-
1
-
-
56549108407
-
Epigenetic regulation of centromeric chromatin: old dogs, new tricks?
-
Allshire, R.C., and G.H. Karpen. 2008. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9:923-937. http://dx.doi.org/10.1038/nrg2466
-
(2008)
Nat Rev. Genet.
, vol.9
, pp. 923-937
-
-
Allshire, R.C.1
Karpen, G.H.2
-
2
-
-
35848960342
-
Domain architectures of the Scm3p protein provide insights into centromere function and evolution
-
Aravind, L., L.M. Iyer, and C. Wu. 2007. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle. 6:2511-2515. http://dx.doi.org/10.4161/cc.6.20.4793
-
(2007)
Cell Cycle.
, vol.6
, pp. 2511-2515
-
-
Aravind, L.1
Iyer, L.M.2
Wu, C.3
-
3
-
-
79961113679
-
HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore
-
Barnhart, M.C., P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, and D.R. Foltz. 2011. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194:229-243. http://dx.doi.org/10.1083/jcb.201012017
-
(2011)
J. Cell Biol.
, vol.194
, pp. 229-243
-
-
Barnhart, M.C.1
Kuich, P.H.2
Stellfox, M.E.3
Ward, J.A.4
Bassett, E.A.5
Black, B.E.6
Foltz, D.R.7
-
4
-
-
84859841455
-
HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly
-
Bassett, E.A., J. DeNizio, M.C. Barnhart-Dailey, T. Panchenko, N. Sekulic, D.J. Rogers, D.R. Foltz, and B.E. Black. 2012. HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly. Dev. Cell. 22:749-762. http://dx.doi.org/10.1016/j.devcel.2012.02.001
-
(2012)
Dev. Cell.
, vol.22
, pp. 749-762
-
-
Bassett, E.A.1
DeNizio, J.2
Barnhart-Dailey, M.C.3
Panchenko, T.4
Sekulic, N.5
Rogers, D.J.6
Foltz, D.R.7
Black, B.E.8
-
5
-
-
79951905050
-
Xenopus HJURP and condensin II are required for CENP-A assembly
-
Bernad, R., P. Sánchez, T. Rivera, M. Rodríguez-Corsino, E. Boyarchuk, I. Vassias, D. Ray-Gallet, A. Arnaoutov, M. Dasso, G. Almouzni, and A. Losada. 2011. Xenopus HJURP and condensin II are required for CENP-A assembly. J. Cell Biol. 192:569-582. http://dx.doi.org/10.1083/jcb.201005136
-
(2011)
J. Cell Biol.
, vol.192
, pp. 569-582
-
-
Bernad, R.1
Sánchez, P.2
Rivera, T.3
Rodríguez-Corsino, M.4
Boyarchuk, E.5
Vassias, I.6
Ray-Gallet, D.7
Arnaoutov, A.8
Dasso, M.9
Almouzni, G.10
Losada, A.11
-
6
-
-
33846199534
-
Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain
-
Black, B.E., L.E. Jansen, P.S. Maddox, D.R. Foltz, A.B. Desai, J.V. Shah, and D.W. Cleveland. 2007. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell. 25:309-322. http://dx.doi.org/10.1016/j.molcel.2006.12.018
-
(2007)
Mol. Cell.
, vol.25
, pp. 309-322
-
-
Black, B.E.1
Jansen, L.E.2
Maddox, P.S.3
Foltz, D.R.4
Desai, A.B.5
Shah, J.V.6
Cleveland, D.W.7
-
7
-
-
0034910458
-
The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions
-
Blower, M.D., and G.H. Karpen. 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3:730-739. http://dx.doi.org/10.1038/35087045
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 730-739
-
-
Blower, M.D.1
Karpen, G.H.2
-
8
-
-
34250316190
-
Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore
-
Camahort, R., B. Li, L. Florens, S.K. Swanson, M.P. Washburn, and J.L. Gerton. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell. 26:853-865. http://dx.doi.org/10.1016/j.molcel.2007.05.013
-
(2007)
Mol. Cell.
, vol.26
, pp. 853-865
-
-
Camahort, R.1
Li, B.2
Florens, L.3
Swanson, S.K.4
Washburn, M.P.5
Gerton, J.L.6
-
9
-
-
70349168454
-
Cse4 is part of an octameric nucleosome in budding yeast
-
Camahort, R., M. Shivaraju, M. Mattingly, B. Li, S. Nakanishi, D. Zhu, A. Shilatifard, J.L. Workman, and J.L. Gerton. 2009. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell. 35:794-805. http://dx.doi.org/10.1016/j.molcel.2009.07.022
-
(2009)
Mol. Cell.
, vol.35
, pp. 794-805
-
-
Camahort, R.1
Shivaraju, M.2
Mattingly, M.3
Li, B.4
Nakanishi, S.5
Zhu, D.6
Shilatifard, A.7
Workman, J.L.8
Gerton, J.L.9
-
10
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll, C.W., K.J. Milks, and A.F. Straight. 2010. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189:1143-1155. http://dx.doi.org/10.1083/jcb.201001013
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
11
-
-
79959331606
-
Recognition of the centromere-specific histone Cse4 by the chaperone Scm3
-
Cho, U.S., and S.C. Harrison. 2011. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc. Natl. Acad. Sci. USA. 108:9367-9371. http://dx.doi.org/10.1073/pnas.1106389108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 9367-9371
-
-
Cho, U.S.1
Harrison, S.C.2
-
12
-
-
67649107393
-
Analysis of DNA supercoiling induced by DNA-protein interactions
-
Clark, D.J., and B. Leblanc. 2009. Analysis of DNA supercoiling induced by DNA-protein interactions. Methods Mol. Biol. 543:523-535. http://dx.doi.org/10.1007/978-1-60327-015-1_30
-
(2009)
Methods Mol. Biol.
, vol.543
, pp. 523-535
-
-
Clark, D.J.1
Leblanc, B.2
-
13
-
-
34250168342
-
CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization
-
Conde E Silva, N., B.E. Black, A. Sivolob, J. Filipski, D.W. Cleveland, and A. Prunell. 2007. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370:555-573. http://dx.doi.org/10.1016/j.jmb.2007.04.064
-
(2007)
J. Mol. Biol.
, vol.370
, pp. 555-573
-
-
Conde, E.1
Silva, N.2
Black, B.E.3
Sivolob, A.4
Filipski, J.5
Cleveland, D.W.6
Prunell, A.7
-
14
-
-
34548267126
-
Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells
-
Dalal, Y., H. Wang, S. Lindsay, and S. Henikoff. 2007. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5:e218. http://dx.doi.org/10.1371/journal.pbio.0050218
-
(2007)
PLoS Biol.
, vol.5
-
-
Dalal, Y.1
Wang, H.2
Lindsay, S.3
Henikoff, S.4
-
15
-
-
84860201576
-
CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin
-
Dambacher, S., W. Deng, M. Hahn, D. Sadic, J. Fröhlich, A. Nuber, C. Hoischen, S. Diekmann, H. Leonhardt, and G. Schotta. 2012. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus. 3:101-110. http://dx.doi.org/10.4161/nucl.18955
-
(2012)
Nucleus.
, vol.3
, pp. 101-110
-
-
Dambacher, S.1
Deng, W.2
Hahn, M.3
Sadic, D.4
Fröhlich, J.5
Nuber, A.6
Hoischen, C.7
Diekmann, S.8
Leonhardt, H.9
Schotta, G.10
-
16
-
-
79956267847
-
Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes
-
Dechassa, M.L., K. Wyns, M. Li, M.A. Hall, M.D. Wang, and K. Luger. 2011. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun. 2:313. http://dx.doi.org/10.1038/ncomms1320
-
(2011)
Nat Commun.
, vol.2
, pp. 313
-
-
Dechassa, M.L.1
Wyns, K.2
Li, M.3
Hall, M.A.4
Wang, M.D.5
Luger, K.6
-
17
-
-
84855956123
-
H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase
-
Dunleavy, E.M., G. Almouzni, and G.H. Karpen. 2011. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus. 2:146-157. http://dx.doi.org/10.4161/nucl.2.2.15211
-
(2011)
Nucleus.
, vol.2
, pp. 146-157
-
-
Dunleavy, E.M.1
Almouzni, G.2
Karpen, G.H.3
-
18
-
-
84878918476
-
Solo or doppio: how many CENP-As make a centromeric nucleosome?
-
Dunleavy, E.M., W. Zhang, and G.H. Karpen. 2013. Solo or doppio: how many CENP-As make a centromeric nucleosome? Nat. Struct. Mol. Biol. 20:648-650. http://dx.doi.org/10.1038/nsmb.2602
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 648-650
-
-
Dunleavy, E.M.1
Zhang, W.2
Karpen, G.H.3
-
19
-
-
58149305928
-
Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
-
Erhardt, S., B.G. Mellone, C.M. Betts, W. Zhang, G.H. Karpen, and A.F. Straight. 2008. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183:805-818. http://dx.doi.org/10.1083/jcb.200806038
-
(2008)
J. Cell Biol.
, vol.183
, pp. 805-818
-
-
Erhardt, S.1
Mellone, B.G.2
Betts, C.M.3
Zhang, W.4
Karpen, G.H.5
Straight, A.F.6
-
20
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz, D.R., L.E. Jansen, B.E. Black, A.O. Bailey, J.R. Yates III, and D.W. Cleveland. 2006. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8:458-469. http://dx.doi.org/10.1038/ncb1397
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates, J.R.5
Cleveland, D.W.6
-
21
-
-
65249115338
-
Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP
-
Foltz, D.R., L.E. Jansen, A.O. Bailey, J.R. Yates III, E.A. Bassett, S. Wood, B.E. Black, and D.W. Cleveland. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell. 137:472-484. http://dx.doi.org/10.1016/j.cell.2009.02.039
-
(2009)
Cell.
, vol.137
, pp. 472-484
-
-
Foltz, D.R.1
Jansen, L.E.2
Bailey, A.O.3
Yates, J.R.4
Bassett, E.A.5
Wood, S.6
Black, B.E.7
Cleveland, D.W.8
-
22
-
-
0026656374
-
Functional analysis of nucleosome assembly protein, NAP-1. The negatively charged COOHterminal region is not necessary for the intrinsic assembly activity
-
Fujii-Nakata, T., Y. Ishimi, A. Okuda, and A. Kikuchi. 1992. Functional analysis of nucleosome assembly protein, NAP-1. The negatively charged COOHterminal region is not necessary for the intrinsic assembly activity. J. Biol. Chem. 267:20980-20986.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 20980-20986
-
-
Fujii-Nakata, T.1
Ishimi, Y.2
Okuda, A.3
Kikuchi, A.4
-
23
-
-
33845744494
-
Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1
-
Fujita, Y., T. Hayashi, T. Kiyomitsu, Y. Toyoda, A. Kokubu, C. Obuse, and M. Yanagida. 2007. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell. 12:17-30. http://dx.doi.org/10.1016/j.devcel.2006.11.002
-
(2007)
Dev. Cell.
, vol.12
, pp. 17-30
-
-
Fujita, Y.1
Hayashi, T.2
Kiyomitsu, T.3
Toyoda, Y.4
Kokubu, A.5
Obuse, C.6
Yanagida, M.7
-
24
-
-
67649664594
-
Centromeric nucleosomes induce positive DNA supercoils
-
Furuyama, T., and S. Henikoff. 2009. Centromeric nucleosomes induce positive DNA supercoils. Cell. 138:104-113. http://dx.doi.org/10.1016/j.cell.2009.04.049
-
(2009)
Cell.
, vol.138
, pp. 104-113
-
-
Furuyama, T.1
Henikoff, S.2
-
25
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne, K.E., K. Takeuchi, A. Suzuki, T. Hori, T. Fukagawa, and I.M. Cheeseman. 2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell. 145:410-422. http://dx.doi.org/10.1016/j.cell.2011.03.031
-
(2011)
Cell.
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
Takeuchi, K.2
Suzuki, A.3
Hori, T.4
Fukagawa, T.5
Cheeseman, I.M.6
-
26
-
-
34247468356
-
Genes required for mitotic spindle assembly in Drosophila S2 cells
-
Goshima, G., R. Wollman, S.S. Goodwin, N. Zhang, J.M. Scholey, R.D. Vale, and N. Stuurman. 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 316:417-421. http://dx.doi.org/10.1126/science.1141314
-
(2007)
Science.
, vol.316
, pp. 417-421
-
-
Goshima, G.1
Wollman, R.2
Goodwin, S.S.3
Zhang, N.4
Scholey, J.M.5
Vale, R.D.6
Stuurman, N.7
-
27
-
-
84878931770
-
The octamer is the major form of CENP-A nucleosomes at human centromeres
-
Hasson, D., T. Panchenko, K.J. Salimian, M.U. Salman, N. Sekulic, A. Alonso, P.E. Warburton, and B.E. Black. 2013. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20:687-695. http://dx.doi.org/10.1038/nsmb.2562
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 687-695
-
-
Hasson, D.1
Panchenko, T.2
Salimian, K.J.3
Salman, M.U.4
Sekulic, N.5
Alonso, A.6
Warburton, P.E.7
Black, B.E.8
-
28
-
-
4544275776
-
Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
-
Hayashi, T., Y. Fujita, O. Iwasaki, Y. Adachi, K. Takahashi, and M. Yanagida. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 118:715-729. http://dx.doi.org/10.1016/j.cell.2004.09.002
-
(2004)
Cell.
, vol.118
, pp. 715-729
-
-
Hayashi, T.1
Fujita, Y.2
Iwasaki, O.3
Adachi, Y.4
Takahashi, K.5
Yanagida, M.6
-
29
-
-
41549127153
-
Dynamics of inner kinetochore assembly and maintenance in living cells
-
Hemmerich, P., S. Weidtkamp-Peters, C. Hoischen, L. Schmiedeberg, I. Erliandri, and S. Diekmann. 2008. Dynamics of inner kinetochore assembly and maintenance in living cells. J. Cell Biol. 180:1101-1114. http://dx.doi.org/10.1083/jcb.200710052
-
(2008)
J. Cell Biol.
, vol.180
, pp. 1101-1114
-
-
Hemmerich, P.1
Weidtkamp-Peters, S.2
Hoischen, C.3
Schmiedeberg, L.4
Erliandri, I.5
Diekmann, S.6
-
30
-
-
84864878882
-
The unconventional structure of centromeric nucleosomes
-
Henikoff, S., and T. Furuyama. 2012. The unconventional structure of centromeric nucleosomes. Chromosoma. 121:341-352. http://dx.doi.org/10.1007/s00412-012-0372-y
-
(2012)
Chromosoma.
, vol.121
, pp. 341-352
-
-
Henikoff, S.1
Furuyama, T.2
-
31
-
-
33644542460
-
Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores
-
Heun, P., S. Erhardt, M.D. Blower, S. Weiss, A.D. Skora, and G.H. Karpen. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell. 10:303-315. http://dx.doi.org/10.1016/j.devcel.2006.01.014
-
(2006)
Dev. Cell.
, vol.10
, pp. 303-315
-
-
Heun, P.1
Erhardt, S.2
Blower, M.D.3
Weiss, S.4
Skora, A.D.5
Karpen, G.H.6
-
32
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori, T., W.H. Shang, K. Takeuchi, and T. Fukagawa. 2013. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200:45-60. http://dx.doi.org/10.1083/jcb.201210106
-
(2013)
J. Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
33
-
-
79955678169
-
Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP
-
Hu, H., Y. Liu, M. Wang, J. Fang, H. Huang, N. Yang, Y. Li, J. Wang, X. Yao, Y. Shi, et al. 2011. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25:901-906. http://dx.doi.org/10.1101/gad.2045111
-
(2011)
Genes Dev.
, vol.25
, pp. 901-906
-
-
Hu, H.1
Liu, Y.2
Wang, M.3
Fang, J.4
Huang, H.5
Yang, N.6
Li, Y.7
Wang, J.8
Yao, X.9
Shi, Y.10
-
34
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen, L.E., B.E. Black, D.R. Foltz, and D.W. Cleveland. 2007. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176:795-805. http://dx.doi.org/10.1083/jcb.200701066
-
(2007)
J. Cell Biol.
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
Black, B.E.2
Foltz, D.R.3
Cleveland, D.W.4
-
35
-
-
0031437950
-
The case for epigenetic effects on centromere identity and function
-
Karpen, G.H., and R.C. Allshire. 1997. The case for epigenetic effects on centromere identity and function. Trends Genet. 13:489-496. http://dx.doi.org/10.1016/S0168-9525(97)01298-5
-
(1997)
Trends Genet.
, vol.13
, pp. 489-496
-
-
Karpen, G.H.1
Allshire, R.C.2
-
36
-
-
34548779762
-
Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells
-
Kato, T., N. Sato, S. Hayama, T. Yamabuki, T. Ito, M. Miyamoto, S. Kondo, Y. Nakamura, and Y. Daigo. 2007. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 67:8544-8553. http://dx.doi.org/10.1158/0008-5472.CAN-07-1307
-
(2007)
Cancer Res.
, vol.67
, pp. 8544-8553
-
-
Kato, T.1
Sato, N.2
Hayama, S.3
Yamabuki, T.4
Ito, T.5
Miyamoto, M.6
Kondo, S.7
Nakamura, Y.8
Daigo, Y.9
-
37
-
-
63849246525
-
Protein structure prediction on the Web: a case study using the Phyre server
-
Kelley, L.A., and M.J. Sternberg. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363-371. http://dx.doi.org/10.1038/nprot.2009.2
-
(2009)
Nat. Protoc.
, vol.4
, pp. 363-371
-
-
Kelley, L.A.1
Sternberg, M.J.2
-
38
-
-
78649835035
-
A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A
-
Lagana, A., J.F. Dorn, V. De Rop, A.M. Ladouceur, A.S. Maddox, and P.S. Maddox. 2010. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat. Cell Biol. 12:1186-1193. http://dx.doi.org/10.1038/ncb2129
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1186-1193
-
-
Lagana, A.1
Dorn, J.F.2
De Rop, V.3
Ladouceur, A.M.4
Maddox, A.S.5
Maddox, P.S.6
-
39
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
Luger, K., A.W. Mäder, R.K. Richmond, D.F. Sargent, and T.J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389:251-260. http://dx.doi.org/10.1038/38444
-
(1997)
Nature.
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mäder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
40
-
-
34547702755
-
BubR1 and CENP-E have antagonistic effects upon the stability of microtubule-kinetochore attachments in Drosophila S2 cell mitosis
-
Maia, A.F., C.S. Lopes, and C.E. Sunkel. 2007. BubR1 and CENP-E have antagonistic effects upon the stability of microtubule-kinetochore attachments in Drosophila S2 cell mitosis. Cell Cycle. 6:1367-1378. http://dx.doi.org/10.4161/cc.6.11.4271
-
(2007)
Cell Cycle.
, vol.6
, pp. 1367-1378
-
-
Maia, A.F.1
Lopes, C.S.2
Sunkel, C.E.3
-
41
-
-
10944236258
-
The dynamic kinetochore-microtubule interface
-
Maiato, H., J. DeLuca, E.D. Salmon, and W.C. Earnshaw. 2004. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117:5461-5477. http://dx.doi.org/10.1242/jcs.01536
-
(2004)
J. Cell Sci.
, vol.117
, pp. 5461-5477
-
-
Maiato, H.1
DeLuca, J.2
Salmon, E.D.3
Earnshaw, W.C.4
-
42
-
-
79958006512
-
Assembly of Drosophila centromeric chromatin proteins during mitosis
-
Mellone, B.G., K.J. Grive, V. Shteyn, S.R. Bowers, I. Oderberg, and G.H. Karpen. 2011. Assembly of Drosophila centromeric chromatin proteins during mitosis. PLoS Genet. 7:e1002068. http://dx.doi.org/10.1371/journal.pgen.1002068
-
(2011)
PLoS Genet.
, vol.7
-
-
Mellone, B.G.1
Grive, K.J.2
Shteyn, V.3
Bowers, S.R.4
Oderberg, I.5
Karpen, G.H.6
-
43
-
-
80555125093
-
Drosophila CENH3 is sufficient for centromere formation
-
Mendiburo, M.J., J. Padeken, S. Fülöp, A. Schepers, and P. Heun. 2011. Drosophila CENH3 is sufficient for centromere formation. Science. 334:686-690. http://dx.doi.org/10.1126/science.1206880
-
(2011)
Science.
, vol.334
, pp. 686-690
-
-
Mendiburo, M.J.1
Padeken, J.2
Fülöp, S.3
Schepers, A.4
Heun, P.5
-
44
-
-
84878898862
-
CENP-A confers a reduction in height on octameric nucleosomes
-
Miell, M.D., C.J. Fuller, A. Guse, H.M. Barysz, A. Downes, T. Owen-Hughes, J. Rappsilber, A.F. Straight, and R.C. Allshire. 2013. CENP-A confers a reduction in height on octameric nucleosomes. Nat. Struct. Mol. Biol. 20:763-765. http://dx.doi.org/10.1038/nsmb.2574
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 763-765
-
-
Miell, M.D.1
Fuller, C.J.2
Guse, A.3
Barysz, H.M.4
Downes, A.5
Owen-Hughes, T.6
Rappsilber, J.7
Straight, A.F.8
Allshire, R.C.9
-
45
-
-
34250173486
-
Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere- specific nucleosomes
-
Mizuguchi, G., H. Xiao, J. Wisniewski, M.M. Smith, and C. Wu. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere- specific nucleosomes. Cell. 129:1153-1164. http://dx.doi.org/10.1016/j.cell.2007.04.026
-
(2007)
Cell.
, vol.129
, pp. 1153-1164
-
-
Mizuguchi, G.1
Xiao, H.2
Wisniewski, J.3
Smith, M.M.4
Wu, C.5
-
46
-
-
80053934686
-
CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
-
Moree, B., C.B. Meyer, C.J. Fuller, and A.F. Straight. 2011. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194:855-871. http://dx.doi.org/10.1083/jcb.201106079
-
(2011)
J. Cell Biol.
, vol.194
, pp. 855-871
-
-
Moree, B.1
Meyer, C.B.2
Fuller, C.J.3
Straight, A.F.4
-
47
-
-
80052800314
-
The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID)
-
Moreno-Moreno, O., S. Medina-Giró, M. Torras-Llort, and F. Azorín. 2011. The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID). Curr. Biol. 21:1488-1493. http://dx.doi.org/10.1016/j.cub.2011.07.041
-
(2011)
Curr. Biol.
, vol.21
, pp. 1488-1493
-
-
Moreno-Moreno, O.1
Medina-Giró, S.2
Torras-Llort, M.3
Azorín, F.4
-
48
-
-
84877577424
-
Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle
-
Padeganeh, A., J. Ryan, J. Boisvert, A.M. Ladouceur, J.F. Dorn, and P.S. Maddox. 2013. Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle. Curr. Biol. 23:764-769. http://dx.doi.org/10.1016/j.cub.2013.03.037
-
(2013)
Curr. Biol.
, vol.23
, pp. 764-769
-
-
Padeganeh, A.1
Ryan, J.2
Boisvert, J.3
Ladouceur, A.M.4
Dorn, J.F.5
Maddox, P.S.6
-
49
-
-
80053653297
-
Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini
-
Panchenko, T., T.C. Sorensen, C.L. Woodcock, Z.Y. Kan, S. Wood, M.G. Resch, K. Luger, S.W. Englander, J.C. Hansen, and B.E. Black. 2011. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl. Acad. Sci. USA. 108:16588-16593. http://dx.doi.org/10.1073/pnas.1113621108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 16588-16593
-
-
Panchenko, T.1
Sorensen, T.C.2
Woodcock, C.L.3
Kan, Z.Y.4
Wood, S.5
Resch, M.G.6
Luger, K.7
Englander, S.W.8
Hansen, J.C.9
Black, B.E.10
-
50
-
-
34547126205
-
NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4
-
Peterson, S., R. Danowit, A. Wunsch, and V. Jackson. 2007. NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4. Biochemistry. 46:8634-8646. http://dx.doi.org/10.1021/bi6025215
-
(2007)
Biochemistry.
, vol.46
, pp. 8634-8646
-
-
Peterson, S.1
Danowit, R.2
Wunsch, A.3
Jackson, V.4
-
51
-
-
84864872957
-
Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila
-
Phansalkar, R., P. Lapierre, and B.G. Mellone. 2012. Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res. 20:493-504. http://dx.doi.org/10.1007/s10577-012-9299-7
-
(2012)
Chromosome Res.
, vol.20
, pp. 493-504
-
-
Phansalkar, R.1
Lapierre, P.2
Mellone, B.G.3
-
52
-
-
59649099984
-
Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin
-
Pidoux, A.L., E.S. Choi, J.K. Abbott, X. Liu, A. Kagansky, A.G. Castillo, G.L. Hamilton, W. Richardson, J. Rappsilber, X. He, and R.C. Allshire. 2009. Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell. 33:299-311. http://dx.doi.org/10.1016/j.molcel.2009.01.019
-
(2009)
Mol. Cell.
, vol.33
, pp. 299-311
-
-
Pidoux, A.L.1
Choi, E.S.2
Abbott, J.K.3
Liu, X.4
Kagansky, A.5
Castillo, A.G.6
Hamilton, G.L.7
Richardson, W.8
Rappsilber, J.9
He, X.10
Allshire, R.C.11
-
53
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka, M.R., Z. Venkei, V.M. Bolanos-Garcia, J. Debski, M. Dadlez, and D.M. Glover. 2011. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21:399-405. http://dx.doi.org/10.1016/j.cub.2011.02.005
-
(2011)
Curr. Biol.
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
Glover, D.M.6
-
54
-
-
0030461543
-
In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
-
Robinett, C.C., A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A.S. Belmont. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685-1700. http://dx.doi.org/10.1083/jcb.135.6.1685
-
(1996)
J. Cell Biol.
, vol.135
, pp. 1685-1700
-
-
Robinett, C.C.1
Straight, A.2
Li, G.3
Willhelm, C.4
Sudlow, G.5
Murray, A.6
Belmont, A.S.7
-
55
-
-
67549104312
-
Common ancestry of the CENP-A chaperones Scm3 and HJURP
-
Sanchez-Pulido, L., A.L. Pidoux, C.P. Ponting, and R.C. Allshire. 2009. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell. 137:1173-1174. http://dx.doi.org/10.1016/j.cell.2009.06.010
-
(2009)
Cell.
, vol.137
, pp. 1173-1174
-
-
Sanchez-Pulido, L.1
Pidoux, A.L.2
Ponting, C.P.3
Allshire, R.C.4
-
56
-
-
78149309083
-
Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1
-
Schittenhelm, R.B., F. Althoff, S. Heidmann, and C.F. Lehner. 2010. Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1. J. Cell Sci. 123:3768-3779. http://dx.doi.org/10.1242/jcs.067934
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3768-3779
-
-
Schittenhelm, R.B.1
Althoff, F.2
Heidmann, S.3
Lehner, C.F.4
-
57
-
-
79952364478
-
Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore
-
Screpanti, E., A. De Antoni, G.M. Alushin, A. Petrovic, T. Melis, E. Nogales, and A. Musacchio. 2011. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21:391-398. http://dx.doi.org/10.1016/j.cub.2010.12.039
-
(2011)
Curr. Biol.
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
De Antoni, A.2
Alushin, G.M.3
Petrovic, A.4
Melis, T.5
Nogales, E.6
Musacchio, A.7
-
58
-
-
0031049028
-
Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites
-
Shelby, R.D., O. Vafa, and K.F. Sullivan. 1997. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136:501-513. http://dx.doi.org/10.1083/jcb.136.3.501
-
(1997)
J. Cell Biol.
, vol.136
, pp. 501-513
-
-
Shelby, R.D.1
Vafa, O.2
Sullivan, K.F.3
-
59
-
-
79953327692
-
Scm3 is a centromeric nucleosome assembly factor
-
Shivaraju, M., R. Camahort, M. Mattingly, and J.L. Gerton. 2011. Scm3 is a centromeric nucleosome assembly factor. J. Biol. Chem. 286:12016-12023. http://dx.doi.org/10.1074/jbc. M110.183640
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12016-12023
-
-
Shivaraju, M.1
Camahort, R.2
Mattingly, M.3
Gerton, J.L.4
-
60
-
-
76549131870
-
HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres
-
Shuaib, M., K. Ouararhni, S. Dimitrov, and A. Hamiche. 2010. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl. Acad. Sci. USA. 107:1349-1354. http://dx.doi.org/10.1073/pnas.0913709107
-
(2010)
Proc. Natl. Acad. Sci. USA.
, vol.107
, pp. 1349-1354
-
-
Shuaib, M.1
Ouararhni, K.2
Dimitrov, S.3
Hamiche, A.4
-
61
-
-
23144452044
-
The HHpred interactive server for protein homology detection and structure prediction
-
web server, web server issue
-
Söding, J., A. Biegert, and A.N. Lupas. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33(Web Server, Web Server issue):W244-W248. http://dx.doi.org/10.1093/nar/gki408
-
(2005)
Nucleic Acids Res.
, vol.33
-
-
Söding, J.1
Biegert, A.2
Lupas, A.N.3
-
62
-
-
34547112848
-
Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization
-
Stoler, S., K. Rogers, S. Weitze, L. Morey, M. Fitzgerald-Hayes, and R.E. Baker. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. USA. 104:10571-10576. http://dx.doi.org/10.1073/pnas.0703178104
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 10571-10576
-
-
Stoler, S.1
Rogers, K.2
Weitze, S.3
Morey, L.4
Fitzgerald-Hayes, M.5
Baker, R.E.6
-
63
-
-
0030474371
-
GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
-
Straight, A.F., A.S. Belmont, C.C. Robinett, and A.W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599-1608. http://dx.doi.org/10.1016/S0960-9822(02)70783-5
-
(1996)
Curr. Biol.
, vol.6
, pp. 1599-1608
-
-
Straight, A.F.1
Belmont, A.S.2
Robinett, C.C.3
Murray, A.W.4
-
64
-
-
80051685994
-
Crystal structure of the human centromeric nucleosome containing CENP-A
-
Tachiwana, H., W. Kagawa, T. Shiga, A. Osakabe, Y. Miya, K. Saito, Y. Hayashi- Takanaka, T. Oda, M. Sato, S.Y. Park, et al. 2011. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 476:232-235. http://dx.doi.org/10.1038/nature10258
-
(2011)
Nature.
, vol.476
, pp. 232-235
-
-
Tachiwana, H.1
Kagawa, W.2
Shiga, T.3
Osakabe, A.4
Miya, Y.5
Saito, K.6
Hayashi-Takanaka, Y.7
Oda, T.8
Sato, M.9
Park, S.Y.10
-
65
-
-
0036837686
-
Centromere targeting element within the histone fold domain of Cid
-
Vermaak, D., H.S. Hayden, and S. Henikoff. 2002. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 22:7553-7561. http://dx.doi.org/10.1128/MCB.22.21.7553-7561.2002
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 7553-7561
-
-
Vermaak, D.1
Hayden, H.S.2
Henikoff, S.3
-
66
-
-
0034691161
-
Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro
-
Yoda, K., S. Ando, S. Morishita, K. Houmura, K. Hashimoto, K. Takeyasu, and T. Okazaki. 2000. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl. Acad. Sci. USA. 97:7266-7271. http://dx.doi.org/10.1073/pnas.130189697
-
(2000)
Proc. Natl. Acad. Sci. USA.
, vol.97
, pp. 7266-7271
-
-
Yoda, K.1
Ando, S.2
Morishita, S.3
Houmura, K.4
Hashimoto, K.5
Takeyasu, K.6
Okazaki, T.7
-
67
-
-
84856278738
-
Assembly of Drosophila centromeric nucleosomes requires CID dimerization
-
Zhang, W., S.U. Colmenares, and G.H. Karpen. 2012. Assembly of Drosophila centromeric nucleosomes requires CID dimerization. Mol. Cell. 45:263-269. http://dx.doi.org/10.1016/j.molcel.2011.12.010
-
(2012)
Mol. Cell.
, vol.45
, pp. 263-269
-
-
Zhang, W.1
Colmenares, S.U.2
Karpen, G.H.3
-
68
-
-
79954613013
-
Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3
-
Zhou, Z., H. Feng, B.R. Zhou, R. Ghirlando, K. Hu, A. Zwolak, L.M. Miller Jenkins, H. Xiao, N. Tjandra, C. Wu, and Y. Bai. 2011. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature. 472:234-237. http://dx.doi.org/10.1038/nature09854
-
(2011)
Nature.
, vol.472
, pp. 234-237
-
-
Zhou, Z.1
Feng, H.2
Zhou, B.R.3
Ghirlando, R.4
Hu, K.5
Zwolak, A.6
Miller Jenkins, L.M.7
Xiao, H.8
Tjandra, N.9
Wu, C.10
Bai, Y.11
|