메뉴 건너뛰기




Volumn 12, Issue 5, 2011, Pages 320-332

Centromeres: Unique chromatin structures that drive chromosome segregation

Author keywords

[No Author keywords available]

Indexed keywords

CENTROMERE PROTEIN A; HISTONE H2AZ; HISTONE H3;

EID: 79955413557     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3107     Document Type: Review
Times cited : (169)

References (177)
  • 1
    • 0035844881 scopus 로고    scopus 로고
    • HCP4, a CENPClike protein in Caenorhabditis elegans, is required for resolution of sister centromeres
    • Moore, L.-L. & Roth, M.-B. HCP4, a CENPClike protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J.-Cell Biol. 153, 1199-1208 (2001).
    • (2001) J.-Cell Biol. , vol.153 , pp. 1199-1208
    • Moore, L.-L.1    Roth, M.-B.2
  • 2
    • 7544227521 scopus 로고    scopus 로고
    • Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin
    • Sullivan, B.-A. & Karpen, G.-H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076-1083 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 1076-1083
    • Sullivan, B.-A.1    Karpen, G.-H.2
  • 3
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman, I.-M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33-46 (2008).
    • (2008) Nature Rev. Mol. Cell Biol. , vol.9 , pp. 33-46
    • Cheeseman, I.-M.1    Desai, A.2
  • 4
    • 58549121170 scopus 로고    scopus 로고
    • Design features of a mitotic spindle: Balancing tension and compression at a single microtubule kinetochore interface in budding yeast
    • Bouck, D.-C., Joglekar, A.-P. & Bloom, K.-S. Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu. Rev. Genet. 42, 335-359 (2008).
    • (2008) Annu. Rev. Genet. , vol.42 , pp. 335-359
    • Bouck, D.-C.1    Joglekar, A.-P.2    Bloom, K.-S.3
  • 5
    • 69849107380 scopus 로고    scopus 로고
    • The life and miracles of kinetochores
    • Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511-2531 (2009).
    • (2009) EMBO J. , vol.28 , pp. 2511-2531
    • Santaguida, S.1    Musacchio, A.2
  • 7
    • 73349105276 scopus 로고    scopus 로고
    • The kinetochore and the centromere: A working long distance relationship
    • Przewloka, M.-R. & Glover, D.-M. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43, 439-465 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 439-465
    • Przewloka, M.-R.1    Glover, D.-M.2
  • 8
    • 0019162013 scopus 로고
    • Isolation of a yeast centromere and construction of functional small circular chromosomes
    • DOI 10.1038/287504a0
    • Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504-509 (1980). (Pubitemid 11232847)
    • (1980) Nature , vol.287 , Issue.5782 , pp. 504-509
    • Clarke, L.1    Carbon, J.2
  • 9
    • 0020627503 scopus 로고
    • Genomic substitutions of centromeres in Saccharomyces cerevisiae
    • Clarke, L. & Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305, 23-28 (1983). (Pubitemid 13041970)
    • (1983) Nature , vol.305 , Issue.5929 , pp. 23-28
    • Clarke, L.1    Carbon, J.2
  • 10
    • 0020325948 scopus 로고
    • Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs
    • Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29, 235-244 (1982). (Pubitemid 12027685)
    • (1982) Cell , vol.29 , Issue.1 , pp. 235-244
    • Fitzgerald-Hayes, M.1    Clarke, L.2    Carbon, J.3
  • 11
    • 0022133409 scopus 로고
    • Functional selection and analysis of yeast centromeric DNA
    • Hieter, P. et al. Functional selection and analysis of yeast centromeric DNA. Cell 42, 913-921 (1985).
    • (1985) Cell , vol.42 , pp. 913-921
    • Hieter, P.1
  • 12
    • 0022634481 scopus 로고
    • Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae
    • McGrew, J., Diehl, B. & Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 530-538 (1986). (Pubitemid 16158128)
    • (1986) Molecular and Cellular Biology , vol.6 , Issue.2 , pp. 530-538
    • McGrew, J.1    Diehl, B.2    Fitzgerald-Hayes, M.3
  • 14
    • 44149083326 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
    • Joglekar, A.-P. et al. Molecular architecture of the kinetochore- microtubule attachment site is conserved between point and regional centromeres. J.-Cell Biol. 181, 587-594 (2008).
    • (2008) J.-Cell Biol. , vol.181 , pp. 587-594
    • Joglekar, A.-P.1
  • 15
    • 0024360820 scopus 로고
    • Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of NotI restriction sites
    • DOI 10.1016/0092-8674(89)90789-7
    • Chikashige, Y. et al. Composite motifs and repeat symmetry in S.-pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57, 739-751 (1989). (Pubitemid 19149814)
    • (1989) Cell , vol.57 , Issue.5 , pp. 739-751
    • Chikashige, Y.1    Kinoshita, N.2    Nakaseko, Y.3    Matsumoto, T.4    Murakami, S.5    Niwa, O.6    Yanagida, M.7
  • 17
    • 0028065035 scopus 로고
    • The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere
    • Baum, M., Ngan, V.-K. & Clarke, L. The centromeric Ktype repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 5, 747-761 (1994). (Pubitemid 24254345)
    • (1994) Molecular Biology of the Cell , vol.5 , Issue.7 , pp. 747-761
    • Baum, M.1    Ngan, V.K.2    Clarke, L.3
  • 18
    • 16644385308 scopus 로고    scopus 로고
    • Kinetochore and heterochromatin domains of the fission yeast centromere
    • Pidoux, A.-L. & Allshire, R.-C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12, 521-534 (2004).
    • (2004) Chromosome Res. , vol.12 , pp. 521-534
    • Pidoux, A.-L.1    Allshire, R.-C.2
  • 20
    • 0028052990 scopus 로고
    • Cloning and characterization of centromeric DNA from Neurospora crassa
    • Centola, M. & Carbon, J. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14, 1510-1519 (1994). (Pubitemid 24036601)
    • (1994) Molecular and Cellular Biology , vol.14 , Issue.2 , pp. 1510-1519
    • Centola, M.1    Carbon, J.2
  • 21
    • 0033601285 scopus 로고    scopus 로고
    • Genetic definition and sequence analysis of Arabidopsis centromeres
    • Copenhaver, G.-P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468-2474 (1999).
    • (1999) Science , vol.286 , pp. 2468-2474
    • Copenhaver, G.-P.1
  • 22
    • 0037318262 scopus 로고    scopus 로고
    • Sequence analysis of a functional Drosophila centromere
    • Sun, X., Le, H.-D., Wahlstrom, J.-M. & Karpen, G.-H. Sequence analysis of a functional Drosophila centromere. Genome Res. 13, 182-194 (2003).
    • (2003) Genome Res. , vol.13 , pp. 182-194
    • Sun Le, X.H.-D.1    Wahlstrom, J.-M.2    Karpen, G.-H.3
  • 23
    • 0035812788 scopus 로고    scopus 로고
    • Genomic and genetic definition of a functional human centromere
    • DOI 10.1126/science.1065042
    • Schueler, M.-G., Higgins, A.-W., Rudd, M.-K., Gustashaw, K. & Willard, H.-F. Genomic and genetic definition of a functional human centromere. Science 294, 109-115 (2001). (Pubitemid 32952957)
    • (2001) Science , vol.294 , Issue.5540 , pp. 109-115
    • Schueler, M.G.1    Higgins, A.W.2    Rudd, M.K.3    Gustashaw, K.4    Willard, H.F.5
  • 24
    • 0015243055 scopus 로고
    • DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops
    • Maio, J.-J. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J.-Mol. Biol. 56, 579-595 (1971).
    • (1971) J.-Mol. Biol. , vol.56 , pp. 579-595
    • Maio, J.-J.1
  • 25
    • 0035431654 scopus 로고    scopus 로고
    • Domain organization at the centromere and neocentromere
    • Choo, K.-H. Domain organization at the centromere and neocentromere. Dev. Cell 1, 165-177 (2001).
    • (2001) Dev. Cell , vol.1 , pp. 165-177
    • Choo, K.-H.1
  • 26
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik, H.-S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067-1082 (2009).
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.-S.1    Henikoff, S.2
  • 27
    • 33745004786 scopus 로고    scopus 로고
    • The human CENPA centromeric nucleosome-associated complex
    • Foltz, D.-R. et al. The human CENPA centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458-469 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 458-469
    • Foltz, D.-R.1
  • 28
  • 29
    • 0028104174 scopus 로고
    • Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere
    • DOI 10.1083/jcb.127.3.581
    • Sullivan, K.-F., Hechenberger, M. & Masri, K. Human CENPA contains a histone H3 related histone fold domain that is required for targeting to the centromere. J.-Cell Biol. 127, 581-592 (1994). (Pubitemid 24332958)
    • (1994) Journal of Cell Biology , vol.127 , Issue.3 , pp. 581-592
    • Sullivan, K.F.1    Hechenberger, M.2    Masri, K.3
  • 30
    • 0033973359 scopus 로고    scopus 로고
    • Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice
    • Howman, E.-V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148-1153 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 1148-1153
    • Howman, E.-V.1
  • 31
    • 0034910458 scopus 로고    scopus 로고
    • The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions
    • Blower, M.-D. & Karpen, G.-H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730-739 (2001).
    • (2001) Nature Cell Biol. , vol.3 , pp. 730-739
    • Blower, M.-D.1    Karpen, G.-H.2
  • 32
    • 0035844871 scopus 로고    scopus 로고
    • Functional analysis of kinetochore assembly in Caenorhabditis elegans
    • Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A.-A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J.-Cell Biol. 153, 1209-1226 (2001).
    • (2001) J.-Cell Biol. , vol.153 , pp. 1209-1226
    • Oegema, K.1    Desai, A.2    Rybina, S.3    Kirkham, M.4    Hyman, A.-A.5
  • 33
    • 0023275058 scopus 로고
    • A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
    • DOI 10.1083/jcb.104.4.805
    • Palmer, D.-K., O'Day, K., Wener, M.-H., Andrews, B.-S. & Margolis, R.-L. A 17kD centromere protein (CENPA) copurifies with nucleosome core particles and with histones. J.-Cell Biol. 104, 805-815 (1987). (Pubitemid 17068653)
    • (1987) Journal of Cell Biology , vol.104 , Issue.4 , pp. 805-815
    • Palmer, D.K.1    O'Day, K.2    Wener, M.H.3
  • 34
    • 0026650005 scopus 로고
    • CENPC, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
    • Saitoh, H. et al. CENPC, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115-125 (1992).
    • (1992) Cell , vol.70 , pp. 115-125
    • Saitoh, H.1
  • 35
    • 0033165676 scopus 로고    scopus 로고
    • A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore
    • Dawe, R.-K., Reed, L.-M., Yu, H.-G., Muszynski, M.-G. & Hiatt, E.-N. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11, 1227-1238 (1999).
    • (1999) Plant Cell , vol.11 , pp. 1227-1238
    • Dawe, R.-K.1    Reed, L.-M.2    Yu, H.-G.3    Muszynski, M.-G.4    Hiatt, E.-N.5
  • 36
    • 0035883939 scopus 로고    scopus 로고
    • Creation and characterization of temperature sensitive CENP-C mutants in vertebrate cells
    • Fukagawa, T., Regnier, V. & Ikemura, T. Creation and characterization of temperature-sensitive CENPC mutants in vertebrate cells. Nucleic Acids Res. 29, 3796-3803 (2001). (Pubitemid 32910520)
    • (2001) Nucleic Acids Research , vol.29 , Issue.18 , pp. 3796-3803
    • Fukagawa, T.1    Regnier, V.2    Ikemura, T.3
  • 37
    • 4344606370 scopus 로고    scopus 로고
    • Characterization of a CENP-C homolog in Arabidopsis thaliana
    • DOI 10.1266/ggs.79.139
    • Ogura, Y., Shibata, F., Sato, H. & Murata, M. Characterization of a CENPC homolog in Arabidopsis thaliana. Genes Genet. Syst. 79, 139-144 (2004). (Pubitemid 39243764)
    • (2004) Genes and Genetic Systems , vol.79 , Issue.3 , pp. 139-144
    • Ogura, Y.1    Shibata, F.2    Sato, H.3    Murata, M.4
  • 38
    • 33846638827 scopus 로고    scopus 로고
    • Incorporation of Drosophila CID/CENP-A and CENP-C into Centromeres during Early Embryonic Anaphase
    • DOI 10.1016/j.cub.2006.11.051, PII S0960982206025693
    • Schuh, M., Lehner, C.-F. & Heidmann, S. Incorporation of Drosophila CID/CENPA and CENPC into centromeres during early embryonic anaphase. Curr. Biol. 17, 237-243 (2007). (Pubitemid 46186017)
    • (2007) Current Biology , vol.17 , Issue.3 , pp. 237-243
    • Schuh, M.1    Lehner, C.F.2    Heidmann, S.3
  • 39
    • 0028287114 scopus 로고
    • CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase
    • Tomkiel, J., Cooke, C.-A., Saitoh, H., Bernat, R.-L. & Earnshaw, W.-C. CENPC is required for maintaining proper kinetochore size and for a timely transition to anaphase. J.-Cell Biol. 125, 531-545 (1994). (Pubitemid 24149836)
    • (1994) Journal of Cell Biology , vol.125 , Issue.3 , pp. 531-545
    • Tomkiel, J.1    Cooke, C.A.2    Saitoh, H.3    Bernat, R.L.4    Earnshaw, W.C.5
  • 40
    • 58149305928 scopus 로고    scopus 로고
    • Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
    • Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J.-Cell Biol. 183, 805-818 (2008).
    • (2008) J.-Cell Biol. , vol.183 , pp. 805-818
    • Erhardt, S.1
  • 41
    • 79952364478 scopus 로고    scopus 로고
    • Direct binding of CenpC to the Mis12 complex joins the inner and outer kinetochore
    • Screpanti, E. et al. Direct binding of CenpC to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391-398 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 391-398
    • Screpanti, E.1
  • 42
    • 79952360863 scopus 로고    scopus 로고
    • CENPC is a structural platform for kinetochore assembly
    • Przewloka, M.-R. et al. CENPC is a structural platform for kinetochore assembly. Curr. Biol. 21, 399-405 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 399-405
    • Przewloka, M.-R.1
  • 43
    • 77954396194 scopus 로고    scopus 로고
    • Dual recognition of CENPA nucleosomes is required for centromere assembly
    • Carroll, C.-W., Milks, K.-J. & Straight, A.-F. Dual recognition of CENPA nucleosomes is required for centromere assembly. J.-Cell Biol. 189, 1143-1155 (2010).
    • (2010) J.-Cell Biol. , vol.189 , pp. 1143-1155
    • Carroll, C.-W.1    Milks, K.-J.2    Straight, A.-F.3
  • 44
    • 57149129148 scopus 로고    scopus 로고
    • CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
    • Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039-1052 (2008).
    • (2008) Cell , vol.135 , pp. 1039-1052
    • Hori, T.1
  • 45
    • 33744970012 scopus 로고    scopus 로고
    • The CENPH-I complex is required for the efficient incorporation of newly synthesized CENPA into centromeres
    • Okada, M. et al. The CENPH-I complex is required for the efficient incorporation of newly synthesized CENPA into centromeres. Nature Cell Biol. 8, 446-457 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 446-457
    • Okada, M.1
  • 46
    • 41649109022 scopus 로고    scopus 로고
    • CENP-O class proteins form a stable complex and are required for proper kinetochore function
    • DOI 10.1091/mbc.E07-06-0556
    • Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENPO class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 19, 843-854 (2008). (Pubitemid 351481802)
    • (2008) Molecular Biology of the Cell , vol.19 , Issue.3 , pp. 843-854
    • Hori, T.1    Okada, M.2    Maenaka, K.3    Fukagawa, T.4
  • 47
    • 67749147135 scopus 로고    scopus 로고
    • The CENPS complex is essential for the stable assembly of outer kinetochore structure
    • Amano, M. et al. The CENPS complex is essential for the stable assembly of outer kinetochore structure. J.-Cell Biol. 186, 173-182 (2009).
    • (2009) J.-Cell Biol. , vol.186 , pp. 173-182
    • Amano, M.1
  • 48
    • 0022254326 scopus 로고
    • Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome
    • Earnshaw, W.-C. & Migeon, B.-R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290-296 (1985).
    • (1985) Chromosoma , vol.92 , pp. 290-296
    • Earnshaw, W.-C.1    Migeon, B.-R.2
  • 49
    • 44449100870 scopus 로고    scopus 로고
    • Epigenetic control of centromere behavior
    • Ekwall, K. Epigenetic control of centromere behavior. Annu. Rev. Genet. 41, 63-81 (2007).
    • (2007) Annu. Rev. Genet. , vol.41 , pp. 63-81
    • Ekwall, K.1
  • 50
    • 0037451175 scopus 로고    scopus 로고
    • Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae
    • DOI 10.1083/jcb.200211116
    • Mythreye, K. & Bloom, K.-S. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J.-Cell Biol. 160, 833-843 (2003). (Pubitemid 36350839)
    • (2003) Journal of Cell Biology , vol.160 , Issue.6 , pp. 833-843
    • Mythreye, K.1    Bloom, K.S.2
  • 51
    • 34548742303 scopus 로고    scopus 로고
    • Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity
    • DOI 10.1007/s00438-007-0263-8
    • Mishra, P.-K., Baum, M. & Carbon, J. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278, 455-465 (2007). (Pubitemid 47437689)
    • (2007) Molecular Genetics and Genomics , vol.278 , Issue.4 , pp. 455-465
    • Mishra, P.K.1    Baum, M.2    Carbon, J.3
  • 52
    • 37849021647 scopus 로고    scopus 로고
    • Heterochromatin and RNAi are required to establish CENPA chromatin at centromeres
    • Folco, H.-D., Pidoux, A.-L., Urano, T. & Allshire, R.-C. Heterochromatin and RNAi are required to establish CENPA chromatin at centromeres. Science 319, 94-97 (2008).
    • (2008) Science , vol.319 , pp. 94-97
    • Folco, H.-D.1    Pidoux, A.-L.2    Urano, T.3    Allshire, R.-C.4
  • 53
    • 33847059221 scopus 로고    scopus 로고
    • Centromere assembly and propagation
    • DOI 10.1016/j.cell.2007.02.002, PII S009286740700181X
    • Morris, C.-A. & Moazed, D. Centromere assembly and propagation. Cell 128, 647-650 (2007). (Pubitemid 46273576)
    • (2007) Cell , vol.128 , Issue.4 , pp. 647-650
    • Morris, C.A.1    Moazed, D.2
  • 56
    • 0035911159 scopus 로고    scopus 로고
    • Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis
    • Giet, R. & Glover, D.-M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J.-Cell Biol. 152, 669-682 (2001).
    • (2001) J.-Cell Biol. , vol.152 , pp. 669-682
    • Giet, R.1    Glover, D.-M.2
  • 57
    • 0037087623 scopus 로고    scopus 로고
    • Elegans condensin promotes mitotic chromosome architecture centromere organization and sister chromatid segregation during mitosis and meiosis
    • Hagstrom, K.-A., Holmes, V.-F., Cozzarelli, N.-R. & Meyer, B.-J.-C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729-742 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 729-742
    • Hagstrom, K.-A.1    Holmes, V.-F.2    Cozzarelli, N.-R.3    Meyer, B.-J.-C.4
  • 58
    • 0030828073 scopus 로고    scopus 로고
    • Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation
    • Hendzel, M.-J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348-360 (1997).
    • (1997) Chromosoma , vol.106 , pp. 348-360
    • Hendzel, M.-J.1
  • 59
    • 13844253746 scopus 로고    scopus 로고
    • The Drosophila melanogaster condensin subunit Cap-G interacts with the centromere-specific histone H3 variant CID
    • DOI 10.1007/s00412-004-0322-4
    • Jager, H., Rauch, M. & Heidmann, S. The Drosophila melanogaster condensin subunit CapG interacts with the centromere-specific histone H3 variant CID. Chromosoma 113, 350-361 (2005). (Pubitemid 40253957)
    • (2005) Chromosoma , vol.113 , Issue.7 , pp. 350-361
    • Jager, H.1    Rauch, M.2    Heidmann, S.3
  • 60
    • 33947239252 scopus 로고    scopus 로고
    • Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
    • DOI 10.1083/jcb.200701065
    • Maddox, P.-S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENPA chromatin. J.-Cell Biol. 176, 757-763 (2007). (Pubitemid 46425535)
    • (2007) Journal of Cell Biology , vol.176 , Issue.6 , pp. 757-763
    • Maddox, P.S.1    Hyndman, F.2    Monen, J.3    Oegema, K.4    Desai, A.5
  • 61
    • 16244368035 scopus 로고    scopus 로고
    • Centromeric chromatin makes its mark
    • DOI 10.1016/j.tibs.2005.02.007
    • Dunleavy, E., Pidoux, A. & Allshire, R. Centromeric chromatin makes its mark. Trends Biochem. Sci. 30, 172-175 (2005). (Pubitemid 40463305)
    • (2005) Trends in Biochemical Sciences , vol.30 , Issue.4 , pp. 172-175
    • Dunleavy, E.1    Pidoux, A.2    Allshire, R.3
  • 62
    • 78751636707 scopus 로고    scopus 로고
    • Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENPA assembly on a synthetic human kinetochore
    • Bergmann, J.-H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENPA assembly on a synthetic human kinetochore. EMBO J. 30, 328-340 (2011).
    • (2011) EMBO J. , vol.30 , pp. 328-340
    • Bergmann, J.-H.1
  • 63
    • 4143099308 scopus 로고    scopus 로고
    • Mouse centric and pericentric satellite repeats form distinct functional heterochromatin
    • DOI 10.1083/jcb.200403109
    • Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J.-Cell Biol. 166, 493-505 (2004). (Pubitemid 39097169)
    • (2004) Journal of Cell Biology , vol.166 , Issue.4 , pp. 493-505
    • Guenatri, M.1    Bailly, D.2    Maison, C.3    Almouzni, G.4
  • 65
    • 15444372817 scopus 로고    scopus 로고
    • The profile of repeat-associated histone lysine methylation states in the mouse epigenome
    • Martens, J.-H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800-812 (2005).
    • (2005) EMBO J. , vol.24 , pp. 800-812
    • Martens, J.-H.1
  • 66
    • 9144268924 scopus 로고    scopus 로고
    • Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
    • Peters, A.-H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577-1589 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1577-1589
    • Peters, A.-H.1
  • 68
    • 77954954525 scopus 로고    scopus 로고
    • The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats
    • Guetg, C. et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29, 2135-2146 (2010).
    • (2010) EMBO J. , vol.29 , pp. 2135-2146
    • Guetg, C.1
  • 69
    • 20144388146 scopus 로고    scopus 로고
    • Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer
    • Fraga, M.-F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391-400 (2005).
    • (2005) Nature Genet. , vol.37 , pp. 391-400
    • Fraga, M.-F.1
  • 70
    • 43549115088 scopus 로고    scopus 로고
    • Epigenetic modification of centromeric chromatin: Hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize
    • DOI 10.1105/tpc.107.057083
    • Zhang, W., Lee, H.-R., Koo, D.-H. & Jiang, J. Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20, 25-34 (2008). (Pubitemid 352844031)
    • (2008) Plant Cell , vol.20 , Issue.1 , pp. 25-34
    • Zhang, W.1    Lee, H.-R.2    Koo, D.-H.3    Jiang, J.4
  • 72
    • 70350220496 scopus 로고    scopus 로고
    • Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier
    • Cardinale, S. et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol. Biol. Cell 20, 4194-4204 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4194-4204
    • Cardinale, S.1
  • 73
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • DOI 10.1038/38444
    • Luger, K., Mader, A.-W., Richmond, R.-K., Sargent, D.-F. & Richmond, T.-J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260 (1997). (Pubitemid 27406632)
    • (1997) Nature , vol.389 , Issue.6648 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 74
    • 15744399172 scopus 로고    scopus 로고
    • Centromeric chromatin: What makes it unique?
    • DOI 10.1016/j.gde.2005.01.004, Chromosomes and Expression Mechanisms
    • Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15, 177-184 (2005). (Pubitemid 40410664)
    • (2005) Current Opinion in Genetics and Development , vol.15 , Issue.2 , pp. 177-184
    • Henikoff, S.1    Dalal, Y.2
  • 75
    • 0034762198 scopus 로고    scopus 로고
    • Specification of kinetochore-forming chromatin by the histone H3 variant CENPA
    • Van Hooser, A.-A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENPA. J.-Cell Sci. 114, 3529-3542 (2001).
    • (2001) J.-Cell Sci. , vol.114 , pp. 3529-3542
    • Van Hooser, A.-A.1
  • 76
    • 3242884785 scopus 로고    scopus 로고
    • Structural determinants for generating centromeric chromatin
    • Black, B.-E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578-582 (2004).
    • (2004) Nature , vol.430 , pp. 578-582
    • Black, B.-E.1
  • 77
    • 33846199534 scopus 로고    scopus 로고
    • Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENPA targeting domain
    • Black, B.-E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENPA targeting domain. Mol. Cell 25, 309-322 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 309-322
    • Black, B.-E.1
  • 78
    • 79954613013 scopus 로고    scopus 로고
    • Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3
    • 16-Mar doi:10.1038/nature09854
    • Zhou, Z. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 16-Mar 2011 (doi:10.1038/ nature09854).
    • (2011) Nature
    • Zhou, Z.1
  • 80
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower, M.-D., Sullivan, B.-A. & Karpen, G.-H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319-330 (2002).
    • (2002) Dev. Cell , vol.2 , pp. 319-330
    • Blower, M.-D.1    Sullivan, B.-A.2    Karpen, G.-H.3
  • 81
    • 77956897642 scopus 로고    scopus 로고
    • The structure of (CENPA-H4)2 reveals physical features that mark centromeres
    • Sekulic, N., Bassett, E.-A., Rogers, D.-J. & Black, B.-E. The structure of (CENPA-H4)2 reveals physical features that mark centromeres. Nature 467, 347-351 (2010).
    • (2010) Nature , vol.467 , pp. 347-351
    • Sekulic, N.1    Bassett, E.-A.2    Rogers, D.-J.3    Black, B.-E.4
  • 82
    • 34250168342 scopus 로고    scopus 로고
    • CENPAcontaining nucleosomes: Easier disassembly versus exclusive centromeric localization
    • Conde Silva, N. et al. CENPAcontaining nucleosomes: easier disassembly versus exclusive centromeric localization. J.-Mol. Biol. 370, 555-573 (2007).
    • (2007) J.-Mol. Biol. , vol.370 , pp. 555-573
    • Conde Silva, N.1
  • 83
    • 0031049028 scopus 로고    scopus 로고
    • Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites
    • DOI 10.1083/jcb.136.3.501
    • Shelby, R.-D., Vafa, O. & Sullivan, K.-F. Assembly of CENPA into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J.-Cell Biol. 136, 501-513 (1997). (Pubitemid 27083754)
    • (1997) Journal of Cell Biology , vol.136 , Issue.3 , pp. 501-513
    • Shelby, R.D.1    Vafa, O.2    Sullivan, K.F.3
  • 84
    • 0033811682 scopus 로고    scopus 로고
    • The N terminus of the centromere H3like protein Cse4p performs an essential function distinct from that of the histone fold domain
    • Chen, Y. et al. The N terminus of the centromere H3like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20, 7037-7048 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7037-7048
    • Chen, Y.1
  • 85
    • 70349168454 scopus 로고    scopus 로고
    • Cse4 is part of an octameric nucleosome in budding yeast
    • Camahort, R. et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35, 794-805 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 794-805
    • Camahort, R.1
  • 86
    • 59649107021 scopus 로고    scopus 로고
    • Fission yeast Scm3 mediates stable assembly of Cnp1/CENPA into centromeric chromatin
    • Williams, J.-S., Hayashi, T., Yanagida, M. & Russell, P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENPA into centromeric chromatin. Mol. Cell 33, 287-298 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 287-298
    • Williams, J.-S.1    Hayashi, T.2    Yanagida, M.3    Russell, P.4
  • 88
    • 67649664594 scopus 로고    scopus 로고
    • Centromeric nucleosomes induce positive DNA supercoils
    • Furuyama, T. & Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell 138, 104-113 (2009).
    • (2009) Cell , vol.138 , pp. 104-113
    • Furuyama, T.1    Henikoff, S.2
  • 89
    • 34548267126 scopus 로고    scopus 로고
    • Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells
    • Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007).
    • (2007) PLoS Biol. , vol.5
    • Dalal, Y.1    Wang, H.2    Lindsay, S.3    Henikoff, S.4
  • 90
    • 34250173486 scopus 로고    scopus 로고
    • Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
    • DOI 10.1016/j.cell.2007.04.026, PII S0092867407005338
    • Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M.-M. & Wu, C. Nonhistone Scm3 and histones CenH3H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153-1164 (2007). (Pubitemid 46900852)
    • (2007) Cell , vol.129 , Issue.6 , pp. 1153-1164
    • Mizuguchi, G.1    Xiao, H.2    Wisniewski, J.3    Smith, M.M.4    Wu, C.5
  • 91
    • 34250316190 scopus 로고    scopus 로고
    • Scm3 Is Essential to Recruit the Histone H3 Variant Cse4 to Centromeres and to Maintain a Functional Kinetochore
    • DOI 10.1016/j.molcel.2007.05.013, PII S1097276507003140
    • Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853-865 (2007). (Pubitemid 46924838)
    • (2007) Molecular Cell , vol.26 , Issue.6 , pp. 853-865
    • Camahort, R.1    Li, B.2    Florens, L.3    Swanson, S.K.4    Washburn, M.P.5    Gerton, J.L.6
  • 93
    • 59649099984 scopus 로고    scopus 로고
    • Fission yeast Scm3: A CENPA receptor required for integrity of subkinetochore chromatin
    • Pidoux, A.-L. et al. Fission yeast Scm3: a CENPA receptor required for integrity of subkinetochore chromatin. Mol. Cell 33, 299-311 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 299-311
    • Pidoux, A.-L.1
  • 94
  • 95
    • 65249129208 scopus 로고    scopus 로고
    • HJURP is a cellcycledependent maintenance and deposition factor of CENPA at centromeres
    • Dunleavy, E.-M. et al. HJURP is a cellcycledependent maintenance and deposition factor of CENPA at centromeres. Cell 137, 485-497 (2009).
    • (2009) Cell , vol.137 , pp. 485-497
    • Dunleavy, E.-M.1
  • 96
    • 35848960342 scopus 로고    scopus 로고
    • Domain architectures of the Scm3p protein provide insights into centromere function and evolution
    • Aravind, L., Iyer, L.-M. & Wu, C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 6, 2511-2515 (2007). (Pubitemid 350058669)
    • (2007) Cell Cycle , vol.6 , Issue.20 , pp. 2511-2515
    • Aravind, L.1    Iyer, L.M.2    Wu, C.3
  • 97
    • 76549131870 scopus 로고    scopus 로고
    • HJURP binds CENPA via a highly conserved Nterminal domain and mediates its deposition at centromeres
    • Shuaib, M., Ouararhni, K., Dimitrov, S. & Hamiche, A. HJURP binds CENPA via a highly conserved Nterminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA 107, 1349-1354 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 1349-1354
    • Shuaib, M.1    Ouararhni, K.2    Dimitrov, S.3    Hamiche, A.4
  • 98
    • 65249115338 scopus 로고    scopus 로고
    • Centromere-specific assembly of CENPA nucleosomes is mediated by HJURP
    • Foltz, D.-R. et al. Centromere-specific assembly of CENPA nucleosomes is mediated by HJURP. Cell 137, 472-484 (2009).
    • (2009) Cell , vol.137 , pp. 472-484
    • Foltz, D.-R.1
  • 99
    • 78149449583 scopus 로고    scopus 로고
    • Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4
    • Hewawasam, G. et al. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40, 444-454 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 444-454
    • Hewawasam, G.1
  • 100
    • 78149424194 scopus 로고    scopus 로고
    • An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain
    • Ranjitkar, P. et al. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 40, 455-464 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 455-464
    • Ranjitkar, P.1
  • 101
    • 33646589676 scopus 로고    scopus 로고
    • Chaperone-mediated assembly of centromeric chromatin in-vitro
    • Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in-vitro. Proc. Natl Acad. Sci. USA 103, 6172-6177 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 6172-6177
    • Furuyama, T.1    Dalal, Y.2    Henikoff, S.3
  • 102
    • 72549116886 scopus 로고    scopus 로고
    • Right-handed nucleosome: Myth or reality?
    • author reply 1217-1218
    • Lavelle, C. et al. Right-handed nucleosome: myth or reality? Cell 139, 1216-1217; author reply 1217-1218 (2009).
    • (2009) Cell , vol.139 , pp. 1216-1217
    • Lavelle, C.1
  • 103
    • 0033664380 scopus 로고    scopus 로고
    • Crystal structure of a nucleosome core particle containing the variant histone H2A.Z
    • Suto, R.-K., Clarkson, M.-J., Tremethick, D.-J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121-1124 (2000).
    • (2000) Nature Struct. Biol. , vol.7 , pp. 1121-1124
    • Suto, R.-K.1    Clarkson, M.-J.2    Tremethick, D.-J.3    Luger, K.4
  • 105
    • 0037423930 scopus 로고    scopus 로고
    • Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
    • DOI 10.1016/S0092-8674(03)00123-5
    • Meneghini, M.-D., Wu, M. & Madhani, H.-D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725-736 (2003). (Pubitemid 36331783)
    • (2003) Cell , vol.112 , Issue.5 , pp. 725-736
    • Meneghini, M.D.1    Wu, M.2    Madhani, H.D.3
  • 106
    • 0035834777 scopus 로고    scopus 로고
    • Characterization of the stability and folding of H2A.Z chromatin particles: Implications for transcriptional activation
    • Abbott, D.-W., Ivanova, V.-S., Wang, X., Bonner, W.-M. & Ausio, J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J.-Biol. Chem. 276, 41945-41949 (2001).
    • (2001) J.-Biol. Chem. , vol.276 , pp. 41945-41949
    • Abbott, D.-W.1    Ivanova, V.-S.2    Wang, X.3    Bonner, W.-M.4    Ausio, J.5
  • 107
    • 0036183219 scopus 로고    scopus 로고
    • The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states
    • DOI 10.1038/nsb767
    • Fan, J.-Y., Gordon, F., Luger, K., Hansen, J.-C. & Tremethick, D.-J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Struct. Biol. 9, 172-176 (2002). (Pubitemid 34171307)
    • (2002) Nature Structural Biology , vol.9 , Issue.3 , pp. 172-176
    • Fan, J.Y.1    Gordon, F.2    Luger, K.3    Hansen, J.C.4    Tremethick, D.J.5
  • 108
    • 0037380151 scopus 로고    scopus 로고
    • Stretching it: Putting the CEN(PA) in centromere
    • Mellone, B.-G. & Allshire, R.-C. Stretching it: putting the CEN(PA) in centromere. Curr. Opin. Genet. Dev. 13, 191-198 (2003).
    • (2003) Curr. Opin. Genet. Dev. , vol.13 , pp. 191-198
    • Mellone, B.-G.1    Allshire, R.-C.2
  • 110
    • 0034722340 scopus 로고    scopus 로고
    • Chromatin assembly at kinetochores is uncoupled from DNA replication
    • Shelby, R.-D., Monier, K. & Sullivan, K.-F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J.-Cell Biol. 151, 1113-1118 (2000).
    • (2000) J.-Cell Biol. , vol.151 , pp. 1113-1118
    • Shelby, R.-D.1    Monier, K.2    Sullivan, K.-F.3
  • 111
    • 33947274529 scopus 로고    scopus 로고
    • Propagation of centromeric chromatin requires exit from mitosis
    • Jansen, L.-E., Black, B.-E., Foltz, D.-R. & Cleveland, D.-W. Propagation of centromeric chromatin requires exit from mitosis. J.-Cell Biol. 176, 795-805 (2007).
    • (2007) J.-Cell Biol. , vol.176 , pp. 795-805
    • Jansen, L.-E.1    Black, B.-E.2    Foltz, D.-R.3    Cleveland, D.-W.4
  • 112
    • 0035795424 scopus 로고    scopus 로고
    • Centromeres are specialized replication domains in heterochromatin
    • Ahmad, K. & Henikoff, S. Centromeres are specialized replication domains in heterochromatin. J.-Cell Biol. 153, 101-110 (2001).
    • (2001) J.-Cell Biol. , vol.153 , pp. 101-110
    • Ahmad, K.1    Henikoff, S.2
  • 113
    • 33750970858 scopus 로고    scopus 로고
    • Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain
    • DOI 10.1105/tpc.106.043174
    • Lermontova, I. et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18, 2443-2451 (2006). (Pubitemid 44749881)
    • (2006) Plant Cell , vol.18 , Issue.10 , pp. 2443-2451
    • Lermontova, I.1    Schubert, V.2    Fuchs, J.3    Klatte, S.4    Macas, J.5    Schubert, I.6
  • 114
    • 36248990063 scopus 로고    scopus 로고
    • Loading time of the centromeric histone H3 variant differs between plants and animals
    • DOI 10.1007/s00412-007-0122-8
    • Lermontova, I., Fuchs, J., Schubert, V. & Schubert, I. Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116, 507-510 (2007). (Pubitemid 350120986)
    • (2007) Chromosoma , vol.116 , Issue.6 , pp. 507-510
    • Lermontova, I.1    Fuchs, J.2    Schubert, V.3    Schubert, I.4
  • 115
    • 20544448498 scopus 로고    scopus 로고
    • Two distinct pathways responsible for the loading of CENPA to centromeres in the fission yeast cell cycle
    • discussion 606-607
    • Takahashi, K., Takayama, Y., Masuda, F., Kobayashi, Y. & Saitoh, S. Two distinct pathways responsible for the loading of CENPA to centromeres in the fission yeast cell cycle. Phil. Trans. R.-Soc. B Biol. Sci. 360, 595-606; discussion 606-607 (2005).
    • (2005) Phil. Trans. R.-Soc. B Biol. Sci. , vol.360 , pp. 595-606
    • Takahashi, K.1    Takayama, Y.2    Masuda, F.3    Kobayashi, Y.4    Saitoh, S.5
  • 116
    • 7944229979 scopus 로고    scopus 로고
    • Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
    • Pearson, C.-G. et al. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962-1967 (2004).
    • (2004) Curr. Biol. , vol.14 , pp. 1962-1967
    • Pearson, C.-G.1
  • 117
    • 65249119727 scopus 로고    scopus 로고
    • Frodos found: Behold the CENPA "ring" bearers
    • Mellone, B.-G., Zhang, W. & Karpen, G. Frodos found: behold the CENPA "Ring" bearers. Cell 137, 409-412 (2009).
    • (2009) Cell , vol.137 , pp. 409-412
    • Mellone, B.-G.1    Zhang, W.2    Karpen, G.3
  • 118
    • 4544275776 scopus 로고    scopus 로고
    • Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
    • DOI 10.1016/j.cell.2004.09.002, PII S0092867404008323
    • Hayashi, T. et al. Mis16 and Mis18 are required for CENPA loading and histone deacetylation at centromeres. Cell 118, 715-729 (2004). (Pubitemid 39221731)
    • (2004) Cell , vol.118 , Issue.6 , pp. 715-729
    • Hayashi, T.1    Fujita, Y.2    Iwasaki, O.3    Adachi, Y.4    Takahashi, K.5    Yanagida, M.6
  • 120
    • 34548779762 scopus 로고    scopus 로고
    • Activation of Holliday junction-recognizing protein involved in the chromosomal stability and immortality of cancer cells
    • DOI 10.1158/0008-5472.CAN-07-1307
    • Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 67, 8544-8553 (2007). (Pubitemid 47437429)
    • (2007) Cancer Research , vol.67 , Issue.18 , pp. 8544-8553
    • Kato, T.1    Sato, N.2    Hayama, S.3    Yamabuki, T.4    Ito, T.5    Miyamoto, M.6    Kondo, S.7    Nakamura, Y.8    Daigo, Y.9
  • 121
    • 65649124957 scopus 로고    scopus 로고
    • Active establishment of centromeric CENPA chromatin by RSF complex
    • Perpelescu, M., Nozaki, N., Obuse, C., Yang, H. & Yoda, K. Active establishment of centromeric CENPA chromatin by RSF complex. J.-Cell Biol. 185, 397-407 (2009).
    • (2009) J.-Cell Biol. , vol.185 , pp. 397-407
    • Perpelescu, M.1    Nozaki, N.2    Obuse, C.3    Yang, H.4    Yoda, K.5
  • 122
    • 0031858054 scopus 로고    scopus 로고
    • Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor i
    • Kaufman, P.-D., Cohen, J.-L. & Osley, M.-A. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18, 4793-4806 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4793-4806
    • Kaufman, P.-D.1    Cohen, J.-L.2    Osley, M.-A.3
  • 123
    • 0036141054 scopus 로고    scopus 로고
    • Chromatin assembly factor i and Hir proteins contribute to building functional kinetochores in S.-cerevisiae
    • Sharp, J.-A., Franco, A.-A., Osley, M.-A. & Kaufman, P.-D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S.-cerevisiae. Genes Dev. 16, 85-100 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 85-100
    • Sharp, J.-A.1    Franco, A.-A.2    Osley, M.-A.3    Kaufman, P.-D.4
  • 124
    • 78951476162 scopus 로고    scopus 로고
    • Overlapping regulation of CenH3 localization and histone H3 turnover by CAF1 and HIR proteins in Saccharomyces cerevisiae
    • Lopes da Rosa, J., Holik, J., Green, E.-M., Rando, O.-J. & Kaufman, P.-D. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF1 and HIR proteins in Saccharomyces cerevisiae. Genetics 187, 9-19 (2011).
    • (2011) Genetics , vol.187 , pp. 9-19
    • Lopes Da Rosa, J.1    Holik, J.2    Green, E.-M.3    Rando, O.-J.4    Kaufman, P.-D.5
  • 126
    • 0141817943 scopus 로고    scopus 로고
    • The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin
    • Sharp, J.-A., Krawitz, D.-C., Gardner, K.-A., Fox, C.-A. & Kaufman, P.-D. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev. 17, 2356-2361 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 2356-2361
    • Sharp, J.-A.1    Krawitz, D.-C.2    Gardner, K.-A.3    Fox, C.-A.4    Kaufman, P.-D.5
  • 127
    • 63049138013 scopus 로고    scopus 로고
    • SUMO modification of DNA topoisomerase II: Trying to get a CENse of it all
    • Lee, M.-T. & Bachant, J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst.) 8, 557-568 (2009).
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 557-568
    • Lee, M.-T.1    Bachant, J.2
  • 128
    • 0037405734 scopus 로고    scopus 로고
    • The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation
    • DOI 10.1128/MCB.23.9.3202-3215.2003
    • Hsu, J.-M., Huang, J., Meluh, P.-B. & Laurent, B.-C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202-3215 (2003). (Pubitemid 36459233)
    • (2003) Molecular and Cellular Biology , vol.23 , Issue.9 , pp. 3202-3215
    • Hsu, J.-M.1    Huang, J.2    Meluh, P.B.3    Laurent, B.C.4
  • 129
    • 0034700134 scopus 로고    scopus 로고
    • The human SWI/SNFB chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes
    • Xue, Y. et al. The human SWI/SNFB chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015-13020 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 13015-13020
    • Xue, Y.1
  • 130
    • 19344366459 scopus 로고    scopus 로고
    • Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
    • Glynn, E.-F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, e259 (2004).
    • (2004) PLoS Biol. , vol.2
    • Glynn, E.-F.1
  • 131
    • 77952563068 scopus 로고    scopus 로고
    • Condensin and cohesin complexity: The expanding repertoire of functions
    • Wood, A.-J., Severson, A.-F. & Meyer, B.-J. Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev. Genet. 11, 391-404 (2010).
    • (2010) Nature Rev. Genet. , vol.11 , pp. 391-404
    • Wood, A.-J.1    Severson, A.-F.2    Meyer, B.-J.3
  • 132
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: Its roles and mechanisms
    • Nasmyth, K. & Haering, C.-H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525-558 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.-H.2
  • 133
    • 33646177549 scopus 로고    scopus 로고
    • At the heart of the chromosome: SMC proteins in action
    • Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311-322 (2006).
    • (2006) Nature Rev. Mol. Cell Biol. , vol.7 , pp. 311-322
    • Hirano, T.1
  • 134
    • 36249021097 scopus 로고    scopus 로고
    • Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting
    • DOI 10.1007/s00412-007-0118-4
    • Ocampo-Hafalla, M.-T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116, 531-544 (2007). (Pubitemid 350120989)
    • (2007) Chromosoma , vol.116 , Issue.6 , pp. 531-544
    • Ocampo-Hafalla, M.T.1    Katou, Y.2    Shirahige, K.3    Uhlmann, F.4
  • 135
    • 38149062718 scopus 로고    scopus 로고
    • Pericentric chromatin is organized into an intramolecular loop in mitosis
    • Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81-90 (2008).
    • (2008) Curr. Biol. , vol.18 , pp. 81-90
    • Yeh, E.1
  • 136
    • 1542287231 scopus 로고    scopus 로고
    • Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle
    • DOI 10.1038/nature02328
    • Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T.-U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93-97 (2004). (Pubitemid 38332364)
    • (2004) Nature , vol.428 , Issue.6978 , pp. 93-97
    • Dewar, H.1    Tanaka, K.2    Nasmyth, K.3    Tanaka, T.U.4
  • 137
    • 0000818409 scopus 로고    scopus 로고
    • Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
    • Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492-499 (2000).
    • (2000) Nature Cell Biol. , vol.2 , pp. 492-499
    • Tanaka, T.1    Fuchs, J.2    Loidl, J.3    Nasmyth, K.4
  • 138
    • 65249182240 scopus 로고    scopus 로고
    • Kinetochore geometry defined by cohesion within the centromere
    • Sakuno, T., Tada, K. & Watanabe, Y. Kinetochore geometry defined by cohesion within the centromere. Nature 458, 852-858 (2009).
    • (2009) Nature , vol.458 , pp. 852-858
    • Sakuno, T.1    Tada, K.2    Watanabe, Y.3
  • 139
    • 38149050534 scopus 로고    scopus 로고
    • Chromosome bi-orientation: Euclidian euploidy
    • Stumpff, J. & Asbury, C.-L. Chromosome bi-orientation: euclidian euploidy. Curr. Biol. 18, R81-R83 (2008).
    • (2008) Curr. Biol. , vol.18
    • Stumpff, J.1    Asbury, C.-L.2
  • 140
    • 35548995475 scopus 로고    scopus 로고
    • Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle
    • Indjeian, V.-B. & Murray, A.-W. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr. Biol. 17, 1837-1846 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 1837-1846
    • Indjeian, V.-B.1    Murray, A.-W.2
  • 141
    • 62849085547 scopus 로고    scopus 로고
    • Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
    • Maresca, T.-J. & Salmon, E.-D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J.-Cell Biol. 184, 373-381 (2009).
    • (2009) J.-Cell Biol. , vol.184 , pp. 373-381
    • Maresca, T.-J.1    Salmon, E.-D.2
  • 142
    • 77951196642 scopus 로고    scopus 로고
    • Welcome to a new kind of tension: Translating kinetochore mechanics into a wait-anaphase signal
    • Maresca, T.-J. & Salmon, E.-D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J.-Cell Sci. 123, 825-835 (2010).
    • (2010) J.-Cell Sci. , vol.123 , pp. 825-835
    • Maresca, T.-J.1    Salmon, E.-D.2
  • 143
    • 0025872050 scopus 로고
    • The centromere-kinetochore complex: A repeat subunit model
    • Zinkowski, R.-P., Meyne, J. & Brinkley, B.-R. The centromere-kinetochore complex: a repeat subunit model. J.-Cell Biol. 113, 1091-1110 (1991). (Pubitemid 21909741)
    • (1991) Journal of Cell Biology , vol.113 , Issue.5 , pp. 1091-1110
    • Zinkowski, R.P.1    Meyne, J.2    Brinkley, B.R.3
  • 144
    • 61349170174 scopus 로고    scopus 로고
    • A tale of two centromeres-diversity of structure but conservation of function in plants and animals
    • Birchler, J.-A., Gao, Z. & Han, F. A tale of two centromeres- diversity of structure but conservation of function in plants and animals. Funct. Integr. Genomics 9, 7-13 (2009).
    • (2009) Funct. Integr. Genomics , vol.9 , pp. 7-13
    • Birchler, J.-A.1    Gao, Z.2    Han, F.3
  • 145
    • 77953801741 scopus 로고    scopus 로고
    • A super-resolution map of the vertebrate kinetochore
    • Ribeiro, S.-A. et al. A super-resolution map of the vertebrate kinetochore. Proc. Natl Acad. Sci. USA 107, 10484-10489 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 10484-10489
    • Ribeiro, S.-A.1
  • 146
    • 70350223561 scopus 로고    scopus 로고
    • Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore
    • Anderson, M., Haase, J., Yeh, E. & Bloom, K. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol. Biol. Cell 20, 4131-4139 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4131-4139
    • Anderson, M.1    Haase, J.2    Yeh, E.3    Bloom, K.4
  • 148
    • 65049088564 scopus 로고    scopus 로고
    • In-vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
    • Joglekar, A.-P., Bloom, K. & Salmon, E.-D. In-vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19, 694-699 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 694-699
    • Joglekar, A.-P.1    Bloom, K.2    Salmon, E.-D.3
  • 149
    • 65549149069 scopus 로고    scopus 로고
    • Protein architecture of the human kinetochore microtubule attachment site
    • Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672-684 (2009).
    • (2009) Cell , vol.137 , pp. 672-684
    • Wan, X.1
  • 150
    • 77953574250 scopus 로고    scopus 로고
    • Vertebrate kinetochore protein architecture: Protein copy number
    • Johnston, K. et al. Vertebrate kinetochore protein architecture: protein copy number. J.-Cell Biol. 189, 937-943 (2010).
    • (2010) J.-Cell Biol. , vol.189 , pp. 937-943
    • Johnston, K.1
  • 151
    • 34247891773 scopus 로고    scopus 로고
    • The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions
    • DOI 10.1038/ncb1576, PII NCB1576
    • Dong, Y., Vanden Beldt, K.-J., Meng, X., Khodjakov, A. & McEwen, B.-F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516-522 (2007). (Pubitemid 46696532)
    • (2007) Nature Cell Biology , vol.9 , Issue.5 , pp. 516-522
    • Dong, Y.1    Vanden Beldt, K.J.2    Meng, X.3    Khodjakov, A.4    McEwen, B.F.5
  • 152
    • 77954056702 scopus 로고    scopus 로고
    • Contrasting models for kinetochore microtubule attachment in mammalian cells
    • McEwen, B.-F. & Dong, Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell. Mol. Life Sci. 67, 2163-2172 (2010).
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 2163-2172
    • McEwen, B.-F.1    Dong, Y.2
  • 153
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363-367 (2010).
    • (2010) Nature , vol.465 , pp. 363-367
    • Duan, Z.1
  • 154
    • 34047267479 scopus 로고    scopus 로고
    • Centromere dynamics
    • DOI 10.1016/j.gde.2007.02.009, PII S0959437X07000354, Chromosomes and Expression Mechanisms
    • Bloom, K. Centromere dynamics. Curr. Opin. Genet. Dev. 17, 151-156 (2007). (Pubitemid 46551720)
    • (2007) Current Opinion in Genetics and Development , vol.17 , Issue.2 , pp. 151-156
    • Bloom, K.1
  • 156
    • 77954719357 scopus 로고    scopus 로고
    • Entropy as the driver of chromosome segregation
    • Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nature Rev. Microbiol. 8, 600-607 (2010).
    • (2010) Nature Rev. Microbiol. , vol.8 , pp. 600-607
    • Jun, S.1    Wright, A.2
  • 157
    • 79952280910 scopus 로고    scopus 로고
    • Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes
    • Finan, K., Cook, P.-R. & Marenduzzo, D. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res. 19, 53-61 (2010).
    • (2010) Chromosome Res. , vol.19 , pp. 53-61
    • Finan, K.1    Cook, P.-R.2    Marenduzzo, D.3
  • 158
    • 66749191436 scopus 로고    scopus 로고
    • Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length
    • Marko, J.-F. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 051905 (2009).
    • (2009) Phys. Rev. e Stat. Nonlin. Soft Matter Phys. , vol.79 , pp. 051905
    • Marko, J.-F.1
  • 159
    • 70449900937 scopus 로고    scopus 로고
    • Dynamic chromosome movements during meiosis: A way to eliminate unwanted connections?
    • Koszul, R. & Kleckner, N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 19, 716-724 (2009).
    • (2009) Trends Cell Biol. , vol.19 , pp. 716-724
    • Koszul, R.1    Kleckner, N.2
  • 161
    • 33845295824 scopus 로고    scopus 로고
    • The depletion attraction: An underappreciated force driving cellular organization
    • DOI 10.1083/jcb.200609066
    • Marenduzzo, D., Finan, K. & Cook, P.-R. The depletion attraction: an underappreciated force driving cellular organization. J.-Cell Biol. 175, 681-686 (2006). (Pubitemid 44878499)
    • (2006) Journal of Cell Biology , vol.175 , Issue.5 , pp. 681-686
    • Marenduzzo, D.1    Finan, K.2    Cook, P.R.3
  • 162
    • 79251574319 scopus 로고    scopus 로고
    • Repulsive forces between looping chromosomes induce entropy-driven segregation
    • Bohn, M. & Heermann, D.-W. Repulsive forces between looping chromosomes induce entropy-driven segregation. PLoS ONE 6, e14428 (2011).
    • (2011) PLoS ONE , vol.6
    • Bohn, M.1    Heermann, D.-W.2
  • 163
    • 0030013891 scopus 로고    scopus 로고
    • Forces on chromosomal DNA during anaphase
    • Jannink, G., Duplantier, B. & Sikorav, J.-L. Forces on chromosomal DNA during anaphase. Biophys. J. 71, 451-465 (1996). (Pubitemid 26227331)
    • (1996) Biophysical Journal , vol.71 , Issue.1 , pp. 451-465
    • Jannink, G.1    Duplantier, B.2    Sikorav, J.-L.3
  • 164
    • 0020502331 scopus 로고
    • Measurements of the force produced by the mitotic spindle in anaphase
    • Nicklas, R.-B. Measurements of the force produced by the mitotic spindle in anaphase. J.-Cell Biol. 97, 542-548 (1983).
    • (1983) J.-Cell Biol. , vol.97 , pp. 542-548
    • Nicklas, R.-B.1
  • 165
    • 33644976016 scopus 로고    scopus 로고
    • Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity
    • Zhang, T., Lim, H.-H., Cheng, C.-S. & Surana, U. Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity. J.-Cell Sci. 119, 519-531 (2006).
    • (2006) J.-Cell Sci. , vol.119 , pp. 519-531
    • Zhang, T.1    Lim, H.-H.2    Cheng, C.-S.3    Surana, U.4
  • 166
    • 77954628118 scopus 로고    scopus 로고
    • Unrestrained spindle elongation during recovery from spindle checkpoint activation in cdc15-2 cells results in mis-segregation of chromosomes
    • Chai, C.-C., Teh, E.-M. & Yeong, F.-M. Unrestrained spindle elongation during recovery from spindle checkpoint activation in cdc15-2 cells results in mis-segregation of chromosomes. Mol. Biol. Cell 21, 2384-2398 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2384-2398
    • Chai, C.-C.1    Teh, E.-M.2    Yeong, F.-M.3
  • 167
    • 28844457984 scopus 로고    scopus 로고
    • Kinetochore capture and bi-orientation on the mitotic spindle
    • DOI 10.1038/nrm1764
    • Tanaka, T.-U., Stark, M.-J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol. 6, 929-942 (2005). (Pubitemid 41778712)
    • (2005) Nature Reviews Molecular Cell Biology , vol.6 , Issue.12 , pp. 929-942
    • Tanaka, T.U.1    Stark, M.J.R.2    Tanaka, K.3
  • 168
    • 34247345381 scopus 로고    scopus 로고
    • Pericentric Chromatin Is an Elastic Component of the Mitotic Spindle
    • DOI 10.1016/j.cub.2007.03.033, PII S0960982207011359
    • Bouck, D.-C. & Bloom, K. Pericentric chromatin is an elastic component of the mitotic spindle. Curr. Biol. 17, 741-748 (2007). (Pubitemid 46635113)
    • (2007) Current Biology , vol.17 , Issue.9 , pp. 741-748
    • Bouck, D.C.1    Bloom, K.2
  • 169
    • 0035901591 scopus 로고    scopus 로고
    • Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis
    • Marshall, W.-F., Marko, J.-F., Agard, D.-A. & Sedat, J.-W. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol. 11, 569-578 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 569-578
    • Marshall, W.-F.1    Marko, J.-F.2    Agard, D.-A.3    Sedat, J.-W.4
  • 170
    • 0013869542 scopus 로고
    • The fine structure of the kinetochore of a mammalian cell in-vitro
    • Brinkley, B.-R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in-vitro. Chromosoma 19, 28-43 (1966).
    • (1966) Chromosoma , vol.19 , pp. 28-43
    • Brinkley, B.-R.1    Stubblefield, E.2
  • 171
    • 0014109164 scopus 로고
    • The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells
    • Jokelainen, P.-T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J.-Ultrastruct. Res. 19, 19-44 (1967).
    • (1967) J.-Ultrastruct. Res. , vol.19 , pp. 19-44
    • Jokelainen, P.-T.1
  • 172
    • 55349099213 scopus 로고    scopus 로고
    • Toward a molecular structure of the eukaryotic kinetochore
    • Welburn, J.-P. & Cheeseman, I.-M. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15, 645-655 (2008).
    • (2008) Dev. Cell , vol.15 , pp. 645-655
    • Welburn, J.-P.1    Cheeseman, I.-M.2
  • 173
    • 78649675367 scopus 로고    scopus 로고
    • Ted Salmon: Kinetochores at the core of it all
    • Sedwick, C. Ted Salmon: kinetochores at the core of it all. J.-Cell Biol. 191, 896-897 (2010).
    • (2010) J.-Cell Biol. , vol.191 , pp. 896-897
    • Sedwick, C.1
  • 174
    • 0042679490 scopus 로고    scopus 로고
    • Determining the position of the cell division plane
    • Canman, J.-C. et al. Determining the position of the cell division plane. Nature 424, 1074-1078 (2003).
    • (2003) Nature , vol.424 , pp. 1074-1078
    • Canman, J.-C.1
  • 176
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENPA nucleosomes
    • Black, B.-E. & Cleveland, D.-W. Epigenetic centromere propagation and the nature of CENPA nucleosomes. Cell 144, 471-479 (2011).
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.-E.1    Cleveland, D.-W.2
  • 177
    • 77956167600 scopus 로고    scopus 로고
    • The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics
    • Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810-821 (2010).
    • (2010) Cell , vol.142 , pp. 810-821
    • Ohta, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.