-
1
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
doi:10.1083/jcb.200903100
-
Amano, M., A. Suzuki, T. Hori, C. Backer, K. Okawa, I.M. Cheeseman, and T. Fukagawa. 2009. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186:173-182. doi:10.1083/jcb. 200903100
-
(2009)
J. Cell Biol.
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
Cheeseman, I.M.6
Fukagawa, T.7
-
2
-
-
0036121561
-
CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells
-
doi:10.1128/MCB.22.7.2229-2241.2002
-
Ando, S., H. Yang, N. Nozaki, T. Okazaki, and K. Yoda. 2002. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell. Biol. 22:2229-2241. doi:10.1128/MCB.22.7.2229-2241.2002
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 2229-2241
-
-
Ando, S.1
Yang, H.2
Nozaki, N.3
Okazaki, T.4
Yoda, K.5
-
3
-
-
75749152978
-
MultiBac: Multigene baculovirus-based eukaryotic protein complex production
-
Chapter 5:Unit 5.20
-
Bieniossek, C., T.J. Richmond, and I. Berger. 2008. MultiBac: multigene baculovirus-based eukaryotic protein complex production. Curr. Protoc. Protein Sci. Chapter 5:Unit 5.20.
-
(2008)
Curr. Protoc. Protein Sci.
-
-
Bieniossek, C.1
Richmond, T.J.2
Berger, I.3
-
4
-
-
0034599522
-
The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer
-
doi:10.1093/emboj/19.7.1587
-
Brasher, S.V., B.O. Smith, R.H. Fogh, D. Nietlispach, A. Thiru, P.R. Nielsen, R.W. Broadhurst, L.J. Ball, N.V. Murzina, and E.D. Laue. 2000. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19:1587-1597. doi:10.1093/emboj/19.7. 1587
-
(2000)
EMBO J.
, vol.19
, pp. 1587-1597
-
-
Brasher, S.V.1
Smith, B.O.2
Fogh, R.H.3
Nietlispach, D.4
Thiru, A.5
Nielsen, P.R.6
Broadhurst, R.W.7
Ball, L.J.8
Murzina, N.V.9
Laue, E.D.10
-
5
-
-
67650065426
-
Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
-
doi:10.1038/ncb1899
-
Carroll, C.W., M.C. Silva, K.M. Godek, L.E. Jansen, and A.F. Straight. 2009. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 11:896-902. doi:10.1038/ncb1899
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 896-902
-
-
Carroll, C.W.1
Silva, M.C.2
Godek, K.M.3
Jansen, L.E.4
Straight, A.F.5
-
6
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
doi:10.1083/jcb.201001013
-
Carroll, C.W., K.J. Milks, and A.F. Straight. 2010. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189:1143-1155. doi:10.1083/jcb.201001013
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
7
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
doi:10.1038/nrm2310
-
Cheeseman, I.M., and A. Desai. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9:33-46. doi:10.1038/nrm2310
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
8
-
-
4444241998
-
A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
-
doi:10.1101/gad.1234104
-
Cheeseman, I.M., S. Niessen, S. Anderson, F. Hyndman, J.R. Yates III, K. Oegema, and A. Desai. 2004. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18:2255-2268. doi:10.1101/gad.1234104
-
(2004)
Genes Dev.
, vol.18
, pp. 2255-2268
-
-
Cheeseman, I.M.1
Niessen, S.2
Anderson, S.3
Hyndman, F.4
Yates III, J.R.5
Oegema, K.6
Desai, A.7
-
9
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
doi:10.1016/j.cell.2006.09.039
-
Cheeseman, I.M., J.S. Chappie, E.M. Wilson-Kubalek, and A. Desai. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell. 127:983-997. doi:10.1016/j.cell.2006.09.039
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
10
-
-
39449096363
-
KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates
-
doi:10.1091/mbc.E07-10-1051
-
Cheeseman, I.M., T. Hori, T. Fukagawa, and A. Desai. 2008. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell. 19:587-594. doi:10.1091/mbc.E07-10-1051
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 587-594
-
-
Cheeseman, I.M.1
Hori, T.2
Fukagawa, T.3
Desai, A.4
-
11
-
-
23844460843
-
Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore
-
doi:10.1074/jbc.M504070200
-
Ciferri, C., J. De Luca, S. Monzani, K.J. Ferrari, D. Ristic, C. Wyman, H. Stark, J. Kilmartin, E.D. Salmon, and A. Musacchio. 2005. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280:29088-29095. doi:10.1074/jbc.M504070200
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29088-29095
-
-
Ciferri, C.1
De Luca, J.2
Monzani, S.3
Ferrari, K.J.4
Ristic, D.5
Wyman, C.6
Stark, H.7
Kilmartin, J.8
Salmon, E.D.9
Musacchio, A.10
-
12
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
doi:10.1016/j.cell.2008.03.020
-
Ciferri, C., S. Pasqualato, E. Screpanti, G. Varetti, S. Santaguida, G. Dos Reis, A. Maiolica, J. Polka, J.G. De Luca, P. De Wulf, et al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell. 133:427-439. doi:10.1016/j.cell.2008.03.020
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
Santaguida, S.5
Dos Reis, G.6
Maiolica, A.7
Polka, J.8
De Luca, J.G.9
De Wulf, P.10
-
13
-
-
55349136473
-
Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein
-
doi:10.1091/mbc.E08-03-0297
-
Cohen, R.L., C.W. Espelin, P. De Wulf, P.K. Sorger, S.C. Harrison, and K.T. Simons. 2008. Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol. Biol. Cell. 19:4480-4491. doi:10.1091/mbc.E08-03-0297
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 4480-4491
-
-
Cohen, R.L.1
Espelin, C.W.2
De Wulf, P.3
Sorger, P.K.4
Harrison, S.C.5
Simons, K.T.6
-
14
-
-
0346753737
-
Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes
-
doi:10.1101/gad.1144403
-
De Wulf, P., A.D. McAinsh, and P.K. Sorger. 2003. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17:2902-2921. doi:10.1101/gad.1144403
-
(2003)
Genes Dev.
, vol.17
, pp. 2902-2921
-
-
De Wulf, P.1
McAinsh, A.D.2
Sorger, P.K.3
-
15
-
-
12844283239
-
Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites
-
doi:10.1091/mbc.E04-09-0852
-
DeLuca, J.G., Y. Dong, P. Hergert, J. Strauss, J.M. Hickey, E.D. Salmon, and B.F. McEwen. 2005. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell. 16:519-531. doi:10.1091/mbc.E04-09-0852
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 519-531
-
-
DeLuca, J.G.1
Dong, Y.2
Hergert, P.3
Strauss, J.4
Hickey, J.M.5
Salmon, E.D.6
McEwen, B.F.7
-
16
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
doi:10.1016/j.cell.2006.09.047
-
DeLuca, J.G., W.E. Gall, C. Ciferri, D. Cimini, A. Musacchio, and E.D. Salmon. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell. 127:969-982. doi:10.1016/j.cell.2006.09.047
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
17
-
-
0141818005
-
KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans
-
doi:10.1101/gad.1126303
-
Desai, A., S. Rybina, T. Müller-Reichert, A. Shevchenko, A. Shevchenko, A. Hyman, and K. Oegema. 2003. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17:2421-2435. doi:10.1101/gad.1126303
-
(2003)
Genes Dev.
, vol.17
, pp. 2421-2435
-
-
Desai, A.1
Rybina, S.2
Müller-Reichert, T.3
Shevchenko, A.4
Shevchenko, A.5
Hyman, A.6
Oegema, K.7
-
18
-
-
34247891773
-
The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions
-
doi:10.1038/ncb1576
-
Dong, Y., K.J. Vanden Beldt, X. Meng, A. Khodjakov, and B.F. McEwen. 2007. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9:516-522. doi:10.1038/ncb1576
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 516-522
-
-
Dong, Y.1
Vanden Beldt, K.J.2
Meng, X.3
Khodjakov, A.4
McEwen, B.F.5
-
19
-
-
26244443799
-
Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore
-
doi:10.1091/mbc.E05-03-0239
-
Emanuele, M.J., M.L. McCleland, D.L. Satinover, and P.T. Stukenberg. 2005. Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol. Biol. Cell. 16:4882-4892. doi:10.1091/mbc.E05-03-0239
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 4882-4892
-
-
Emanuele, M.J.1
McCleland, M.L.2
Satinover, D.L.3
Stukenberg, P.T.4
-
20
-
-
58149305928
-
Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
-
doi:10.1083/jcb.200806038
-
Erhardt, S., B.G. Mellone, C.M. Betts, W. Zhang, G.H. Karpen, and A.F. Straight. 2008. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183:805-818. doi:10.1083/jcb.200806038
-
(2008)
J. Cell Biol.
, vol.183
, pp. 805-818
-
-
Erhardt, S.1
Mellone, B.G.2
Betts, C.M.3
Zhang, W.4
Karpen, G.H.5
Straight, A.F.6
-
21
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
doi:10.1038/ncb1397
-
Foltz, D.R., L.E. Jansen, B.E. Black, A.O. Bailey, J.R. Yates III, and D.W. Cleveland. 2006. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8:458-469. doi:10.1038/ncb1397
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates III, J.R.5
Cleveland, D.W.6
-
22
-
-
43149104627
-
Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation
-
doi:10.1038/ncb1702
-
Gestaut, D.R., B. Graczyk, J. Cooper, P.O. Widlund, A. Zelter, L. Wordeman, C.L. Asbury, and T.N. Davis. 2008. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat. Cell Biol. 10:407-414. doi:10.1038/ncb1702
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 407-414
-
-
Gestaut, D.R.1
Graczyk, B.2
Cooper, J.3
Widlund, P.O.4
Zelter, A.5
Wordeman, L.6
Asbury, C.L.7
Davis, T.N.8
-
23
-
-
41549127153
-
Dynamics of inner kinetochore assembly and maintenance in living cells
-
doi:10.1083/jcb.200710052
-
Hemmerich, P., S. Weidtkamp-Peters, C. Hoischen, L. Schmiedeberg, I. Erliandri, and S. Diekmann. 2008. Dynamics of inner kinetochore assembly and maintenance in living cells. J. Cell Biol. 180:1101-1114. doi:10.1083/jcb. 200710052
-
(2008)
J. Cell Biol.
, vol.180
, pp. 1101-1114
-
-
Hemmerich, P.1
Weidtkamp-Peters, S.2
Hoischen, C.3
Schmiedeberg, L.4
Erliandri, I.5
Diekmann, S.6
-
24
-
-
0042887146
-
Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells
-
doi:10.1242/jcs.00645
-
Hori, T., T. Haraguchi, Y. Hiraoka, H. Kimura, and T. Fukagawa. 2003. Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116:3347-3362. doi:10.1242/jcs.00645
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3347-3362
-
-
Hori, T.1
Haraguchi, T.2
Hiraoka, Y.3
Kimura, H.4
Fukagawa, T.5
-
25
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
doi:10.1016/j.cell.2008.10.019
-
Hori, T., M. Amano, A. Suzuki, C.B. Backer, J.P. Welburn, Y. Dong, B.F. McEwen, W.H. Shang, E. Suzuki, K. Okawa, et al. 2008. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell. 135:1039-1052. doi:10.1016/j.cell.2008.10.019
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
Dong, Y.6
McEwen, B.F.7
Shang, W.H.8
Suzuki, E.9
Okawa, K.10
-
26
-
-
33744804567
-
Molecular architecture of a kinetochore-microtubule attachment site
-
doi:10.1038/ncb1414
-
Joglekar, A.P., D.C. Bouck, J.N. Molk, K.S. Bloom, and E.D. Salmon. 2006. Molecular architecture of a kinetochore-microtubule attachment site. Nat. Cell Biol. 8:581-585. doi:10.1038/ncb1414
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 581-585
-
-
Joglekar, A.P.1
Bouck, D.C.2
Molk, J.N.3
Bloom, K.S.4
Salmon, E.D.5
-
27
-
-
44149083326
-
Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
-
doi:10.1083/jcb.200803027
-
Joglekar, A.P., D. Bouck, K. Finley, X. Liu, Y. Wan, J. Berman, X. He, E.D. Salmon, and K.S. Bloom. 2008. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181:587-594. doi:10.1083/jcb.200803027
-
(2008)
J. Cell Biol.
, vol.181
, pp. 587-594
-
-
Joglekar, A.P.1
Bouck, D.2
Finley, K.3
Liu, X.4
Wan, Y.5
Berman, J.6
He, X.7
Salmon, E.D.8
Bloom, K.S.9
-
28
-
-
65049088564
-
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
-
doi:10.1016/j.cub.2009.02.056
-
Joglekar, A.P., K. Bloom, and E.D. Salmon. 2009. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19:694-699. doi:10.1016/j.cub.2009.02.056
-
(2009)
Curr. Biol.
, vol.19
, pp. 694-699
-
-
Joglekar, A.P.1
Bloom, K.2
Salmon, E.D.3
-
29
-
-
77953574250
-
Vertebrate kinetochore protein architecture: Protein copy number
-
doi:10.1083/jcb.200912022
-
Johnston, K., A. Joglekar, T. Hori, A. Suzuki, T. Fukagawa, and E.D. Salmon. 2010. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189:937-943. doi:10.1083/jcb.200912022
-
(2010)
J. Cell Biol.
, vol.189
, pp. 937-943
-
-
Johnston, K.1
Joglekar, A.2
Hori, T.3
Suzuki, A.4
Fukagawa, T.5
Salmon, E.D.6
-
30
-
-
37749007365
-
GraFix: Sample preparation for single-particle electron cryomicroscopy
-
doi:10.1038/nmeth1139
-
Kastner, B., N. Fischer, M.M. Golas, B. Sander, P. Dube, D. Boehringer, K. Hartmuth, J. Deckert, F. Hauer, E. Wolf, et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods. 5:53-55. doi:10.1038/nmeth1139
-
(2008)
Nat. Methods.
, vol.5
, pp. 53-55
-
-
Kastner, B.1
Fischer, N.2
Golas, M.M.3
Sander, B.4
Dube, P.5
Boehringer, D.6
Hartmuth, K.7
Deckert, J.8
Hauer, F.9
Wolf, E.10
-
31
-
-
35649019314
-
Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
-
doi:10.1016/j.devcel.2007.09.005
-
Kiyomitsu, T., C. Obuse, and M. Yanagida. 2007. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell. 13:663-676. doi:10.1016/j.devcel. 2007.09.005
-
(2007)
Dev. Cell.
, vol.13
, pp. 663-676
-
-
Kiyomitsu, T.1
Obuse, C.2
Yanagida, M.3
-
32
-
-
77949755046
-
Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes
-
doi:10.1083/jcb.200908096
-
Kiyomitsu, T., O. Iwasaki, C. Obuse, and M. Yanagida. 2010. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol. 188:791-807. doi:10.1083/jcb.200908096
-
(2010)
J. Cell Biol.
, vol.188
, pp. 791-807
-
-
Kiyomitsu, T.1
Iwasaki, O.2
Obuse, C.3
Yanagida, M.4
-
33
-
-
33645730743
-
The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation
-
doi:10.1083/jcb.200509158
-
Kline, S.L., I.M. Cheeseman, T. Hori, T. Fukagawa, and A. Desai. 2006. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173:9-17. doi:10.1083/jcb.200509158
-
(2006)
J. Cell Biol.
, vol.173
, pp. 9-17
-
-
Kline, S.L.1
Cheeseman, I.M.2
Hori, T.3
Fukagawa, T.4
Desai, A.5
-
34
-
-
17644396387
-
ZW10 links mitotic checkpoint signaling to the structural kinetochore
-
doi:10.1083/jcb.200411118
-
Kops, G.J., Y. Kim, B.A. Weaver, Y. Mao, I. McLeod, J.R. Yates III, M. Tagaya, and D.W. Cleveland. 2005. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 169:49-60. doi:10.1083/jcb.200411118
-
(2005)
J. Cell Biol.
, vol.169
, pp. 49-60
-
-
Kops, G.J.1
Kim, Y.2
Weaver, B.A.3
Mao, Y.4
McLeod, I.5
Yates III, J.R.6
Tagaya, M.7
Cleveland, D.W.8
-
35
-
-
34250346905
-
CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
-
doi:10.1091/mbc.E07-01-0045
-
Kwon, M.S., T. Hori, M. Okada, and T. Fukagawa. 2007. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell. 18:2155-2168. doi:10.1091/mbc.E07-01-0045
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 2155-2168
-
-
Kwon, M.S.1
Hori, T.2
Okada, M.3
Fukagawa, T.4
-
36
-
-
77952377598
-
The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
-
doi:10.1083/jcb.200912021
-
Lampert, F., P. Hornung, and S. Westermann. 2010. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189:641-649. doi:10.1083/jcb.200912021
-
(2010)
J. Cell Biol.
, vol.189
, pp. 641-649
-
-
Lampert, F.1
Hornung, P.2
Westermann, S.3
-
37
-
-
62149111407
-
Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates
-
doi:10.1126/science.1167000
-
Liu, D., G. Vader, M.J. Vromans, M.A. Lampson, and S.M. Lens. 2009. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science. 323:1350-1353. doi:10.1126/science.1167000
-
(2009)
Science
, vol.323
, pp. 1350-1353
-
-
Liu, D.1
Vader, G.2
Vromans, M.J.3
Lampson, M.A.4
Lens, S.M.5
-
38
-
-
33749569228
-
Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells
-
doi:10.1083/jcb.200606020
-
Liu, S.T., J.B. Rattner, S.A. Jablonski, and T.J. Yen. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175:41-53. doi:10.1083/jcb.200606020
-
(2006)
J. Cell Biol.
, vol.175
, pp. 41-53
-
-
Liu, S.T.1
Rattner, J.B.2
Jablonski, S.A.3
Yen, T.J.4
-
39
-
-
27844498429
-
Molecular analysis of kinetochore architecture in fission yeast
-
doi:10.1038/sj.emboj.7600762
-
Liu, X., I. McLeod, S. Anderson, J.R. Yates III, and X. He. 2005. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 24:2919-2930. doi:10.1038/sj.emboj.7600762
-
(2005)
EMBO J.
, vol.24
, pp. 2919-2930
-
-
Liu, X.1
McLeod, I.2
Anderson, S.3
Yates III, J.R.4
He, X.5
-
40
-
-
33845192953
-
The Heterochromatin Protein 1 family
-
doi:10.1186/gb-2006-7-7-228
-
Lomberk, G., L. Wallrath, and R. Urrutia. 2006. The Heterochromatin Protein 1 family. Genome Biol. 7:228. doi:10.1186/gb-2006-7-7-228
-
(2006)
Genome Biol.
, vol.7
, pp. 228
-
-
Lomberk, G.1
Wallrath, L.2
Urrutia, R.3
-
41
-
-
0026356891
-
Predicting coiled coils from protein sequences
-
doi:10.1126/science.252.5009.1162
-
Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science. 252:1162-1164. doi:10.1126/science.252.5009.1162
-
(1991)
Science
, vol.252
, pp. 1162-1164
-
-
Lupas, A.1
Van Dyke, M.2
Stock, J.3
-
42
-
-
38349037648
-
Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching
-
doi:10.1074/mcp.M700274-MCP200
-
Maiolica, A., D. Cittaro, D. Borsotti, L. Sennels, C. Ciferri, C. Tarricone, A. Musacchio, and J. Rappsilber. 2007. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol. Cell. Proteomics. 6:2200-2211. doi:10.1074/mcp.M700274-MCP200
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 2200-2211
-
-
Maiolica, A.1
Cittaro, D.2
Borsotti, D.3
Sennels, L.4
Ciferri, C.5
Tarricone, C.6
Musacchio, A.7
Rappsilber, J.8
-
43
-
-
62849085547
-
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
-
doi:10.1083/jcb.200808130
-
Maresca, T.J., and E.D. Salmon. 2009. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184:373-381. doi:10.1083/jcb.200808130
-
(2009)
J. Cell Biol.
, vol.184
, pp. 373-381
-
-
Maresca, T.J.1
Salmon, E.D.2
-
44
-
-
77956361304
-
Molecular architecture and assembly of the yeast kinetochore MIND complex
-
doi:10.1083/jcb.201002059
-
Maskell, D.P., X.-W. Hu, and M.R. Singleton. 2010. Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190:823-834. doi:10.1083/jcb.201002059
-
(2010)
J. Cell Biol.
, vol.190
, pp. 823-834
-
-
Maskell, D.P.1
Hu, X.-W.2
Singleton, M.R.3
-
45
-
-
0037227023
-
The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity
-
doi:10.1101/gad.1040903
-
McCleland, M.L., R.D. Gardner, M.J. Kallio, J.R. Daum, G.J. Gorbsky, D.J. Burke, and P.T. Stukenberg. 2003. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17:101-114. doi:10.1101/gad.1040903
-
(2003)
Genes Dev.
, vol.17
, pp. 101-114
-
-
McCleland, M.L.1
Gardner, R.D.2
Kallio, M.J.3
Daum, J.R.4
Gorbsky, G.J.5
Burke, D.J.6
Stukenberg, P.T.7
-
46
-
-
53549118867
-
Fibrils connect microtubule tips with kinetochores: A mechanism to couple tubulin dynamics to chromosome motion
-
doi:10.1016/j.cell.2008.08.038
-
McIntosh, J.R., E.L. Grishchuk, M.K. Morphew, A.K. Efremov, K. Zhudenkov, V.A. Volkov, I.M. Cheeseman, A. Desai, D.N. Mastronarde, and F.I. Ataullakhanov. 2008. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell. 135:322-333. doi:10.1016/j.cell.2008.08.038
-
(2008)
Cell
, vol.135
, pp. 322-333
-
-
McIntosh, J.R.1
Grishchuk, E.L.2
Morphew, M.K.3
Efremov, A.K.4
Zhudenkov, K.5
Volkov, V.A.6
Cheeseman, I.M.7
Desai, A.8
Mastronarde, D.N.9
Ataullakhanov, F.I.10
-
47
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
doi:10.1186/gb-2006-7-3-r23
-
Meraldi, P., A.D. McAinsh, E. Rheinbay, and P.K. Sorger. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7:R23. doi:10.1186/gb-2006-7-3-r23
-
(2006)
Genome Biol.
, vol.7
-
-
Meraldi, P.1
McAinsh, A.D.2
Rheinbay, E.3
Sorger, P.K.4
-
48
-
-
14044250885
-
The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis
-
doi:10.1128/MCB.25.5.1958-1970.2005
-
Mikami, Y., T. Hori, H. Kimura, and T. Fukagawa. 2005. The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis. Mol. Cell. Biol. 25:1958-1970. doi:10.1128/MCB.25.5.1958-1970. 2005
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 1958-1970
-
-
Mikami, Y.1
Hori, T.2
Kimura, H.3
Fukagawa, T.4
-
49
-
-
70350234658
-
Dissection of CENP-C-directed centromere and kinetochore assembly
-
doi:10.1091/mbc.E09-05-0378
-
Milks, K.J., B. Moree, and A.F. Straight. 2009. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol. Biol. Cell. 20:4246-4255. doi:10.1091/mbc.E09-05-0378
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4246-4255
-
-
Milks, K.J.1
Moree, B.2
Straight, A.F.3
-
50
-
-
15444372660
-
The yeast DASH complex forms closed rings on microtubules
-
doi:10.1038/nsmb896
-
Miranda, J.J., P. De Wulf, P.K. Sorger, and S.C. Harrison. 2005. The yeast DASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 12:138-143. doi:10.1038/nsmb896
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 138-143
-
-
Miranda, J.J.1
De Wulf, P.2
Sorger, P.K.3
Harrison, S.C.4
-
51
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
doi:10.1038/nrm2163
-
Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379-393. doi:10.1038/nrm2163
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
52
-
-
0344875491
-
Interactions between centromere complexes in Saccharomyces cerevisiae
-
doi:10.1091/mbc.E03-06-0419
-
Nekrasov, V.S., M.A. Smith, S. Peak-Chew, and J.V. Kilmartin. 2003. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell. 14:4931-4946. doi:10.1091/mbc.E03-06-0419
-
(2003)
Mol. Biol. Cell.
, vol.14
, pp. 4931-4946
-
-
Nekrasov, V.S.1
Smith, M.A.2
Peak-Chew, S.3
Kilmartin, J.V.4
-
53
-
-
7944223653
-
A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1
-
doi:10.1038/ncb1187
-
Obuse, C., O. Iwasaki, T. Kiyomitsu, G. Goshima, Y. Toyoda, and M. Yanagida. 2004. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol. 6:1135-1141. doi:10.1038/ncb1187
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1135-1141
-
-
Obuse, C.1
Iwasaki, O.2
Kiyomitsu, T.3
Goshima, G.4
Toyoda, Y.5
Yanagida, M.6
-
54
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
doi:10.1038/ncb1396
-
Okada, M., I.M. Cheeseman, T. Hori, K. Okawa, I.X. McLeod, J.R. Yates III, A. Desai, and T. Fukagawa. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8:446-457. doi:10.1038/ncb1396
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates III, J.R.6
Desai, A.7
Fukagawa, T.8
-
55
-
-
70449626289
-
Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint
-
doi:10.1371/journal.pone.0007640
-
Pagliuca, C., V.M. Draviam, E. Marco, P.K. Sorger, and P. De Wulf. 2009. Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS One. 4:e7640. doi:10.1371/journal.pone.0007640
-
(2009)
PLoS One
, vol.4
-
-
Pagliuca, C.1
Draviam, V.M.2
Marco, E.3
Sorger, P.K.4
De Wulf, P.5
-
56
-
-
17944380227
-
Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability
-
doi:10.1016/S0092-8674(01)00542-6
-
Peters, A.H., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schöfer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, et al. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107:323-337. doi:10.1016/S0092- 8674(01)00542-6
-
(2001)
Cell
, vol.107
, pp. 323-337
-
-
Peters, A.H.1
O'Carroll, D.2
Scherthan, H.3
Mechtler, K.4
Sauer, S.5
Schöfer, C.6
Weipoltshammer, K.7
Pagani, M.8
Lachner, M.9
Kohlmaier, A.10
-
57
-
-
20544448953
-
The role of heterochromatin in centromere function
-
doi:10.1098/rstb.2004.1611
-
Pidoux, A.L., and R.C. Allshire. 2005. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:569-579. doi:10.1098/rstb.2004.1611
-
(2005)
Philos. Trans. R. Soc. Lond. B Biol. Sci.
, vol.360
, pp. 569-579
-
-
Pidoux, A.L.1
Allshire, R.C.2
-
58
-
-
0242268027
-
An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase
-
doi:10.1016/S1534-5807(03)00322-8
-
Pinsky, B.A., S.Y. Tatsutani, K.A. Collins, and S. Biggins. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell. 5:735-745. doi:10.1016/S1534-5807(03)00322-8
-
(2003)
Dev. Cell
, vol.5
, pp. 735-745
-
-
Pinsky, B.A.1
Tatsutani, S.Y.2
Collins, K.A.3
Biggins, S.4
-
59
-
-
35649025423
-
Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster
-
doi:10.1371/journal.pone.0000478
-
Przewloka, M.R., W. Zhang, P. Costa, V. Archambault, P.P. D'Avino, K.S. Lilley, E.D. Laue, A.D. McAinsh, and D.M. Glover. 2007. Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One. 2:e478. doi:10.1371/journal.pone.0000478
-
(2007)
PLoS One
, vol.2
-
-
Przewloka, M.R.1
Zhang, W.2
Costa, P.3
Archambault, V.4
D'Avino, P.P.5
Lilley, K.S.6
Laue, E.D.7
McAinsh, A.D.8
Glover, D.M.9
-
60
-
-
77953801741
-
A super-resolution map of the vertebrate kinetochore
-
doi:10.1073/pnas.1002325107
-
Ribeiro, S.A., P. Vagnarelli, Y. Dong, T. Hori, B.F. McEwen, T. Fukagawa, C. Flors, and W.C. Earnshaw. 2010. A super-resolution map of the vertebrate kinetochore. Proc. Natl. Acad. Sci. USA. 107:10484-10489. doi:10.1073/pnas. 1002325107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 10484-10489
-
-
Ribeiro, S.A.1
Vagnarelli, P.2
Dong, Y.3
Hori, T.4
McEwen, B.F.5
Fukagawa, T.6
Flors, C.7
Earnshaw, W.C.8
-
61
-
-
0142187117
-
Corrim-based alignment for improved speed in single-particle image processing
-
doi:10.1016/j.jsb.2003.08.001
-
Sander, B., M.M. Golas, and H. Stark. 2003. Corrim-based alignment for improved speed in single-particle image processing. J. Struct. Biol. 143:219-228. doi:10.1016/j.jsb.2003.08.001
-
(2003)
J. Struct. Biol.
, vol.143
, pp. 219-228
-
-
Sander, B.1
Golas, M.M.2
Stark, H.3
-
62
-
-
69849107380
-
The life and miracles of kinetochores
-
doi:10.1038/emboj.2009.173
-
Santaguida, S., and A. Musacchio. 2009. The life and miracles of kinetochores. EMBO J. 28:2511-2531. doi:10.1038/emboj.2009.173
-
(2009)
EMBO J.
, vol.28
, pp. 2511-2531
-
-
Santaguida, S.1
Musacchio, A.2
-
63
-
-
77954698217
-
Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine
-
doi:10.1083/jcb.201001036
-
Santaguida, S., A. Tighe, A.M. D'Alise, S.S. Taylor, and A. Musacchio. 2010. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190:73-87. doi:10.1083/jcb.201001036
-
(2010)
J. Cell Biol.
, vol.190
, pp. 73-87
-
-
Santaguida, S.1
Tighe, A.2
D'Alise, A.M.3
Taylor, S.S.4
Musacchio, A.5
-
64
-
-
34347215876
-
Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes
-
doi:10.1007/s00412-007-0103-y
-
Schittenhelm, R.B., S. Heeger, F. Althoff, A. Walter, S. Heidmann, K. Mechtler, and C.F. Lehner. 2007. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma. 116:385-402. doi:10.1007/s00412-007-0103-y
-
(2007)
Chromosoma
, vol.116
, pp. 385-402
-
-
Schittenhelm, R.B.1
Heeger, S.2
Althoff, F.3
Walter, A.4
Heidmann, S.5
Mechtler, K.6
Lehner, C.F.7
-
65
-
-
69249206590
-
Intrakinetochore localization and essential functional domains of Drosophila Spc105
-
doi:10.1038/emboj.2009.188
-
Schittenhelm, R.B., R. Chaleckis, and C.F. Lehner. 2009. Intrakinetochore localization and essential functional domains of Drosophila Spc105. EMBO J. 28:2374-2386. doi:10.1038/emboj.2009.188
-
(2009)
EMBO J.
, vol.28
, pp. 2374-2386
-
-
Schittenhelm, R.B.1
Chaleckis, R.2
Lehner, C.F.3
-
66
-
-
0034009520
-
Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
-
doi:10.1016/S0006-3495(00)76713-0
-
Schuck, P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78:1606-1619. doi:10.1016/S0006-3495(00)76713-0
-
(2000)
Biophys. J.
, vol.78
, pp. 1606-1619
-
-
Schuck, P.1
-
67
-
-
27744470402
-
Adaptive evolution of centromere proteins in plants and animals
-
doi:10.1186/jbiol11
-
Talbert, P.B., T.D. Bryson, and S. Henikoff. 2004. Adaptive evolution of centromere proteins in plants and animals. J. Biol. 3:18. doi:10.1186/jbiol11
-
(2004)
J. Biol.
, vol.3
, pp. 18
-
-
Talbert, P.B.1
Bryson, T.D.2
Henikoff, S.3
-
68
-
-
14844303376
-
The pST44 polycistronic expression system for producing protein complexes in Escherichia coli
-
doi:10.1016/j.pep.2004.12.002
-
Tan, S., R.C. Kern, and W. Selleck. 2005. The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr. Purif. 40:385-395. doi:10.1016/j.pep.2004.12.002
-
(2005)
Protein Expr. Purif.
, vol.40
, pp. 385-395
-
-
Tan, S.1
Kern, R.C.2
Selleck, W.3
-
69
-
-
77952377597
-
Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B
-
doi:10.1083/jcb.200910142
-
Tien, J.F., N.T. Umbreit, D.R. Gestaut, A.D. Franck, J. Cooper, L. Wordeman, T. Gonen, C.L. Asbury, and T.N. Davis. 2010. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J. Cell Biol. 189:713-723. doi:10.1083/jcb.200910142
-
(2010)
J. Cell Biol.
, vol.189
, pp. 713-723
-
-
Tien, J.F.1
Umbreit, N.T.2
Gestaut, D.R.3
Franck, A.D.4
Cooper, J.5
Wordeman, L.6
Gonen, T.7
Asbury, C.L.8
Davis, T.N.9
-
70
-
-
67149128090
-
The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation
-
doi:10.1371/journal.pone.0005832
-
Trazzi, S., G. Perini, R. Bernardoni, M. Zoli, J.C. Reese, A. Musacchio, and G. Della Valle. 2009. The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation. PLoS One. 4:e5832. doi:10.1371/journal.pone.0005832
-
(2009)
PLoS One
, vol.4
-
-
Trazzi, S.1
Perini, G.2
Bernardoni, R.3
Zoli, M.4
Reese, J.C.5
Musacchio, A.6
Della Valle, G.7
-
71
-
-
62849128355
-
Kinetochore stretching inactivates the spindle assembly checkpoint
-
doi:10.1083/jcb.200811028
-
Uchida, K.S., K. Takagaki, K. Kumada, Y. Hirayama, T. Noda, and T. Hirota. 2009. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184:383-390. doi:10.1083/jcb.200811028
-
(2009)
J. Cell Biol.
, vol.184
, pp. 383-390
-
-
Uchida, K.S.1
Takagaki, K.2
Kumada, K.3
Hirayama, Y.4
Noda, T.5
Hirota, T.6
-
72
-
-
0019728717
-
Use of multivariate statistics in analysing the images of biological macromolecules
-
van Heel, M., and J. Frank. 1981. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 6:187-194.
-
(1981)
Ultramicroscopy
, vol.6
, pp. 187-194
-
-
Van Heel, M.1
Frank, J.2
-
73
-
-
41149101176
-
Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin
-
doi:10.1007/s00412-007-0135-3
-
Vorozhko, V.V., M.J. Emanuele, M.J. Kallio, P.T. Stukenberg, and G.J. Gorbsky. 2008. Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma. 117:169-179. doi:10.1007/s00412-007-0135-3
-
(2008)
Chromosoma
, vol.117
, pp. 169-179
-
-
Vorozhko, V.V.1
Emanuele, M.J.2
Kallio, M.J.3
Stukenberg, P.T.4
Gorbsky, G.J.5
-
74
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
doi:10.1016/j.cell.2009.03.035
-
Wan, X., R.P. O'Quinn, H.L. Pierce, A.P. Joglekar, W.E. Gall, J.G. DeLuca, C.W. Carroll, S.T. Liu, T.J. Yen, B.F. McEwen, et al. 2009. Protein architecture of the human kinetochore microtubule attachment site. Cell. 137:672-684. doi:10.1016/j.cell.2009.03.035
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
DeLuca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
McEwen, B.F.10
-
75
-
-
53149128681
-
Architecture and flexibility of the yeast Ndc80 kinetochore complex
-
doi:10.1016/j.jmb.2008.08.077
-
Wang, H.W., S. Long, C. Ciferri, S. Westermann, D. Drubin, G. Barnes, and E. Nogales. 2008. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383:894-903. doi:10.1016/j.jmb.2008.08.077
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 894-903
-
-
Wang, H.W.1
Long, S.2
Ciferri, C.3
Westermann, S.4
Drubin, D.5
Barnes, G.6
Nogales, E.7
-
76
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
doi:10.1073/pnas.0501168102
-
Wei, R.R., P.K. Sorger, and S.C. Harrison. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. USA. 102:5363-5367. doi:10.1073/pnas.0501168102
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
Sorger, P.K.2
Harrison, S.C.3
-
77
-
-
33744798200
-
Structure of a central component of the yeast kinetochore: The Spc24p/Spc25p globular domain
-
doi:10.1016/j.str.2006.04.007
-
Wei, R.R., J.R. Schnell, N.A. Larsen, P.K. Sorger, J.J. Chou, and S.C. Harrison. 2006. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure. 14:1003-1009. doi:10.1016/j.str.2006. 04.007
-
(2006)
Structure
, vol.14
, pp. 1003-1009
-
-
Wei, R.R.1
Schnell, J.R.2
Larsen, N.A.3
Sorger, P.K.4
Chou, J.J.5
Harrison, S.C.6
-
78
-
-
33846100785
-
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
-
doi:10.1038/nsmb1186
-
Wei, R.R., J. Al-Bassam, and S.C. Harrison. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 14:54-59. doi:10.1038/nsmb1186
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 54-59
-
-
Wei, R.R.1
Al-Bassam, J.2
Harrison, S.C.3
-
79
-
-
77951952612
-
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
-
doi:10.1016/j.molcel.2010.02.034
-
Welburn, J.P., M. Vleugel, D. Liu, J.R. Yates III, M.A. Lampson, T. Fukagawa, and I.M. Cheeseman. 2010. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell. 38:383-392. doi:10.1016/j.molcel.2010.02.034
-
(2010)
Mol. Cell.
, vol.38
, pp. 383-392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates III, J.R.4
Lampson, M.A.5
Fukagawa, T.6
Cheeseman, I.M.7
-
80
-
-
0242266928
-
Architecture of the budding yeast kinetochore reveals a conserved molecular core
-
doi:10.1083/jcb.200305100
-
Westermann, S., I.M. Cheeseman, S. Anderson, J.R. Yates III, D.G. Drubin, and G. Barnes. 2003. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163:215-222. doi:10.1083/jcb.200305100
-
(2003)
J. Cell Biol.
, vol.163
, pp. 215-222
-
-
Westermann, S.1
Cheeseman, I.M.2
Anderson, S.3
Yates III, J.R.4
Drubin, D.G.5
Barnes, G.6
-
81
-
-
12344251956
-
Formation of a dynamic kinetochore- Microtubule interface through assembly of the Dam1 ring complex
-
doi:10.1016/j.molcel.2004.12.019
-
Westermann, S., A. Avila-Sakar, H.W. Wang, H. Niederstrasser, J. Wong, D.G. Drubin, E. Nogales, and G. Barnes. 2005. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell. 17:277-290. doi:10.1016/j.molcel.2004.12.019
-
(2005)
Mol. Cell.
, vol.17
, pp. 277-290
-
-
Westermann, S.1
Avila-Sakar, A.2
Wang, H.W.3
Niederstrasser, H.4
Wong, J.5
Drubin, D.G.6
Nogales, E.7
Barnes, G.8
-
82
-
-
34548481620
-
Structures and functions of yeast kinetochore complexes
-
doi:10.1146/annurev.biochem.76.052705.160607
-
Westermann, S., D.G. Drubin, and G. Barnes. 2007. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76:563-591. doi:10.1146/annurev.biochem.76.052705.160607
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 563-591
-
-
Westermann, S.1
Drubin, D.G.2
Barnes, G.3
-
83
-
-
47649098600
-
Cooperativity and biological complexity
-
doi:10.1038/nchembio0808-435
-
Whitty, A. 2008. Cooperativity and biological complexity. Nat. Chem. Biol. 4:435-439. doi:10.1038/nchembio0808-435
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 435-439
-
-
Whitty, A.1
-
84
-
-
0035931755
-
The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation
-
doi:10.1083/jcb.152.2.349
-
Wigge, P.A., and J.V. Kilmartin. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152:349-360. doi:10.1083/jcb.152.2.349
-
(2001)
J. Cell Biol.
, vol.152
, pp. 349-360
-
-
Wigge, P.A.1
Kilmartin, J.V.2
-
85
-
-
52249087768
-
Orientation and structure of the Ndc80 complex on the microtubule lattice
-
doi:10.1083/jcb.200804170
-
Wilson-Kubalek, E.M., I.M. Cheeseman, C. Yoshioka, A. Desai, and R.A. Milligan. 2008. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182:1055-1061. doi:10.1083/jcb.200804170
-
(2008)
J. Cell Biol.
, vol.182
, pp. 1055-1061
-
-
Wilson-Kubalek, E.M.1
Cheeseman, I.M.2
Yoshioka, C.3
Desai, A.4
Milligan, R.A.5
|