메뉴 건너뛰기




Volumn 37, Issue , 2016, Pages 152-163

Progress in the structural and functional characterization of kinetochores

Author keywords

[No Author keywords available]

Indexed keywords

AMINO TERMINAL SEQUENCE; BINDING AFFINITY; BINDING SITE; CARBOXY TERMINAL SEQUENCE; CELL CYCLE CHECKPOINT; CENTROMERE; CHROMOSOME SEGREGATION; CHROMOSOME STRUCTURE; CYTOGENETICS; DNA REPLICATION; HUMAN; MITOSIS; MITOSIS SPINDLE; NUCLEOSOME; PRIORITY JOURNAL; PROTEIN PROCESSING; REVIEW; STRUCTURE ANALYSIS; AMINO ACID SEQUENCE; CHEMISTRY; KINETOCHORE; METABOLISM; SEQUENCE HOMOLOGY; STRUCTURE ACTIVITY RELATION;

EID: 84962213377     PISSN: 0959440X     EISSN: 1879033X     Source Type: Journal    
DOI: 10.1016/j.sbi.2016.03.003     Document Type: Review
Times cited : (88)

References (135)
  • 3
    • 84871530214 scopus 로고    scopus 로고
    • Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
    • Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013, 14:25-37.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 25-37
    • Foley, E.A.1    Kapoor, T.M.2
  • 4
    • 84908151071 scopus 로고    scopus 로고
    • Signalling dynamics in the spindle checkpoint response
    • London N., Biggins S. Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 2014, 15:736-747.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 736-747
    • London, N.1    Biggins, S.2
  • 7
    • 80052849224 scopus 로고    scopus 로고
    • In vitro centromere and kinetochore assembly on defined chromatin templates
    • Guse A., Carroll C.W., Moree B., Fuller C.J., Straight A.F. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
    • (2011) Nature , vol.477 , pp. 354-358
    • Guse, A.1    Carroll, C.W.2    Moree, B.3    Fuller, C.J.4    Straight, A.F.5
  • 8
    • 84952641649 scopus 로고    scopus 로고
    • A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance
    • Westhorpe F.G., Fuller C.J., Straight A.F. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 2015, 209:789-801.
    • (2015) J Cell Biol , vol.209 , pp. 789-801
    • Westhorpe, F.G.1    Fuller, C.J.2    Straight, A.F.3
  • 10
    • 72849116829 scopus 로고    scopus 로고
    • Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit
    • Akiyoshi B., Nelson C.R., Ranish J.A., Biggins S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 2009, 23:2887-2899.
    • (2009) Genes Dev , vol.23 , pp. 2887-2899
    • Akiyoshi, B.1    Nelson, C.R.2    Ranish, J.A.3    Biggins, S.4
  • 12
    • 84952639708 scopus 로고    scopus 로고
    • The molecular basis for centromere identity and function
    • McKinley K.L., Cheeseman I.M. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 2015, 10.1038/nrm.2015.5.
    • (2015) Nat Rev Mol Cell Biol
    • McKinley, K.L.1    Cheeseman, I.M.2
  • 13
    • 84908218352 scopus 로고    scopus 로고
    • The centromere: chromatin foundation for the kinetochore machinery
    • Fukagawa T., Earnshaw W.C. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 2014, 30:496-508.
    • (2014) Dev Cell , vol.30 , pp. 496-508
    • Fukagawa, T.1    Earnshaw, W.C.2
  • 14
    • 84879239743 scopus 로고    scopus 로고
    • Functions of the centromere and kinetochore in chromosome segregation
    • Westhorpe F.G., Straight A.F. Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 2013, 25:334-340.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 334-340
    • Westhorpe, F.G.1    Straight, A.F.2
  • 15
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik H.S., Henikoff S. Major evolutionary transitions in centromere complexity. Cell 2009, 138:1067-1082.
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.S.1    Henikoff, S.2
  • 18
    • 84896398000 scopus 로고    scopus 로고
    • Discovery of unconventional kinetochores in kinetoplastids
    • Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014, 156:1247-1258.
    • (2014) Cell , vol.156 , pp. 1247-1258
    • Akiyoshi, B.1    Gull, K.2
  • 19
    • 0023275058 scopus 로고
    • A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
    • Palmer D.K., O'Day K., Wener M.H., Andrews B.S., Margolis R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 1987, 104:805-815.
    • (1987) J Cell Biol , vol.104 , pp. 805-815
    • Palmer, D.K.1    O'Day, K.2    Wener, M.H.3    Andrews, B.S.4    Margolis, R.L.5
  • 20
    • 0021989578 scopus 로고
    • Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
    • Earnshaw W.C., Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 1985, 91:313-321.
    • (1985) Chromosoma , vol.91 , pp. 313-321
    • Earnshaw, W.C.1    Rothfield, N.2
  • 22
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENP-a nucleosomes
    • Black B.E., Cleveland D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144:471-479.
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 24
    • 84875445835 scopus 로고    scopus 로고
    • Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes
    • Bodor D.L., Valente L.P., Mata J.F., Black B.E., Jansen L.E. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol Biol Cell 2013, 24:923-932.
    • (2013) Mol Biol Cell , vol.24 , pp. 923-932
    • Bodor, D.L.1    Valente, L.P.2    Mata, J.F.3    Black, B.E.4    Jansen, L.E.5
  • 25
    • 33947274529 scopus 로고    scopus 로고
    • Propagation of centromeric chromatin requires exit from mitosis
    • Jansen L.E., Black B.E., Foltz D.R., Cleveland D.W. Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 2007, 176:795-805.
    • (2007) J Cell Biol , vol.176 , pp. 795-805
    • Jansen, L.E.1    Black, B.E.2    Foltz, D.R.3    Cleveland, D.W.4
  • 26
    • 79955413557 scopus 로고    scopus 로고
    • Centromeres: unique chromatin structures that drive chromosome segregation
    • Verdaasdonk J.S., Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 2011, 12:320-332.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 320-332
    • Verdaasdonk, J.S.1    Bloom, K.2
  • 29
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower M.D., Sullivan B.A., Karpen G.H. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2002, 2:319-330.
    • (2002) Dev Cell , vol.2 , pp. 319-330
    • Blower, M.D.1    Sullivan, B.A.2    Karpen, G.H.3
  • 31
    • 84885852996 scopus 로고    scopus 로고
    • An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation
    • Hinshaw S.M., Harrison S.C. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep 2013, 5:29-36.
    • (2013) Cell Rep , vol.5 , pp. 29-36
    • Hinshaw, S.M.1    Harrison, S.C.2
  • 32
    • 84873570232 scopus 로고    scopus 로고
    • CENP-T provides a structural platform for outer kinetochore assembly
    • Nishino T., Rago F., Hori T., Tomii K., Cheeseman I.M., Fukagawa T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 2013, 32:424-436.
    • (2013) EMBO J , vol.32 , pp. 424-436
    • Nishino, T.1    Rago, F.2    Hori, T.3    Tomii, K.4    Cheeseman, I.M.5    Fukagawa, T.6
  • 33
    • 84857791090 scopus 로고    scopus 로고
    • RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure
    • Schmitzberger F., Harrison S.C. RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep 2012, 13:216-222.
    • (2012) EMBO Rep , vol.13 , pp. 216-222
    • Schmitzberger, F.1    Harrison, S.C.2
  • 34
    • 55349136473 scopus 로고    scopus 로고
    • Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein
    • Cohen R.L., Espelin C.W., De Wulf P., Sorger P.K., Harrison S.C., Simons K.T. Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol Biol Cell 2008, 19:4480-4491.
    • (2008) Mol Biol Cell , vol.19 , pp. 4480-4491
    • Cohen, R.L.1    Espelin, C.W.2    De Wulf, P.3    Sorger, P.K.4    Harrison, S.C.5    Simons, K.T.6
  • 35
    • 0026650005 scopus 로고
    • CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
    • Saitoh H., Tomkiel J., Cooke C.A., Ratrie H., Maurer M., Rothfield N.F., Earnshaw W.C. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 1992, 70:115-125.
    • (1992) Cell , vol.70 , pp. 115-125
    • Saitoh, H.1    Tomkiel, J.2    Cooke, C.A.3    Ratrie, H.4    Maurer, M.5    Rothfield, N.F.6    Earnshaw, W.C.7
  • 39
    • 70350234658 scopus 로고    scopus 로고
    • Dissection of CENP-C-directed centromere and kinetochore assembly
    • Milks K.J., Moree B., Straight A.F. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol Biol Cell 2009, 20:4246-4255.
    • (2009) Mol Biol Cell , vol.20 , pp. 4246-4255
    • Milks, K.J.1    Moree, B.2    Straight, A.F.3
  • 40
    • 34250346905 scopus 로고    scopus 로고
    • CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
    • Kwon M.S., Hori T., Okada M., Fukagawa T. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 2007, 18:2155-2168.
    • (2007) Mol Biol Cell , vol.18 , pp. 2155-2168
    • Kwon, M.S.1    Hori, T.2    Okada, M.3    Fukagawa, T.4
  • 44
    • 84953638894 scopus 로고    scopus 로고
    • The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface
    • McKinley K.L., Sekulic N., Guo L.Y., Tsinman T., Black B.E., Cheeseman I.M. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 2015, 60:886-898.
    • (2015) Mol Cell , vol.60 , pp. 886-898
    • McKinley, K.L.1    Sekulic, N.2    Guo, L.Y.3    Tsinman, T.4    Black, B.E.5    Cheeseman, I.M.6
  • 46
    • 84908151543 scopus 로고    scopus 로고
    • The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch
    • Suzuki A., Badger B.L., Wan X., DeLuca J.G., Salmon E.D. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch. Dev Cell 2014, 30:717-730.
    • (2014) Dev Cell , vol.30 , pp. 717-730
    • Suzuki, A.1    Badger, B.L.2    Wan, X.3    DeLuca, J.G.4    Salmon, E.D.5
  • 47
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi P., McAinsh A.D., Rheinbay E., Sorger P.K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 2006, 7:R23.
    • (2006) Genome Biol , vol.7 , pp. R23
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 48
    • 84928674884 scopus 로고    scopus 로고
    • Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects
    • Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 2014, 3.
    • (2014) Elife , vol.3
    • Drinnenberg, I.A.1    deYoung, D.2    Henikoff, S.3    Malik, H.S.4
  • 53
    • 84872063204 scopus 로고    scopus 로고
    • The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
    • Hori T., Shang W.H., Takeuchi K., Fukagawa T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 2013, 200:45-60.
    • (2013) J Cell Biol , vol.200 , pp. 45-60
    • Hori, T.1    Shang, W.H.2    Takeuchi, K.3    Fukagawa, T.4
  • 54
    • 67650065426 scopus 로고    scopus 로고
    • Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
    • Carroll C.W., Silva M.C., Godek K.M., Jansen L.E., Straight A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 2009, 11:896-902.
    • (2009) Nat Cell Biol , vol.11 , pp. 896-902
    • Carroll, C.W.1    Silva, M.C.2    Godek, K.M.3    Jansen, L.E.4    Straight, A.F.5
  • 55
  • 58
    • 84861889670 scopus 로고    scopus 로고
    • Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation
    • Samel A., Cuomo A., Bonaldi T., Ehrenhofer-Murray A.E. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci U S A 2012, 109:9029-9034.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 9029-9034
    • Samel, A.1    Cuomo, A.2    Bonaldi, T.3    Ehrenhofer-Murray, A.E.4
  • 62
    • 33646740560 scopus 로고    scopus 로고
    • Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells
    • Izuta H., Ikeno M., Suzuki N., Tomonaga T., Nozaki N., Obuse C., Kisu Y., Goshima N., Nomura F., Nomura N., et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 2006, 11:673-684.
    • (2006) Genes Cells , vol.11 , pp. 673-684
    • Izuta, H.1    Ikeno, M.2    Suzuki, N.3    Tomonaga, T.4    Nozaki, N.5    Obuse, C.6    Kisu, Y.7    Goshima, N.8    Nomura, F.9    Nomura, N.10
  • 63
  • 64
    • 77954396194 scopus 로고    scopus 로고
    • Dual recognition of CENP-A nucleosomes is required for centromere assembly
    • Carroll C.W., Milks K.J., Straight A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 2010, 189:1143-1155.
    • (2010) J Cell Biol , vol.189 , pp. 1143-1155
    • Carroll, C.W.1    Milks, K.J.2    Straight, A.F.3
  • 65
    • 79955539577 scopus 로고    scopus 로고
    • Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
    • Gascoigne K.E., Takeuchi K., Suzuki A., Hori T., Fukagawa T., Cheeseman I.M. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011, 145:410-422.
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.E.1    Takeuchi, K.2    Suzuki, A.3    Hori, T.4    Fukagawa, T.5    Cheeseman, I.M.6
  • 66
    • 69949161719 scopus 로고    scopus 로고
    • CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis
    • Tanaka K., Chang H.L., Kagami A., Watanabe Y. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 2009, 17:334-343.
    • (2009) Dev Cell , vol.17 , pp. 334-343
    • Tanaka, K.1    Chang, H.L.2    Kagami, A.3    Watanabe, Y.4
  • 68
    • 84924761760 scopus 로고    scopus 로고
    • Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T
    • Rago F., Gascoigne K.E., Cheeseman I.M. Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Curr Biol 2015, 25:671-677.
    • (2015) Curr Biol , vol.25 , pp. 671-677
    • Rago, F.1    Gascoigne, K.E.2    Cheeseman, I.M.3
  • 71
    • 84941047044 scopus 로고    scopus 로고
    • A quantitative description of Ndc80 complex linkage to human kinetochores
    • Suzuki A., Badger B.L., Salmon E.D. A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 2015, 6:8161.
    • (2015) Nat Commun , vol.6 , pp. 8161
    • Suzuki, A.1    Badger, B.L.2    Salmon, E.D.3
  • 72
    • 81555212272 scopus 로고    scopus 로고
    • Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution
    • Armache K.J., Garlick J.D., Canzio D., Narlikar G.J., Kingston R.E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. Science 2011, 334:977-982.
    • (2011) Science , vol.334 , pp. 977-982
    • Armache, K.J.1    Garlick, J.D.2    Canzio, D.3    Narlikar, G.J.4    Kingston, R.E.5
  • 74
    • 77957367439 scopus 로고    scopus 로고
    • Structure of RCC1 chromatin factor bound to the nucleosome core particle
    • Makde R.D., England J.R., Yennawar H.P., Tan S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 2010, 467:562-566.
    • (2010) Nature , vol.467 , pp. 562-566
    • Makde, R.D.1    England, J.R.2    Yennawar, H.P.3    Tan, S.4
  • 77
    • 84929498966 scopus 로고    scopus 로고
    • A unique chromatin complex occupies young alpha-satellite arrays of human centromeres
    • Henikoff J.G., Thakur J., Kasinathan S., Henikoff S. A unique chromatin complex occupies young alpha-satellite arrays of human centromeres. Sci Adv 2015, 1.
    • (2015) Sci Adv , vol.1
    • Henikoff, J.G.1    Thakur, J.2    Kasinathan, S.3    Henikoff, S.4
  • 78
    • 1242294403 scopus 로고    scopus 로고
    • CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization
    • Suzuki N., Nakano M., Nozaki N., Egashira S., Okazaki T., Masumoto H. CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization. J Biol Chem 2004, 279:5934-5946.
    • (2004) J Biol Chem , vol.279 , pp. 5934-5946
    • Suzuki, N.1    Nakano, M.2    Nozaki, N.3    Egashira, S.4    Okazaki, T.5    Masumoto, H.6
  • 80
    • 0029783431 scopus 로고    scopus 로고
    • Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres
    • Goldberg I.G., Sawhney H., Pluta A.F., Warburton P.E., Earnshaw W.C. Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol 1996, 16:5156-5168.
    • (1996) Mol Cell Biol , vol.16 , pp. 5156-5168
    • Goldberg, I.G.1    Sawhney, H.2    Pluta, A.F.3    Warburton, P.E.4    Earnshaw, W.C.5
  • 81
    • 80053934686 scopus 로고    scopus 로고
    • CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
    • Moree B., Meyer C.B., Fuller C.J., Straight A.F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 2011, 194:855-871.
    • (2011) J Cell Biol , vol.194 , pp. 855-871
    • Moree, B.1    Meyer, C.B.2    Fuller, C.J.3    Straight, A.F.4
  • 84
    • 70350234665 scopus 로고    scopus 로고
    • CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1
    • Okada M., Okawa K., Isobe T., Fukagawa T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 2009, 20:3986-3995.
    • (2009) Mol Biol Cell , vol.20 , pp. 3986-3995
    • Okada, M.1    Okawa, K.2    Isobe, T.3    Fukagawa, T.4
  • 86
    • 33846638827 scopus 로고    scopus 로고
    • Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase
    • Schuh M., Lehner C.F., Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 2007, 17:237-243.
    • (2007) Curr Biol , vol.17 , pp. 237-243
    • Schuh, M.1    Lehner, C.F.2    Heidmann, S.3
  • 87
    • 84855956123 scopus 로고    scopus 로고
    • H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase
    • Dunleavy E.M., Almouzni G., Karpen G.H. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2011, 2:146-157.
    • (2011) Nucleus , vol.2 , pp. 146-157
    • Dunleavy, E.M.1    Almouzni, G.2    Karpen, G.H.3
  • 88
    • 84896720721 scopus 로고    scopus 로고
    • A network of players in H3 histone variant deposition and maintenance at centromeres
    • Muller S., Almouzni G. A network of players in H3 histone variant deposition and maintenance at centromeres. Biochim Biophys Acta 2014, 1839:241-250.
    • (2014) Biochim Biophys Acta , vol.1839 , pp. 241-250
    • Muller, S.1    Almouzni, G.2
  • 89
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008, 9:33-46.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 33-46
    • Cheeseman, I.M.1    Desai, A.2
  • 90
    • 84857685447 scopus 로고    scopus 로고
    • Structural organization of the kinetochore-microtubule interface
    • DeLuca J.G., Musacchio A. Structural organization of the kinetochore-microtubule interface. Curr Opin Cell Biol 2012, 24:48-56.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 48-56
    • DeLuca, J.G.1    Musacchio, A.2
  • 92
    • 17244363408 scopus 로고    scopus 로고
    • Molecular organization of the Ndc80 complex, an essential kinetochore component
    • Wei R.R., Sorger P.K., Harrison S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 2005, 102:5363-5367.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 5363-5367
    • Wei, R.R.1    Sorger, P.K.2    Harrison, S.C.3
  • 94
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., Salmon E.D. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1    Gall, W.E.2    Ciferri, C.3    Cimini, D.4    Musacchio, A.5    Salmon, E.D.6
  • 95
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    • Cheeseman I.M., Chappie J.S., Wilson-Kubalek E.M., Desai A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
    • (2006) Cell , vol.127 , pp. 983-997
    • Cheeseman, I.M.1    Chappie, J.S.2    Wilson-Kubalek, E.M.3    Desai, A.4
  • 97
    • 33744798200 scopus 로고    scopus 로고
    • Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain
    • Wei R.R., Schnell J.R., Larsen N.A., Sorger P.K., Chou J.J., Harrison S.C. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 2006, 14:1003-1009.
    • (2006) Structure , vol.14 , pp. 1003-1009
    • Wei, R.R.1    Schnell, J.R.2    Larsen, N.A.3    Sorger, P.K.4    Chou, J.J.5    Harrison, S.C.6
  • 99
    • 33846100785 scopus 로고    scopus 로고
    • The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
    • Wei R.R., Al-Bassam J., Harrison S.C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 2007, 14:54-59.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 54-59
    • Wei, R.R.1    Al-Bassam, J.2    Harrison, S.C.3
  • 100
    • 77951952612 scopus 로고    scopus 로고
    • Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
    • Welburn J.P., Vleugel M., Liu D., Yates J.R., Lampson M.A., Fukagawa T., Cheeseman I.M. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 2010, 38:383-392.
    • (2010) Mol Cell , vol.38 , pp. 383-392
    • Welburn, J.P.1    Vleugel, M.2    Liu, D.3    Yates, J.R.4    Lampson, M.A.5    Fukagawa, T.6    Cheeseman, I.M.7
  • 101
    • 79951833036 scopus 로고    scopus 로고
    • Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
    • DeLuca K.F., Lens S.M., DeLuca J.G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 2011, 124:622-634.
    • (2011) J Cell Sci , vol.124 , pp. 622-634
    • DeLuca, K.F.1    Lens, S.M.2    DeLuca, J.G.3
  • 102
    • 56349089656 scopus 로고    scopus 로고
    • Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
    • Guimaraes G.J., Dong Y., McEwen B.F., Deluca J.G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 2008, 18:1778-1784.
    • (2008) Curr Biol , vol.18 , pp. 1778-1784
    • Guimaraes, G.J.1    Dong, Y.2    McEwen, B.F.3    Deluca, J.G.4
  • 103
  • 104
    • 84904618315 scopus 로고    scopus 로고
    • Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions
    • Zaytsev A.V., Sundin L.J., DeLuca K.F., Grishchuk E.L., DeLuca J.G. Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J Cell Biol 2014, 206:45-59.
    • (2014) J Cell Biol , vol.206 , pp. 45-59
    • Zaytsev, A.V.1    Sundin, L.J.2    DeLuca, K.F.3    Grishchuk, E.L.4    DeLuca, J.G.5
  • 105
    • 56349098273 scopus 로고    scopus 로고
    • Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
    • Miller S.A., Johnson M.L., Stukenberg P.T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 2008, 18:1785-1791.
    • (2008) Curr Biol , vol.18 , pp. 1785-1791
    • Miller, S.A.1    Johnson, M.L.2    Stukenberg, P.T.3
  • 106
    • 84876947414 scopus 로고    scopus 로고
    • Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms
    • Sarangapani K.K., Akiyoshi B., Duggan N.M., Biggins S., Asbury C.L. Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms. Proc Natl Acad Sci U S A 2013, 110:7282-7287.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 7282-7287
    • Sarangapani, K.K.1    Akiyoshi, B.2    Duggan, N.M.3    Biggins, S.4    Asbury, C.L.5
  • 107
    • 77956361304 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the yeast kinetochore MIND complex
    • Maskell D.P., Hu X.W., Singleton M.R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J Cell Biol 2010, 190:823-834.
    • (2010) J Cell Biol , vol.190 , pp. 823-834
    • Maskell, D.P.1    Hu, X.W.2    Singleton, M.R.3
  • 110
    • 78650856481 scopus 로고    scopus 로고
    • Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex
    • Hornung P., Maier M., Alushin G.M., Lander G.C., Nogales E., Westermann S. Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J Mol Biol 2011, 405:548-559.
    • (2011) J Mol Biol , vol.405 , pp. 548-559
    • Hornung, P.1    Maier, M.2    Alushin, G.M.3    Lander, G.C.4    Nogales, E.5    Westermann, S.6
  • 111
    • 77949755046 scopus 로고    scopus 로고
    • Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes
    • Kiyomitsu T., Iwasaki O., Obuse C., Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J Cell Biol 2010, 188:791-807.
    • (2010) J Cell Biol , vol.188 , pp. 791-807
    • Kiyomitsu, T.1    Iwasaki, O.2    Obuse, C.3    Yanagida, M.4
  • 112
    • 35649019314 scopus 로고    scopus 로고
    • Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
    • Kiyomitsu T., Obuse C., Yanagida M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 2007, 13:663-676.
    • (2007) Dev Cell , vol.13 , pp. 663-676
    • Kiyomitsu, T.1    Obuse, C.2    Yanagida, M.3
  • 113
    • 84873566629 scopus 로고    scopus 로고
    • A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
    • Malvezzi F., Litos G., Schleiffer A., Heuck A., Mechtler K., Clausen T., Westermann S. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 2013, 32:409-423.
    • (2013) EMBO J , vol.32 , pp. 409-423
    • Malvezzi, F.1    Litos, G.2    Schleiffer, A.3    Heuck, A.4    Mechtler, K.5    Clausen, T.6    Westermann, S.7
  • 114
    • 84860178087 scopus 로고    scopus 로고
    • Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting
    • Kim S., Sun H., Tomchick D.R., Yu H., Luo X. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc Natl Acad Sci U S A 2012, 109:6549-6554.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 6549-6554
    • Kim, S.1    Sun, H.2    Tomchick, D.R.3    Yu, H.4    Luo, X.5
  • 115
    • 84863098172 scopus 로고    scopus 로고
    • Molecular architecture of the yeast monopolin complex
    • Corbett K.D., Harrison S.C. Molecular architecture of the yeast monopolin complex. Cell Rep 2012, 1:583-589.
    • (2012) Cell Rep , vol.1 , pp. 583-589
    • Corbett, K.D.1    Harrison, S.C.2
  • 116
    • 77955636058 scopus 로고    scopus 로고
    • The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments
    • Corbett K.D., Yip C.K., Ee L.S., Walz T., Amon A., Harrison S.C. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 2010, 142:556-567.
    • (2010) Cell , vol.142 , pp. 556-567
    • Corbett, K.D.1    Yip, C.K.2    Ee, L.S.3    Walz, T.4    Amon, A.5    Harrison, S.C.6
  • 118
    • 84921757340 scopus 로고    scopus 로고
    • Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores
    • Kim S., Yu H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 2015, 208:181-196.
    • (2015) J Cell Biol , vol.208 , pp. 181-196
    • Kim, S.1    Yu, H.2
  • 123
    • 84943618148 scopus 로고    scopus 로고
    • Inner kinetochore protein interactions with regional centromeres of fission yeast
    • Thakur J., Talbert P.B., Henikoff S. Inner kinetochore protein interactions with regional centromeres of fission yeast. Genetics 2015, 201:543-561.
    • (2015) Genetics , vol.201 , pp. 543-561
    • Thakur, J.1    Talbert, P.B.2    Henikoff, S.3
  • 124
    • 84945583575 scopus 로고    scopus 로고
    • The molecular biology of spindle assembly checkpoint signaling dynamics
    • Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 2015, 25:R1002-R1018.
    • (2015) Curr Biol , vol.25 , pp. R1002-R1018
    • Musacchio, A.1
  • 126
    • 65049088564 scopus 로고    scopus 로고
    • In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
    • Joglekar A.P., Bloom K., Salmon E.D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 2009, 19:694-699.
    • (2009) Curr Biol , vol.19 , pp. 694-699
    • Joglekar, A.P.1    Bloom, K.2    Salmon, E.D.3
  • 128
    • 62849085547 scopus 로고    scopus 로고
    • Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
    • Maresca T.J., Salmon E.D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 2009, 184:373-381.
    • (2009) J Cell Biol , vol.184 , pp. 373-381
    • Maresca, T.J.1    Salmon, E.D.2
  • 129
    • 79955497376 scopus 로고    scopus 로고
    • Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
    • Suzuki A., Hori T., Nishino T., Usukura J., Miyagi A., Morikawa K., Fukagawa T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J Cell Biol 2011, 193:125-140.
    • (2011) J Cell Biol , vol.193 , pp. 125-140
    • Suzuki, A.1    Hori, T.2    Nishino, T.3    Usukura, J.4    Miyagi, A.5    Morikawa, K.6    Fukagawa, T.7
  • 130
    • 84864020836 scopus 로고    scopus 로고
    • Deformations within moving kinetochores reveal different sites of active and passive force generation
    • Dumont S., Salmon E.D., Mitchison T.J. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 2012, 337:355-358.
    • (2012) Science , vol.337 , pp. 355-358
    • Dumont, S.1    Salmon, E.D.2    Mitchison, T.J.3
  • 132
    • 84921688760 scopus 로고    scopus 로고
    • Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways
    • Bancroft J., Auckland P., Samora C.P., McAinsh A.D. Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J Cell Sci 2015, 128:171-184.
    • (2015) J Cell Sci , vol.128 , pp. 171-184
    • Bancroft, J.1    Auckland, P.2    Samora, C.P.3    McAinsh, A.D.4
  • 133
    • 78651399502 scopus 로고    scopus 로고
    • CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment
    • Hua S., Wang Z., Jiang K., Huang Y., Ward T., Zhao L., Dou Z., Yao X. CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment. J Biol Chem 2011, 286:1627-1638.
    • (2011) J Biol Chem , vol.286 , pp. 1627-1638
    • Hua, S.1    Wang, Z.2    Jiang, K.3    Huang, Y.4    Ward, T.5    Zhao, L.6    Dou, Z.7    Yao, X.8
  • 134
    • 35548985820 scopus 로고    scopus 로고
    • Centromere identity is specified by a single centromeric nucleosome in budding yeast
    • Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 2007, 104:14706-14711.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 14706-14711
    • Furuyama, S.1    Biggins, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.