-
1
-
-
84878587815
-
Making an effective switch at the kinetochore by phosphorylation and dephosphorylation
-
Funabiki, H. & Wynne, D. J. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122, 135-158 (2013).
-
(2013)
Chromosoma
, vol.122
, pp. 135-158
-
-
Funabiki, H.1
Wynne, D.J.2
-
2
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell. Biol. 8, 379-393 (2007).
-
(2007)
Nat. Rev. Mol. Cell. Biol.
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
3
-
-
84874970891
-
Review series: The functions and consequences of force at kinetochores
-
Rago, F. & Cheeseman, I. M. Review series: The functions and consequences of force at kinetochores. J. Cell Biol. 200, 557-565 (2013).
-
(2013)
J. Cell Biol.
, vol.200
, pp. 557-565
-
-
Rago, F.1
Cheeseman, I.M.2
-
4
-
-
84875599678
-
The KMN protein network - Chief conductors of the kinetochore orchestra
-
Varma, D. & Salmon, E. D. The KMN protein network - chief conductors of the kinetochore orchestra. J. Cell Sci. 125, 5927-5936 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 5927-5936
-
-
Varma, D.1
Salmon, E.D.2
-
5
-
-
84878363880
-
A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C
-
Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110-1113 (2013).
-
(2013)
Science
, vol.340
, pp. 1110-1113
-
-
Kato, H.1
-
6
-
-
84856719568
-
CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold
-
Nishino, T. et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148, 487-501 (2012).
-
(2012)
Cell
, vol.148
, pp. 487-501
-
-
Nishino, T.1
-
7
-
-
84861959565
-
Molecular architecture of vertebrate kinetochores
-
Takeuchi, K. & Fukagawa, T. Molecular architecture of vertebrate kinetochores. Exp. Cell Res. 318, 1367-1374 (2012).
-
(2012)
Exp. Cell Res.
, vol.318
, pp. 1367-1374
-
-
Takeuchi, K.1
Fukagawa, T.2
-
8
-
-
77956378429
-
The MIS12 complex is a protein interaction hub for outer kinetochore assembly
-
Petrovic, A. et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J. Cell Biol. 190, 835-852 (2010).
-
(2010)
J. Cell Biol.
, vol.190
, pp. 835-852
-
-
Petrovic, A.1
-
9
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983-997 (2006).
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
10
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399-405 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
-
11
-
-
79952364478
-
Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore
-
Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391-398 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
-
12
-
-
84894260637
-
Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization
-
Petrovic, A. et al. Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol. Cell 53, 591-605 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 591-605
-
-
Petrovic, A.1
-
13
-
-
84908151543
-
The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper intrakinetochore stretch
-
Suzuki, A., Badger, B. L., Wan, X., DeLuca, J. G. & Salmon, E. D. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper intrakinetochore stretch. Dev. Cell 30, 717-730 (2014).
-
(2014)
Dev. Cell
, vol.30
, pp. 717-730
-
-
Suzuki, A.1
Badger, B.L.2
Wan, X.3
DeLuca, J.G.4
Salmon, E.D.5
-
14
-
-
84864020836
-
Deformations within moving kinetochores reveal different sites of active and passive force generation
-
Dumont, S., Salmon, E. D. & Mitchison, T. J. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 337, 355-358 (2012).
-
(2012)
Science
, vol.337
, pp. 355-358
-
-
Dumont, S.1
Salmon, E.D.2
Mitchison, T.J.3
-
15
-
-
84884170422
-
Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores
-
Varma, D. et al. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores. J. Cell Biol. 202, 735-746 (2013).
-
(2013)
J. Cell Biol.
, vol.202
, pp. 735-746
-
-
Varma, D.1
-
16
-
-
84873566629
-
A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
-
Malvezzi, F. et al. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 32, 409-423 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 409-423
-
-
Malvezzi, F.1
-
17
-
-
84873570232
-
CENP-T provides a structural platform for outer kinetochore assembly
-
Nishino, T. et al. CENP-T provides a structural platform for outer kinetochore assembly. EMBO. J. 32, 424-436 (2013).
-
(2013)
EMBO. J.
, vol.32
, pp. 424-436
-
-
Nishino, T.1
-
18
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori, T., Shang, W. H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45-60 (2013).
-
(2013)
J. Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
19
-
-
81355161263
-
Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome
-
Lawrimore, J., Bloom, K. S. & Salmon, E. D. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 195, 573-582 (2011).
-
(2011)
J. Cell Biol.
, vol.195
, pp. 573-582
-
-
Lawrimore, J.1
Bloom, K.S.2
Salmon, E.D.3
-
20
-
-
77953574250
-
Vertebrate kinetochore protein architecture: Protein copy number
-
Johnston, K. et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189, 937-943 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 937-943
-
-
Johnston, K.1
-
21
-
-
0027462041
-
Mitotic block in HeLa cells by vinblastine: Ultrastructural changes in kinetochore-microtubule attachment and in centrosomes
-
Wendell, K. L., Wilson, L. & Jordan, M. A. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J. Cell Sci. 104, 261-274 (1993).
-
(1993)
J. Cell Sci.
, vol.104
, pp. 261-274
-
-
Wendell, K.L.1
Wilson, L.2
Jordan, M.A.3
-
22
-
-
84861589937
-
Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore
-
Bock, L. J. et al. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol. 14, 614-624 (2012).
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 614-624
-
-
Bock, L.J.1
-
23
-
-
84861637392
-
CENP-T proteins are conserved centromere receptors of the Ndc80 complex
-
Schleiffer, A. et al. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol. 14, 604-613 (2012).
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 604-613
-
-
Schleiffer, A.1
-
24
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll, C. W., Milks, K. J. & Straight, A. F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143-1155 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
25
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne, K. E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410-422 (2011).
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
-
26
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039-1052 (2008).
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
-
27
-
-
12844283239
-
Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites
-
DeLuca, J. G. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519-531 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 519-531
-
-
DeLuca, J.G.1
-
28
-
-
84924761760
-
Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T
-
Rago, F., Gascoigne, K. E. & Cheeseman, I. M. Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Curr. Biol. 25, 671-677 (2015).
-
(2015)
Curr. Biol.
, vol.25
, pp. 671-677
-
-
Rago, F.1
Gascoigne, K.E.2
Cheeseman, I.M.3
-
29
-
-
84921757340
-
Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores
-
Kim, S. & Yu, H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J. Cell Biol. 208, 181-196 (2015).
-
(2015)
J. Cell Biol.
, vol.208
, pp. 181-196
-
-
Kim, S.1
Yu, H.2
-
30
-
-
84906490469
-
A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A
-
Hornung, P. et al. A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J. Cell Biol. 206, 509-524 (2014).
-
(2014)
J. Cell Biol.
, vol.206
, pp. 509-524
-
-
Hornung, P.1
-
31
-
-
77953801741
-
A super-resolution map of the vertebrate kinetochore
-
Ribeiro, S. A. et al. A super-resolution map of the vertebrate kinetochore. Proc. Natl Acad. Sci. USA 107, 10484-10489 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 10484-10489
-
-
Ribeiro, S.A.1
-
32
-
-
79955497376
-
Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
-
Suzuki, A. et al. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J. Cell Biol. 193, 125-140 (2011).
-
(2011)
J. Cell Biol.
, vol.193
, pp. 125-140
-
-
Suzuki, A.1
-
33
-
-
84881082807
-
The composition, functions, and regulation of the budding yeast kinetochore
-
Biggins, S. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194, 817-846 (2013).
-
(2013)
Genetics
, vol.194
, pp. 817-846
-
-
Biggins, S.1
-
34
-
-
84908218352
-
The centromere: Chromatin foundation for the kinetochore machinery
-
Fukagawa, T. & Earnshaw, W. C. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496-508 (2014).
-
(2014)
Dev. Cell
, vol.30
, pp. 496-508
-
-
Fukagawa, T.1
Earnshaw, W.C.2
-
35
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672-684 (2009).
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
-
36
-
-
80755135417
-
Counting proteins bound to a single DNA molecule
-
Graham, J. S., Johnson, R. C. & Marko, J. F. Counting proteins bound to a single DNA molecule. Biochem. Biophys. Res. Commun. 415, 131-134 (2011).
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.415
, pp. 131-134
-
-
Graham, J.S.1
Johnson, R.C.2
Marko, J.F.3
-
37
-
-
0030784698
-
Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy
-
Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782-2790 (1997).
-
(1997)
Biophys. J.
, vol.73
, pp. 2782-2790
-
-
Patterson, G.H.1
Knobel, S.M.2
Sharif, W.D.3
Kain, S.R.4
Piston, D.W.5
|