santoyo, H.6
Gonen, T.7
Ranish, J.A.8
Asbury, C.L.9
Biggins, S.10
-
10
-
-
72849116829
-
Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit
-
Akiyoshi B., Nelson C.R., Ranish J.A., Biggins S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 2009, 23:2887-2899.
-
(2009)
Genes Dev
, vol.23
, pp. 2887-2899
-
-
Akiyoshi, B.1
Nelson, C.R.2
Ranish, J.A.3
Biggins, S.4
-
11
-
-
84866069395
-
The structure of purified kinetochores reveals multiple microtubule-attachment sites
-
Gonen S., Akiyoshi B., Iadanza M.G., Shi D., Duggan N., Biggins S., Gonen T. The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 2012, 19:925-929.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 925-929
-
-
Gonen, S.1
Akiyoshi, B.2
Iadanza, M.G.3
Shi, D.4
Duggan, N.5
Biggins, S.6
Gonen, T.7
-
12
-
-
84952639708
-
The molecular basis for centromere identity and function
-
McKinley K.L., Cheeseman I.M. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 2015, 10.1038/nrm.2015.5.
-
(2015)
Nat Rev Mol Cell Biol
-
-
McKinley, K.L.1
Cheeseman, I.M.2
-
13
-
-
84908218352
-
The centromere: chromatin foundation for the kinetochore machinery
-
Fukagawa T., Earnshaw W.C. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 2014, 30:496-508.
-
(2014)
Dev Cell
, vol.30
, pp. 496-508
-
-
Fukagawa, T.1
Earnshaw, W.C.2
-
14
-
-
84879239743
-
Functions of the centromere and kinetochore in chromosome segregation
-
Westhorpe F.G., Straight A.F. Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 2013, 25:334-340.
-
(2013)
Curr Opin Cell Biol
, vol.25
, pp. 334-340
-
-
Westhorpe, F.G.1
Straight, A.F.2
-
15
-
-
70149095590
-
Major evolutionary transitions in centromere complexity
-
Malik H.S., Henikoff S. Major evolutionary transitions in centromere complexity. Cell 2009, 138:1067-1082.
-
(2009)
Cell
, vol.138
, pp. 1067-1082
-
-
Malik, H.S.1
Henikoff, S.2
-
16
-
-
0345293849
-
A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA
-
du Sart D., Cancilla M.R., Earle E., Mao J.I., Saffery R., Tainton K.M., Kalitsis P., Martyn J., Barry A.E., Choo K.H. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 1997, 16:144-153.
-
(1997)
Nat Genet
, vol.16
, pp. 144-153
-
-
du Sart, D.1
Cancilla, M.R.2
Earle, E.3
Mao, J.I.4
Saffery, R.5
Tainton, K.M.6
Kalitsis, P.7
Martyn, J.8
Barry, A.E.9
Choo, K.H.10
-
17
-
-
84875606455
-
Chromosome engineering allows the efficient isolation of vertebrate neocentromeres
-
Shang W.H., Hori T., Martins N.M., Toyoda A., Misu S., Monma N., Hiratani I., Maeshima K., Ikeo K., Fujiyama A., et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 2013, 24:635-648.
-
(2013)
Dev Cell
, vol.24
, pp. 635-648
-
-
Shang, W.H.1
Hori, T.2
Martins, N.M.3
Toyoda, A.4
Misu, S.5
Monma, N.6
Hiratani, I.7
Maeshima, K.8
Ikeo, K.9
Fujiyama, A.10
-
18
-
-
84896398000
-
Discovery of unconventional kinetochores in kinetoplastids
-
Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014, 156:1247-1258.
-
(2014)
Cell
, vol.156
, pp. 1247-1258
-
-
Akiyoshi, B.1
Gull, K.2
-
19
-
-
0023275058
-
A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
-
Palmer D.K., O'Day K., Wener M.H., Andrews B.S., Margolis R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 1987, 104:805-815.
-
(1987)
J Cell Biol
, vol.104
, pp. 805-815
-
-
Palmer, D.K.1
O'Day, K.2
Wener, M.H.3
Andrews, B.S.4
Margolis, R.L.5
-
20
-
-
0021989578
-
Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
-
Earnshaw W.C., Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 1985, 91:313-321.
-
(1985)
Chromosoma
, vol.91
, pp. 313-321
-
-
Earnshaw, W.C.1
Rothfield, N.2
-
21
-
-
80051685994
-
Crystal structure of the human centromeric nucleosome containing CENP-A
-
Tachiwana H., Kagawa W., Shiga T., Osakabe A., Miya Y., Saito K., Hayashi-Takanaka Y., Oda T., Sato M., Park S.Y., et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011, 476:232-235.
-
(2011)
Nature
, vol.476
, pp. 232-235
-
-
Tachiwana, H.1
Kagawa, W.2
Shiga, T.3
Osakabe, A.4
Miya, Y.5
Saito, K.6
Hayashi-Takanaka, Y.7
Oda, T.8
Sato, M.9
Park, S.Y.10
-
22
-
-
79951709224
-
Epigenetic centromere propagation and the nature of CENP-a nucleosomes
-
Black B.E., Cleveland D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144:471-479.
-
(2011)
Cell
, vol.144
, pp. 471-479
-
-
Black, B.E.1
Cleveland, D.W.2
-
23
-
-
84929192908
-
Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere
-
Falk S.J., Guo L.Y., Sekulic N., Smoak E.M., Mani T., Logsdon G.A., Gupta K., Jansen L.E., Van Duyne G.D., Vinogradov S.A., et al. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 2015, 348:699-703.
-
(2015)
Science
, vol.348
, pp. 699-703
-
-
Falk, S.J.1
Guo, L.Y.2
Sekulic, N.3
Smoak, E.M.4
Mani, T.5
Logsdon, G.A.6
Gupta, K.7
Jansen, L.E.8
Van Duyne, G.D.9
Vinogradov, S.A.10
-
24
-
-
84875445835
-
Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes
-
Bodor D.L., Valente L.P., Mata J.F., Black B.E., Jansen L.E. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol Biol Cell 2013, 24:923-932.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 923-932
-
-
Bodor, D.L.1
Valente, L.P.2
Mata, J.F.3
Black, B.E.4
Jansen, L.E.5
-
25
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen L.E., Black B.E., Foltz D.R., Cleveland D.W. Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 2007, 176:795-805.
-
(2007)
J Cell Biol
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
Black, B.E.2
Foltz, D.R.3
Cleveland, D.W.4
-
26
-
-
79955413557
-
Centromeres: unique chromatin structures that drive chromosome segregation
-
Verdaasdonk J.S., Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 2011, 12:320-332.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 320-332
-
-
Verdaasdonk, J.S.1
Bloom, K.2
-
27
-
-
84904431218
-
The quantitative architecture of centromeric chromatin
-
Bodor D.L., Mata J.F., Sergeev M., David A.F., Salimian K.J., Panchenko T., Cleveland D.W., Black B.E., Shah J.V., Jansen L.E. The quantitative architecture of centromeric chromatin. Elife 2014, 3:e02137.
-
(2014)
Elife
, vol.3
, pp. e02137
-
-
Bodor, D.L.1
Mata, J.F.2
Sergeev, M.3
David, A.F.4
Salimian, K.J.5
Panchenko, T.6
Cleveland, D.W.7
Black, B.E.8
Shah, J.V.9
Jansen, L.E.10
-
28
-
-
77953801741
-
A super-resolution map of the vertebrate kinetochore
-
Ribeiro S.A., Vagnarelli P., Dong Y., Hori T., McEwen B.F., Fukagawa T., Flors C., Earnshaw W.C. A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A 2010, 107:10484-10489.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 10484-10489
-
-
Ribeiro, S.A.1
Vagnarelli, P.2
Dong, Y.3
Hori, T.4
McEwen, B.F.5
Fukagawa, T.6
Flors, C.7
Earnshaw, W.C.8
-
29
-
-
0036200147
-
Conserved organization of centromeric chromatin in flies and humans
-
Blower M.D., Sullivan B.A., Karpen G.H. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2002, 2:319-330.
-
(2002)
Dev Cell
, vol.2
, pp. 319-330
-
-
Blower, M.D.1
Sullivan, B.A.2
Karpen, G.H.3
-
30
-
-
84904052265
-
The pseudo GTPase CENP-M drives human kinetochore assembly
-
Basilico F., Maffini S., Weir J.R., Prumbaum D., Rojas A.M., Zimniak T., De Antoni A., Jeganathan S., Voss B., van Gerwen S., et al. The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 2014, 3:e02978.
-
(2014)
Elife
, vol.3
, pp. e02978
-
-
Basilico, F.1
Maffini, S.2
Weir, J.R.3
Prumbaum, D.4
Rojas, A.M.5
Zimniak, T.6
De Antoni, A.7
Jeganathan, S.8
Voss, B.9
van Gerwen, S.10
-
31
-
-
84885852996
-
An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation
-
Hinshaw S.M., Harrison S.C. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep 2013, 5:29-36.
-
(2013)
Cell Rep
, vol.5
, pp. 29-36
-
-
Hinshaw, S.M.1
Harrison, S.C.2
-
32
-
-
84873570232
-
CENP-T provides a structural platform for outer kinetochore assembly
-
Nishino T., Rago F., Hori T., Tomii K., Cheeseman I.M., Fukagawa T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 2013, 32:424-436.
-
(2013)
EMBO J
, vol.32
, pp. 424-436
-
-
Nishino, T.1
Rago, F.2
Hori, T.3
Tomii, K.4
Cheeseman, I.M.5
Fukagawa, T.6
-
33
-
-
84857791090
-
RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure
-
Schmitzberger F., Harrison S.C. RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep 2012, 13:216-222.
-
(2012)
EMBO Rep
, vol.13
, pp. 216-222
-
-
Schmitzberger, F.1
Harrison, S.C.2
-
34
-
-
55349136473
-
Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein
-
Cohen R.L., Espelin C.W., De Wulf P., Sorger P.K., Harrison S.C., Simons K.T. Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol Biol Cell 2008, 19:4480-4491.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 4480-4491
-
-
Cohen, R.L.1
Espelin, C.W.2
De Wulf, P.3
Sorger, P.K.4
Harrison, S.C.5
Simons, K.T.6
-
35
-
-
0026650005
-
CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
-
Saitoh H., Tomkiel J., Cooke C.A., Ratrie H., Maurer M., Rothfield N.F., Earnshaw W.C. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 1992, 70:115-125.
-
(1992)
Cell
, vol.70
, pp. 115-125
-
-
Saitoh, H.1
Tomkiel, J.2
Cooke, C.A.3
Ratrie, H.4
Maurer, M.5
Rothfield, N.F.6
Earnshaw, W.C.7
-
36
-
-
84945921601
-
CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores
-
Klare K., Weir J.R., Basilico F., Zimniak T., Massimiliano L., Ludwigs N., Herzog F., Musacchio A. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 2015, 210:11-22.
-
(2015)
J Cell Biol
, vol.210
, pp. 11-22
-
-
Klare, K.1
Weir, J.R.2
Basilico, F.3
Zimniak, T.4
Massimiliano, L.5
Ludwigs, N.6
Herzog, F.7
Musacchio, A.8
-
37
-
-
79952364478
-
Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore
-
Screpanti E., De Antoni A., Alushin G.M., Petrovic A., Melis T., Nogales E., Musacchio A. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 2011, 21:391-398.
-
(2011)
Curr Biol
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
De Antoni, A.2
Alushin, G.M.3
Petrovic, A.4
Melis, T.5
Nogales, E.6
Musacchio, A.7
-
38
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka M.R., Venkei Z., Bolanos-Garcia V.M., Debski J., Dadlez M., Glover D.M. CENP-C is a structural platform for kinetochore assembly. Curr Biol 2011, 21:399-405.
-
(2011)
Curr Biol
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
Glover, D.M.6
-
39
-
-
70350234658
-
Dissection of CENP-C-directed centromere and kinetochore assembly
-
Milks K.J., Moree B., Straight A.F. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol Biol Cell 2009, 20:4246-4255.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 4246-4255
-
-
Milks, K.J.1
Moree, B.2
Straight, A.F.3
-
40
-
-
34250346905
-
CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
-
Kwon M.S., Hori T., Okada M., Fukagawa T. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 2007, 18:2155-2168.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 2155-2168
-
-
Kwon, M.S.1
Hori, T.2
Okada, M.3
Fukagawa, T.4
-
41
-
-
84962318515
-
Network of protein interactions within the Drosophila inner kinetochore
-
Richter M.M., Poznanski J., Zdziarska A., Czarnocki-Cieciura M., Lipinszki Z., Dadlez M., Glover D.M., Przewloka M.R. Network of protein interactions within the Drosophila inner kinetochore. Open Biol 2016, 6.
-
(2016)
Open Biol
, vol.6
-
-
Richter, M.M.1
Poznanski, J.2
Zdziarska, A.3
Czarnocki-Cieciura, M.4
Lipinszki, Z.5
Dadlez, M.6
Glover, D.M.7
Przewloka, M.R.8
-
42
-
-
84962250488
-
Insights from the reconstitution of the divergent outer kinetochore of Drosophila melanogaster
-
Liu Y., Petrovic A., Rombaut P., Mosalaganti S., Keller J., Raunser S., Herzog F., Musacchio A. Insights from the reconstitution of the divergent outer kinetochore of Drosophila melanogaster. Open Biol 2016, 6.
-
(2016)
Open Biol
, vol.6
-
-
Liu, Y.1
Petrovic, A.2
Rombaut, P.3
Mosalaganti, S.4
Keller, J.5
Raunser, S.6
Herzog, F.7
Musacchio, A.8
-
43
-
-
84945907177
-
Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression
-
Nagpal H., Hori T., Furukawa A., Sugase K., Osakabe A., Kurumizaka H., Fukagawa T. Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol Biol Cell 2015, 10.1091/mbc.E15-07-0531.
-
(2015)
Mol Biol Cell
-
-
Nagpal, H.1
Hori, T.2
Furukawa, A.3
Sugase, K.4
Osakabe, A.5
Kurumizaka, H.6
Fukagawa, T.7
-
44
-
-
84953638894
-
The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface
-
McKinley K.L., Sekulic N., Guo L.Y., Tsinman T., Black B.E., Cheeseman I.M. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 2015, 60:886-898.
-
(2015)
Mol Cell
, vol.60
, pp. 886-898
-
-
McKinley, K.L.1
Sekulic, N.2
Guo, L.Y.3
Tsinman, T.4
Black, B.E.5
Cheeseman, I.M.6
-
45
-
-
84878363880
-
A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C
-
Kato H., Jiang J., Zhou B.R., Rozendaal M., Feng H., Ghirlando R., Xiao T.S., Straight A.F., Bai Y. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 2013, 340:1110-1113.
-
(2013)
Science
, vol.340
, pp. 1110-1113
-
-
Kato, H.1
Jiang, J.2
Zhou, B.R.3
Rozendaal, M.4
Feng, H.5
Ghirlando, R.6
Xiao, T.S.7
Straight, A.F.8
Bai, Y.9
-
46
-
-
84908151543
-
The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch
-
Suzuki A., Badger B.L., Wan X., DeLuca J.G., Salmon E.D. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch. Dev Cell 2014, 30:717-730.
-
(2014)
Dev Cell
, vol.30
, pp. 717-730
-
-
Suzuki, A.1
Badger, B.L.2
Wan, X.3
DeLuca, J.G.4
Salmon, E.D.5
-
47
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
Meraldi P., McAinsh A.D., Rheinbay E., Sorger P.K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 2006, 7:R23.
-
(2006)
Genome Biol
, vol.7
, pp. R23
-
-
Meraldi, P.1
McAinsh, A.D.2
Rheinbay, E.3
Sorger, P.K.4
-
48
-
-
84928674884
-
Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects
-
Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 2014, 3.
-
(2014)
Elife
, vol.3
-
-
Drinnenberg, I.A.1
deYoung, D.2
Henikoff, S.3
Malik, H.S.4
-
49
-
-
84859841455
-
HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly
-
Bassett E.A., DeNizio J., Barnhart-Dailey M.C., Panchenko T., Sekulic N., Rogers D.J., Foltz D.R., Black B.E. HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly. Dev Cell 2012, 22:749-762.
-
(2012)
Dev Cell
, vol.22
, pp. 749-762
-
-
Bassett, E.A.1
DeNizio, J.2
Barnhart-Dailey, M.C.3
Panchenko, T.4
Sekulic, N.5
Rogers, D.J.6
Foltz, D.R.7
Black, B.E.8
-
50
-
-
84883667139
-
A two-step mechanism for epigenetic specification of centromere identity and function
-
Fachinetti D., Folco H.D., Nechemia-Arbely Y., Valente L.P., Nguyen K., Wong A.J., Zhu Q., Holland A.J., Desai A., Jansen L.E., et al. A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 2013, 15:1056-1066.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1056-1066
-
-
Fachinetti, D.1
Folco, H.D.2
Nechemia-Arbely, Y.3
Valente, L.P.4
Nguyen, K.5
Wong, A.J.6
Zhu, Q.7
Holland, A.J.8
Desai, A.9
Jansen, L.E.10
-
51
-
-
84928797239
-
DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function
-
Fachinetti D., Han J.S., McMahon M.A., Ly P., Abdullah A., Wong A.J., Cleveland D.W. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 2015, 33:314-327.
-
(2015)
Dev Cell
, vol.33
, pp. 314-327
-
-
Fachinetti, D.1
Han, J.S.2
McMahon, M.A.3
Ly, P.4
Abdullah, A.5
Wong, A.J.6
Cleveland, D.W.7
-
52
-
-
3242884785
-
Structural determinants for generating centromeric chromatin
-
Black B.E., Foltz D.R., Chakravarthy S., Luger K., Woods V.L., Cleveland D.W. Structural determinants for generating centromeric chromatin. Nature 2004, 430:578-582.
-
(2004)
Nature
, vol.430
, pp. 578-582
-
-
Black, B.E.1
Foltz, D.R.2
Chakravarthy, S.3
Luger, K.4
Woods, V.L.5
Cleveland, D.W.6
-
53
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori T., Shang W.H., Takeuchi K., Fukagawa T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 2013, 200:45-60.
-
(2013)
J Cell Biol
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
54
-
-
67650065426
-
Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
-
Carroll C.W., Silva M.C., Godek K.M., Jansen L.E., Straight A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 2009, 11:896-902.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 896-902
-
-
Carroll, C.W.1
Silva, M.C.2
Godek, K.M.3
Jansen, L.E.4
Straight, A.F.5
-
55
-
-
84922851097
-
The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast
-
Folco H.D., Campbell C.S., May K.M., Espinoza C.A., Oegema K., Hardwick K.G., Grewal S.I., Desai A. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr Biol 2015, 25:348-356.
-
(2015)
Curr Biol
, vol.25
, pp. 348-356
-
-
Folco, H.D.1
Campbell, C.S.2
May, K.M.3
Espinoza, C.A.4
Oegema, K.5
Hardwick, K.G.6
Grewal, S.I.7
Desai, A.8
-
56
-
-
84924911769
-
Both tails and the centromere targeting domain of CENP-A are required for centromere establishment
-
Logsdon G.A., Barrey E.J., Bassett E.A., DeNizio J.E., Guo L.Y., Panchenko T., Dawicki-McKenna J.M., Heun P., Black B.E. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J Cell Biol 2015, 208:521-531.
-
(2015)
J Cell Biol
, vol.208
, pp. 521-531
-
-
Logsdon, G.A.1
Barrey, E.J.2
Bassett, E.A.3
DeNizio, J.E.4
Guo, L.Y.5
Panchenko, T.6
Dawicki-McKenna, J.M.7
Heun, P.8
Black, B.E.9
-
57
-
-
84880377711
-
Posttranslational modification of CENP-A influences the conformation of centromeric chromatin
-
Bailey A.O., Panchenko T., Sathyan K.M., Petkowski J.J., Pai P.J., Bai D.L., Russell D.H., Macara I.G., Shabanowitz J., Hunt D.F., et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci U S A 2013, 110:11827-11832.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 11827-11832
-
-
Bailey, A.O.1
Panchenko, T.2
Sathyan, K.M.3
Petkowski, J.J.4
Pai, P.J.5
Bai, D.L.6
Russell, D.H.7
Macara, I.G.8
Shabanowitz, J.9
Hunt, D.F.10
-
58
-
-
84861889670
-
Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation
-
Samel A., Cuomo A., Bonaldi T., Ehrenhofer-Murray A.E. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci U S A 2012, 109:9029-9034.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 9029-9034
-
-
Samel, A.1
Cuomo, A.2
Bonaldi, T.3
Ehrenhofer-Murray, A.E.4
-
59
-
-
84962567856
-
Identification of the posttranslational modifications present in centromeric chromatin
-
Bailey A.O., Panchenko T., Shabanowitz J., Lehman S.M., Bai D.L., Hunt D.F., Black B.E., Foltz D.R. Identification of the posttranslational modifications present in centromeric chromatin. Mol Cell Proteomics 2015, 10.1074/mcp.M115.053710.
-
(2015)
Mol Cell Proteomics
-
-
Bailey, A.O.1
Panchenko, T.2
Shabanowitz, J.3
Lehman, S.M.4
Bai, D.L.5
Hunt, D.F.6
Black, B.E.7
Foltz, D.R.8
-
60
-
-
84904707415
-
Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly
-
Hori T., Shang W.H., Toyoda A., Misu S., Monma N., Ikeo K., Molina O., Vargiu G., Fujiyama A., Kimura H., et al. Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 2014, 29:740-749.
-
(2014)
Dev Cell
, vol.29
, pp. 740-749
-
-
Hori, T.1
Shang, W.H.2
Toyoda, A.3
Misu, S.4
Monma, N.5
Ikeo, K.6
Molina, O.7
Vargiu, G.8
Fujiyama, A.9
Kimura, H.10
-
61
-
-
17944382377
-
CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells
-
Fukagawa T., Mikami Y., Nishihashi A., Regnier V., Haraguchi T., Hiraoka Y., Sugata N., Todokoro K., Brown W., Ikemura T. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 2001, 20:4603-4617.
-
(2001)
EMBO J
, vol.20
, pp. 4603-4617
-
-
Fukagawa, T.1
Mikami, Y.2
Nishihashi, A.3
Regnier, V.4
Haraguchi, T.5
Hiraoka, Y.6
Sugata, N.7
Todokoro, K.8
Brown, W.9
Ikemura, T.10
-
62
-
-
33646740560
-
Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells
-
Izuta H., Ikeno M., Suzuki N., Tomonaga T., Nozaki N., Obuse C., Kisu Y., Goshima N., Nomura F., Nomura N., et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 2006, 11:673-684.
-
(2006)
Genes Cells
, vol.11
, pp. 673-684
-
-
Izuta, H.1
Ikeno, M.2
Suzuki, N.3
Tomonaga, T.4
Nozaki, N.5
Obuse, C.6
Kisu, Y.7
Goshima, N.8
Nomura, F.9
Nomura, N.10
-
63
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
Amano M., Suzuki A., Hori T., Backer C., Okawa K., Cheeseman I.M., Fukagawa T. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 2009, 186:173-182.
-
(2009)
J Cell Biol
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
Cheeseman, I.M.6
Fukagawa, T.7
-
64
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll C.W., Milks K.J., Straight A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 2010, 189:1143-1155.
-
(2010)
J Cell Biol
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
65
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne K.E., Takeuchi K., Suzuki A., Hori T., Fukagawa T., Cheeseman I.M. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011, 145:410-422.
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
Takeuchi, K.2
Suzuki, A.3
Hori, T.4
Fukagawa, T.5
Cheeseman, I.M.6
-
66
-
-
69949161719
-
CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis
-
Tanaka K., Chang H.L., Kagami A., Watanabe Y. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 2009, 17:334-343.
-
(2009)
Dev Cell
, vol.17
, pp. 334-343
-
-
Tanaka, K.1
Chang, H.L.2
Kagami, A.3
Watanabe, Y.4
-
68
-
-
84924761760
-
Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T
-
Rago F., Gascoigne K.E., Cheeseman I.M. Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Curr Biol 2015, 25:671-677.
-
(2015)
Curr Biol
, vol.25
, pp. 671-677
-
-
Rago, F.1
Gascoigne, K.E.2
Cheeseman, I.M.3
-
69
-
-
84927696445
-
HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment
-
Tachiwana H., Muller S., Blumer J., Klare K., Musacchio A., Almouzni G. HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Rep 2015, 11:22-32.
-
(2015)
Cell Rep
, vol.11
, pp. 22-32
-
-
Tachiwana, H.1
Muller, S.2
Blumer, J.3
Klare, K.4
Musacchio, A.5
Almouzni, G.6
-
70
-
-
84955627444
-
Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore
-
Samejima I., Spanos C., Alves Fde L., Hori T., Perpelescu M., Zou J., Rappsilber J., Fukagawa T., Earnshaw W.C. Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. J Cell Biol 2015, 211:1141-1156.
-
(2015)
J Cell Biol
, vol.211
, pp. 1141-1156
-
-
Samejima, I.1
Spanos, C.2
Alves Fde, L.3
Hori, T.4
Perpelescu, M.5
Zou, J.6
Rappsilber, J.7
Fukagawa, T.8
Earnshaw, W.C.9
-
71
-
-
84941047044
-
A quantitative description of Ndc80 complex linkage to human kinetochores
-
Suzuki A., Badger B.L., Salmon E.D. A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 2015, 6:8161.
-
(2015)
Nat Commun
, vol.6
, pp. 8161
-
-
Suzuki, A.1
Badger, B.L.2
Salmon, E.D.3
-
72
-
-
81555212272
-
Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution
-
Armache K.J., Garlick J.D., Canzio D., Narlikar G.J., Kingston R.E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. Science 2011, 334:977-982.
-
(2011)
Science
, vol.334
, pp. 977-982
-
-
Armache, K.J.1
Garlick, J.D.2
Canzio, D.3
Narlikar, G.J.4
Kingston, R.E.5
-
73
-
-
32444439636
-
The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA
-
Barbera A.J., Chodaparambil J.V., Kelley-Clarke B., Joukov V., Walter J.C., Luger K., Kaye K.M. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 2006, 311:856-861.
-
(2006)
Science
, vol.311
, pp. 856-861
-
-
Barbera, A.J.1
Chodaparambil, J.V.2
Kelley-Clarke, B.3
Joukov, V.4
Walter, J.C.5
Luger, K.6
Kaye, K.M.7
-
74
-
-
77957367439
-
Structure of RCC1 chromatin factor bound to the nucleosome core particle
-
Makde R.D., England J.R., Yennawar H.P., Tan S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 2010, 467:562-566.
-
(2010)
Nature
, vol.467
, pp. 562-566
-
-
Makde, R.D.1
England, J.R.2
Yennawar, H.P.3
Tan, S.4
-
75
-
-
34250312410
-
The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding
-
Ha J.Y., Kim H.K., Kim do J., Kim K.H., Oh S.J., Lee H.H., Yoon H.J., Song H.K., Suh S.W. The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding. Nucleic Acids Res 2007, 35:2671-2681.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 2671-2681
-
-
Ha, J.Y.1
Kim, H.K.2
Kim do, J.3
Kim, K.H.4
Oh, S.J.5
Lee, H.H.6
Yoon, H.J.7
Song, H.K.8
Suh, S.W.9
-
76
-
-
84931275592
-
Stable complex formation of CENP-B with the CENP-A nucleosome
-
Fujita R., Otake K., Arimura Y., Horikoshi N., Miya Y., Shiga T., Osakabe A., Tachiwana H., Ohzeki J., Larionov V., et al. Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res 2015, 43:4909-4922.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 4909-4922
-
-
Fujita, R.1
Otake, K.2
Arimura, Y.3
Horikoshi, N.4
Miya, Y.5
Shiga, T.6
Osakabe, A.7
Tachiwana, H.8
Ohzeki, J.9
Larionov, V.10
-
77
-
-
84929498966
-
A unique chromatin complex occupies young alpha-satellite arrays of human centromeres
-
Henikoff J.G., Thakur J., Kasinathan S., Henikoff S. A unique chromatin complex occupies young alpha-satellite arrays of human centromeres. Sci Adv 2015, 1.
-
(2015)
Sci Adv
, vol.1
-
-
Henikoff, J.G.1
Thakur, J.2
Kasinathan, S.3
Henikoff, S.4
-
78
-
-
1242294403
-
CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization
-
Suzuki N., Nakano M., Nozaki N., Egashira S., Okazaki T., Masumoto H. CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization. J Biol Chem 2004, 279:5934-5946.
-
(2004)
J Biol Chem
, vol.279
, pp. 5934-5946
-
-
Suzuki, N.1
Nakano, M.2
Nozaki, N.3
Egashira, S.4
Okazaki, T.5
Masumoto, H.6
-
79
-
-
0026376695
-
Role of the centromere/kinetochore in cell cycle control
-
Earnshaw W.C., Bernat R.L., Cooke C.A., Rothfield N.F. Role of the centromere/kinetochore in cell cycle control. Cold Spring Harb Symp Quant Biol 1991, 56:675-685.
-
(1991)
Cold Spring Harb Symp Quant Biol
, vol.56
, pp. 675-685
-
-
Earnshaw, W.C.1
Bernat, R.L.2
Cooke, C.A.3
Rothfield, N.F.4
-
80
-
-
0029783431
-
Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres
-
Goldberg I.G., Sawhney H., Pluta A.F., Warburton P.E., Earnshaw W.C. Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol 1996, 16:5156-5168.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 5156-5168
-
-
Goldberg, I.G.1
Sawhney, H.2
Pluta, A.F.3
Warburton, P.E.4
Earnshaw, W.C.5
-
81
-
-
80053934686
-
CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
-
Moree B., Meyer C.B., Fuller C.J., Straight A.F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 2011, 194:855-871.
-
(2011)
J Cell Biol
, vol.194
, pp. 855-871
-
-
Moree, B.1
Meyer, C.B.2
Fuller, C.J.3
Straight, A.F.4
-
82
-
-
84860201576
-
CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin
-
Dambacher S., Deng W., Hahn M., Sadic D., Frohlich J., Nuber A., Hoischen C., Diekmann S., Leonhardt H., Schotta G. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 2012, 3:101-110.
-
(2012)
Nucleus
, vol.3
, pp. 101-110
-
-
Dambacher, S.1
Deng, W.2
Hahn, M.3
Sadic, D.4
Frohlich, J.5
Nuber, A.6
Hoischen, C.7
Diekmann, S.8
Leonhardt, H.9
Schotta, G.10
-
83
-
-
84957648029
-
CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly
-
Shono N., Ohzeki J., Otake K., Martins N.M., Nagase T., Kimura H., Larionov V., Earnshaw W.C., Masumoto H. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. J Cell Sci 2015, 128:4572-4587.
-
(2015)
J Cell Sci
, vol.128
, pp. 4572-4587
-
-
Shono, N.1
Ohzeki, J.2
Otake, K.3
Martins, N.M.4
Nagase, T.5
Kimura, H.6
Larionov, V.7
Earnshaw, W.C.8
Masumoto, H.9
-
84
-
-
70350234665
-
CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1
-
Okada M., Okawa K., Isobe T., Fukagawa T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 2009, 20:3986-3995.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 3986-3995
-
-
Okada, M.1
Okawa, K.2
Isobe, T.3
Fukagawa, T.4
-
85
-
-
84893456706
-
CAL1 is the Drosophila CENP-A assembly factor
-
Chen C.C., Dechassa M.L., Bettini E., Ledoux M.B., Belisario C., Heun P., Luger K., Mellone B.G. CAL1 is the Drosophila CENP-A assembly factor. J Cell Biol 2014, 204:313-329.
-
(2014)
J Cell Biol
, vol.204
, pp. 313-329
-
-
Chen, C.C.1
Dechassa, M.L.2
Bettini, E.3
Ledoux, M.B.4
Belisario, C.5
Heun, P.6
Luger, K.7
Mellone, B.G.8
-
86
-
-
33846638827
-
Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase
-
Schuh M., Lehner C.F., Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 2007, 17:237-243.
-
(2007)
Curr Biol
, vol.17
, pp. 237-243
-
-
Schuh, M.1
Lehner, C.F.2
Heidmann, S.3
-
87
-
-
84855956123
-
H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase
-
Dunleavy E.M., Almouzni G., Karpen G.H. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2011, 2:146-157.
-
(2011)
Nucleus
, vol.2
, pp. 146-157
-
-
Dunleavy, E.M.1
Almouzni, G.2
Karpen, G.H.3
-
88
-
-
84896720721
-
A network of players in H3 histone variant deposition and maintenance at centromeres
-
Muller S., Almouzni G. A network of players in H3 histone variant deposition and maintenance at centromeres. Biochim Biophys Acta 2014, 1839:241-250.
-
(2014)
Biochim Biophys Acta
, vol.1839
, pp. 241-250
-
-
Muller, S.1
Almouzni, G.2
-
89
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008, 9:33-46.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
90
-
-
84857685447
-
Structural organization of the kinetochore-microtubule interface
-
DeLuca J.G., Musacchio A. Structural organization of the kinetochore-microtubule interface. Curr Opin Cell Biol 2012, 24:48-56.
-
(2012)
Curr Opin Cell Biol
, vol.24
, pp. 48-56
-
-
DeLuca, J.G.1
Musacchio, A.2
-
91
-
-
23844460843
-
Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore
-
Ciferri C., De Luca J., Monzani S., Ferrari K.J., Ristic D., Wyman C., Stark H., Kilmartin J., Salmon E.D., Musacchio A. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 2005, 280:29088-29095.
-
(2005)
J Biol Chem
, vol.280
, pp. 29088-29095
-
-
Ciferri, C.1
De Luca, J.2
Monzani, S.3
Ferrari, K.J.4
Ristic, D.5
Wyman, C.6
Stark, H.7
Kilmartin, J.8
Salmon, E.D.9
Musacchio, A.10
-
92
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
Wei R.R., Sorger P.K., Harrison S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 2005, 102:5363-5367.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
Sorger, P.K.2
Harrison, S.C.3
-
93
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., Pasqualato S., Screpanti E., Varetti G., Santaguida S., Dos Reis G., Maiolica A., Polka J., De Luca J.G., De Wulf P., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
Santaguida, S.5
Dos Reis, G.6
Maiolica, A.7
Polka, J.8
De Luca, J.G.9
De Wulf, P.10
-
94
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., Salmon E.D. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
95
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman I.M., Chappie J.S., Wilson-Kubalek E.M., Desai A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
96
-
-
84869088461
-
Multimodal microtubule binding by the Ndc80 kinetochore complex
-
Alushin G.M., Musinipally V., Matson D., Tooley J., Stukenberg P.T., Nogales E. Multimodal microtubule binding by the Ndc80 kinetochore complex. Nat Struct Mol Biol 2012, 19:1161-1167.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 1161-1167
-
-
Alushin, G.M.1
Musinipally, V.2
Matson, D.3
Tooley, J.4
Stukenberg, P.T.5
Nogales, E.6
-
97
-
-
33744798200
-
Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain
-
Wei R.R., Schnell J.R., Larsen N.A., Sorger P.K., Chou J.J., Harrison S.C. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 2006, 14:1003-1009.
-
(2006)
Structure
, vol.14
, pp. 1003-1009
-
-
Wei, R.R.1
Schnell, J.R.2
Larsen, N.A.3
Sorger, P.K.4
Chou, J.J.5
Harrison, S.C.6
-
98
-
-
77957968002
-
The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
-
Alushin G.M., Ramey V.H., Pasqualato S., Ball D.A., Grigorieff N., Musacchio A., Nogales E. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 2010, 467:805-810.
-
(2010)
Nature
, vol.467
, pp. 805-810
-
-
Alushin, G.M.1
Ramey, V.H.2
Pasqualato, S.3
Ball, D.A.4
Grigorieff, N.5
Musacchio, A.6
Nogales, E.7
-
99
-
-
33846100785
-
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
-
Wei R.R., Al-Bassam J., Harrison S.C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 2007, 14:54-59.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 54-59
-
-
Wei, R.R.1
Al-Bassam, J.2
Harrison, S.C.3
-
100
-
-
77951952612
-
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
-
Welburn J.P., Vleugel M., Liu D., Yates J.R., Lampson M.A., Fukagawa T., Cheeseman I.M. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 2010, 38:383-392.
-
(2010)
Mol Cell
, vol.38
, pp. 383-392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates, J.R.4
Lampson, M.A.5
Fukagawa, T.6
Cheeseman, I.M.7
-
101
-
-
79951833036
-
Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
-
DeLuca K.F., Lens S.M., DeLuca J.G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 2011, 124:622-634.
-
(2011)
J Cell Sci
, vol.124
, pp. 622-634
-
-
DeLuca, K.F.1
Lens, S.M.2
DeLuca, J.G.3
-
102
-
-
56349089656
-
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
-
Guimaraes G.J., Dong Y., McEwen B.F., Deluca J.G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 2008, 18:1778-1784.
-
(2008)
Curr Biol
, vol.18
, pp. 1778-1784
-
-
Guimaraes, G.J.1
Dong, Y.2
McEwen, B.F.3
Deluca, J.G.4
-
103
-
-
84929376650
-
Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity
-
Zaytsev A.V., Mick J.E., Maslennikov E., Nikashin B., DeLuca J.G., Grishchuk E.L. Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Mol Biol Cell 2015, 26:1829-1844.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 1829-1844
-
-
Zaytsev, A.V.1
Mick, J.E.2
Maslennikov, E.3
Nikashin, B.4
DeLuca, J.G.5
Grishchuk, E.L.6
-
104
-
-
84904618315
-
Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions
-
Zaytsev A.V., Sundin L.J., DeLuca K.F., Grishchuk E.L., DeLuca J.G. Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J Cell Biol 2014, 206:45-59.
-
(2014)
J Cell Biol
, vol.206
, pp. 45-59
-
-
Zaytsev, A.V.1
Sundin, L.J.2
DeLuca, K.F.3
Grishchuk, E.L.4
DeLuca, J.G.5
-
105
-
-
56349098273
-
Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
-
Miller S.A., Johnson M.L., Stukenberg P.T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 2008, 18:1785-1791.
-
(2008)
Curr Biol
, vol.18
, pp. 1785-1791
-
-
Miller, S.A.1
Johnson, M.L.2
Stukenberg, P.T.3
-
106
-
-
84876947414
-
Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms
-
Sarangapani K.K., Akiyoshi B., Duggan N.M., Biggins S., Asbury C.L. Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms. Proc Natl Acad Sci U S A 2013, 110:7282-7287.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 7282-7287
-
-
Sarangapani, K.K.1
Akiyoshi, B.2
Duggan, N.M.3
Biggins, S.4
Asbury, C.L.5
-
107
-
-
77956361304
-
Molecular architecture and assembly of the yeast kinetochore MIND complex
-
Maskell D.P., Hu X.W., Singleton M.R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J Cell Biol 2010, 190:823-834.
-
(2010)
J Cell Biol
, vol.190
, pp. 823-834
-
-
Maskell, D.P.1
Hu, X.W.2
Singleton, M.R.3
-
108
-
-
84894260637
-
Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization
-
Petrovic A., Mosalaganti S., Keller J., Mattiuzzo M., Overlack K., Krenn V., De Antoni A., Wohlgemuth S., Cecatiello V., Pasqualato S., et al. Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol Cell 2014, 53:591-605.
-
(2014)
Mol Cell
, vol.53
, pp. 591-605
-
-
Petrovic, A.1
Mosalaganti, S.2
Keller, J.3
Mattiuzzo, M.4
Overlack, K.5
Krenn, V.6
De Antoni, A.7
Wohlgemuth, S.8
Cecatiello, V.9
Pasqualato, S.10
-
109
-
-
84906490469
-
A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A
-
Hornung P., Troc P., Malvezzi F., Maier M., Demianova Z., Zimniak T., Litos G., Lampert F., Schleiffer A., Brunner M., et al. A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 2014, 206:509-524.
-
(2014)
J Cell Biol
, vol.206
, pp. 509-524
-
-
Hornung, P.1
Troc, P.2
Malvezzi, F.3
Maier, M.4
Demianova, Z.5
Zimniak, T.6
Litos, G.7
Lampert, F.8
Schleiffer, A.9
Brunner, M.10
-
110
-
-
78650856481
-
Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex
-
Hornung P., Maier M., Alushin G.M., Lander G.C., Nogales E., Westermann S. Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J Mol Biol 2011, 405:548-559.
-
(2011)
J Mol Biol
, vol.405
, pp. 548-559
-
-
Hornung, P.1
Maier, M.2
Alushin, G.M.3
Lander, G.C.4
Nogales, E.5
Westermann, S.6
-
111
-
-
77949755046
-
Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes
-
Kiyomitsu T., Iwasaki O., Obuse C., Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J Cell Biol 2010, 188:791-807.
-
(2010)
J Cell Biol
, vol.188
, pp. 791-807
-
-
Kiyomitsu, T.1
Iwasaki, O.2
Obuse, C.3
Yanagida, M.4
-
112
-
-
35649019314
-
Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
-
Kiyomitsu T., Obuse C., Yanagida M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 2007, 13:663-676.
-
(2007)
Dev Cell
, vol.13
, pp. 663-676
-
-
Kiyomitsu, T.1
Obuse, C.2
Yanagida, M.3
-
113
-
-
84873566629
-
A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
-
Malvezzi F., Litos G., Schleiffer A., Heuck A., Mechtler K., Clausen T., Westermann S. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 2013, 32:409-423.
-
(2013)
EMBO J
, vol.32
, pp. 409-423
-
-
Malvezzi, F.1
Litos, G.2
Schleiffer, A.3
Heuck, A.4
Mechtler, K.5
Clausen, T.6
Westermann, S.7
-
114
-
-
84860178087
-
Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting
-
Kim S., Sun H., Tomchick D.R., Yu H., Luo X. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc Natl Acad Sci U S A 2012, 109:6549-6554.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 6549-6554
-
-
Kim, S.1
Sun, H.2
Tomchick, D.R.3
Yu, H.4
Luo, X.5
-
115
-
-
84863098172
-
Molecular architecture of the yeast monopolin complex
-
Corbett K.D., Harrison S.C. Molecular architecture of the yeast monopolin complex. Cell Rep 2012, 1:583-589.
-
(2012)
Cell Rep
, vol.1
, pp. 583-589
-
-
Corbett, K.D.1
Harrison, S.C.2
-
116
-
-
77955636058
-
The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments
-
Corbett K.D., Yip C.K., Ee L.S., Walz T., Amon A., Harrison S.C. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 2010, 142:556-567.
-
(2010)
Cell
, vol.142
, pp. 556-567
-
-
Corbett, K.D.1
Yip, C.K.2
Ee, L.S.3
Walz, T.4
Amon, A.5
Harrison, S.C.6
-
117
-
-
84861637392
-
CENP-T proteins are conserved centromere receptors of the Ndc80 complex
-
Schleiffer A., Maier M., Litos G., Lampert F., Hornung P., Mechtler K., Westermann S. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 2012, 14:604-613.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 604-613
-
-
Schleiffer, A.1
Maier, M.2
Litos, G.3
Lampert, F.4
Hornung, P.5
Mechtler, K.6
Westermann, S.7
-
118
-
-
84921757340
-
Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores
-
Kim S., Yu H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 2015, 208:181-196.
-
(2015)
J Cell Biol
, vol.208
, pp. 181-196
-
-
Kim, S.1
Yu, H.2
-
119
-
-
84962299875
-
Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability
-
Wood L., Booth D.G., Vargiu G., Ohta S., deLima Alves F., Samejima K., Fukagawa T., Rappsilber J., Earnshaw W.C. Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biol 2016, 6.
-
(2016)
Open Biol
, vol.6
-
-
Wood, L.1
Booth, D.G.2
Vargiu, G.3
Ohta, S.4
deLima Alves, F.5
Samejima, K.6
Fukagawa, T.7
Rappsilber, J.8
Earnshaw, W.C.9
-
120
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori T., Amano M., Suzuki A., Backer C.B., Welburn J.P., Dong Y., McEwen B.F., Shang W.H., Suzuki E., Okawa K., et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008, 135:1039-1052.
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
Dong, Y.6
McEwen, B.F.7
Shang, W.H.8
Suzuki, E.9
Okawa, K.10
-
121
-
-
84856719568
-
CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold
-
Nishino T., Takeuchi K., Gascoigne K.E., Suzuki A., Hori T., Oyama T., Morikawa K., Cheeseman I.M., Fukagawa T. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 2012, 148:487-501.
-
(2012)
Cell
, vol.148
, pp. 487-501
-
-
Nishino, T.1
Takeuchi, K.2
Gascoigne, K.E.3
Suzuki, A.4
Hori, T.5
Oyama, T.6
Morikawa, K.7
Cheeseman, I.M.8
Fukagawa, T.9
-
122
-
-
84896730017
-
The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA
-
Takeuchi K., Nishino T., Mayanagi K., Horikoshi N., Osakabe A., Tachiwana H., Hori T., Kurumizaka H., Fukagawa T. The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 2014, 42:1644-1655.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1644-1655
-
-
Takeuchi, K.1
Nishino, T.2
Mayanagi, K.3
Horikoshi, N.4
Osakabe, A.5
Tachiwana, H.6
Hori, T.7
Kurumizaka, H.8
Fukagawa, T.9
-
123
-
-
84943618148
-
Inner kinetochore protein interactions with regional centromeres of fission yeast
-
Thakur J., Talbert P.B., Henikoff S. Inner kinetochore protein interactions with regional centromeres of fission yeast. Genetics 2015, 201:543-561.
-
(2015)
Genetics
, vol.201
, pp. 543-561
-
-
Thakur, J.1
Talbert, P.B.2
Henikoff, S.3
-
124
-
-
84945583575
-
The molecular biology of spindle assembly checkpoint signaling dynamics
-
Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 2015, 25:R1002-R1018.
-
(2015)
Curr Biol
, vol.25
, pp. R1002-R1018
-
-
Musacchio, A.1
-
125
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., O'Quinn R.P., Pierce H.L., Joglekar A.P., Gall W.E., DeLuca J.G., Carroll C.W., Liu S.T., Yen T.J., McEwen B.F., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
DeLuca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
McEwen, B.F.10
-
126
-
-
65049088564
-
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
-
Joglekar A.P., Bloom K., Salmon E.D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 2009, 19:694-699.
-
(2009)
Curr Biol
, vol.19
, pp. 694-699
-
-
Joglekar, A.P.1
Bloom, K.2
Salmon, E.D.3
-
127
-
-
62849128355
-
Kinetochore stretching inactivates the spindle assembly checkpoint
-
Uchida K.S., Takagaki K., Kumada K., Hirayama Y., Noda T., Hirota T. Kinetochore stretching inactivates the spindle assembly checkpoint. J Cell Biol 2009, 184:383-390.
-
(2009)
J Cell Biol
, vol.184
, pp. 383-390
-
-
Uchida, K.S.1
Takagaki, K.2
Kumada, K.3
Hirayama, Y.4
Noda, T.5
Hirota, T.6
-
128
-
-
62849085547
-
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
-
Maresca T.J., Salmon E.D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 2009, 184:373-381.
-
(2009)
J Cell Biol
, vol.184
, pp. 373-381
-
-
Maresca, T.J.1
Salmon, E.D.2
-
129
-
-
79955497376
-
Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
-
Suzuki A., Hori T., Nishino T., Usukura J., Miyagi A., Morikawa K., Fukagawa T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J Cell Biol 2011, 193:125-140.
-
(2011)
J Cell Biol
, vol.193
, pp. 125-140
-
-
Suzuki, A.1
Hori, T.2
Nishino, T.3
Usukura, J.4
Miyagi, A.5
Morikawa, K.6
Fukagawa, T.7
-
130
-
-
84864020836
-
Deformations within moving kinetochores reveal different sites of active and passive force generation
-
Dumont S., Salmon E.D., Mitchison T.J. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 2012, 337:355-358.
-
(2012)
Science
, vol.337
, pp. 355-358
-
-
Dumont, S.1
Salmon, E.D.2
Mitchison, T.J.3
-
131
-
-
77950521043
-
Molecular control of kinetochore-microtubule dynamics and chromosome oscillations
-
Amaro A.C., Samora C.P., Holtackers R., Wang E., Kingston I.J., Alonso M., Lampson M., McAinsh A.D., Meraldi P. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Biol 2010, 12:319-329.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 319-329
-
-
Amaro, A.C.1
Samora, C.P.2
Holtackers, R.3
Wang, E.4
Kingston, I.J.5
Alonso, M.6
Lampson, M.7
McAinsh, A.D.8
Meraldi, P.9
-
132
-
-
84921688760
-
Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways
-
Bancroft J., Auckland P., Samora C.P., McAinsh A.D. Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J Cell Sci 2015, 128:171-184.
-
(2015)
J Cell Sci
, vol.128
, pp. 171-184
-
-
Bancroft, J.1
Auckland, P.2
Samora, C.P.3
McAinsh, A.D.4
-
133
-
-
78651399502
-
CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment
-
Hua S., Wang Z., Jiang K., Huang Y., Ward T., Zhao L., Dou Z., Yao X. CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment. J Biol Chem 2011, 286:1627-1638.
-
(2011)
J Biol Chem
, vol.286
, pp. 1627-1638
-
-
Hua, S.1
Wang, Z.2
Jiang, K.3
Huang, Y.4
Ward, T.5
Zhao, L.6
Dou, Z.7
Yao, X.8
-
134
-
-
35548985820
-
Centromere identity is specified by a single centromeric nucleosome in budding yeast
-
Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 2007, 104:14706-14711.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 14706-14711
-
-
Furuyama, S.1
Biggins, S.2
-
135
-
-
79551716041
-
The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end
-
Maure J.F., Komoto S., Oku Y., Mino A., Pasqualato S., Natsume K., Clayton L., Musacchio A., Tanaka T.U. The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr Biol 2011, 21:207-213.
-
(2011)
Curr Biol
, vol.21
, pp. 207-213
-
-
Maure, J.F.1
Komoto, S.2
Oku, Y.3
Mino, A.4
Pasqualato, S.5
Natsume, K.6
Clayton, L.7
Musacchio, A.8
Tanaka, T.U.9
|