-
1
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
Amano M., Suzuki A., Hori T., Backer C., Okawa K., Cheeseman I.M., Fukagawa T. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J.Cell Biol. 2009, 186:173-182.
-
(2009)
J.Cell Biol.
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
Cheeseman, I.M.6
Fukagawa, T.7
-
2
-
-
58149334818
-
Genome stability is ensured by temporal control of kinetochore-microtubule dynamics
-
Bakhoum S.F., Thompson S.L., Manning A.L., Compton D.A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat. Cell Biol. 2009, 11:27-35.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 27-35
-
-
Bakhoum, S.F.1
Thompson, S.L.2
Manning, A.L.3
Compton, D.A.4
-
3
-
-
84881082807
-
The composition, functions, and regulation of the budding yeast kinetochore
-
Biggins S. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 2013, 194:817-846.
-
(2013)
Genetics
, vol.194
, pp. 817-846
-
-
Biggins, S.1
-
4
-
-
84877575218
-
Tension sensing by Aurora B kinase is independent of survivin-based centromere localization
-
Campbell C.S., Desai A. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization. Nature 2013, 497:118-121.
-
(2013)
Nature
, vol.497
, pp. 118-121
-
-
Campbell, C.S.1
Desai, A.2
-
5
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll C.W., Milks K.J., Straight A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J.Cell Biol. 2010, 189:1143-1155.
-
(2010)
J.Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
6
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008, 9:33-46.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
7
-
-
39449096363
-
KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates
-
Cheeseman I.M., Hori T., Fukagawa T., Desai A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 2008, 19:587-594.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 587-594
-
-
Cheeseman, I.M.1
Hori, T.2
Fukagawa, T.3
Desai, A.4
-
8
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., Pasqualato S., Screpanti E., Varetti G., Santaguida S., Dos Reis G., Maiolica A., Polka J., De Luca J.G., De Wulf P., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
Santaguida, S.5
Dos Reis, G.6
Maiolica, A.7
Polka, J.8
De Luca, J.G.9
De Wulf, P.10
-
9
-
-
33750612373
-
Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors
-
Cimini D., Wan X., Hirel C.B., Salmon E.D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 2006, 16:1711-1718.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1711-1718
-
-
Cimini, D.1
Wan, X.2
Hirel, C.B.3
Salmon, E.D.4
-
10
-
-
0346753737
-
Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes
-
De Wulf P., McAinsh A.D., Sorger P.K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 2003, 17:2902-2921.
-
(2003)
Genes Dev.
, vol.17
, pp. 2902-2921
-
-
De Wulf, P.1
McAinsh, A.D.2
Sorger, P.K.3
-
11
-
-
12844283239
-
Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites
-
DeLuca J.G., Dong Y., Hergert P., Strauss J., Hickey J.M., Salmon E.D., McEwen B.F. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 2005, 16:519-531.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 519-531
-
-
DeLuca, J.G.1
Dong, Y.2
Hergert, P.3
Strauss, J.4
Hickey, J.M.5
Salmon, E.D.6
McEwen, B.F.7
-
12
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., Salmon E.D. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
13
-
-
79951833036
-
Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
-
DeLuca K.F., Lens S.M., DeLuca J.G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J.Cell Sci. 2011, 124:622-634.
-
(2011)
J.Cell Sci.
, vol.124
, pp. 622-634
-
-
DeLuca, K.F.1
Lens, S.M.2
DeLuca, J.G.3
-
14
-
-
84864020836
-
Deformations within moving kinetochores reveal different sites of active and passive force generation
-
Dumont S., Salmon E.D., Mitchison T.J. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 2012, 337:355-358.
-
(2012)
Science
, vol.337
, pp. 355-358
-
-
Dumont, S.1
Salmon, E.D.2
Mitchison, T.J.3
-
15
-
-
80053573427
-
Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase
-
Foley E.A., Maldonado M., Kapoor T.M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 2011, 13:1265-1271.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1265-1271
-
-
Foley, E.A.1
Maldonado, M.2
Kapoor, T.M.3
-
16
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz D.R., Jansen L.E., Black B.E., Bailey A.O., Yates J.R., Cleveland D.W. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 2006, 8:458-469.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates, J.R.5
Cleveland, D.W.6
-
17
-
-
84880136225
-
The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide
-
Gardner K.A., Moore D.A., Erickson H.P. The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide. Mol. Microbiol. 2013, 89:264-275.
-
(2013)
Mol. Microbiol.
, vol.89
, pp. 264-275
-
-
Gardner, K.A.1
Moore, D.A.2
Erickson, H.P.3
-
18
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne K.E., Takeuchi K., Suzuki A., Hori T., Fukagawa T., Cheeseman I.M. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011, 145:410-422.
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
Takeuchi, K.2
Suzuki, A.3
Hori, T.4
Fukagawa, T.5
Cheeseman, I.M.6
-
19
-
-
56349089656
-
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
-
Guimaraes G.J., Dong Y., McEwen B.F., Deluca J.G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 2008, 18:1778-1784.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1778-1784
-
-
Guimaraes, G.J.1
Dong, Y.2
McEwen, B.F.3
Deluca, J.G.4
-
20
-
-
41649109022
-
CENP-O class proteins form a stable complex and are required for proper kinetochore function
-
Hori T., Okada M., Maenaka K., Fukagawa T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 2008, 19:843-854.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 843-854
-
-
Hori, T.1
Okada, M.2
Maenaka, K.3
Fukagawa, T.4
-
21
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori T., Shang W.H., Takeuchi K., Fukagawa T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J.Cell Biol. 2013, 200:45-60.
-
(2013)
J.Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
22
-
-
84885586458
-
Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation
-
Kabeche L., Compton D.A. Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 2013, 502:110-113.
-
(2013)
Nature
, vol.502
, pp. 110-113
-
-
Kabeche, L.1
Compton, D.A.2
-
23
-
-
84878363880
-
A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C
-
Kato H., Jiang J., Zhou B.R., Rozendaal M., Feng H., Ghirlando R., Xiao T.S., Straight A.F., Bai Y. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 2013, 340:1110-1113.
-
(2013)
Science
, vol.340
, pp. 1110-1113
-
-
Kato, H.1
Jiang, J.2
Zhou, B.R.3
Rozendaal, M.4
Feng, H.5
Ghirlando, R.6
Xiao, T.S.7
Straight, A.F.8
Bai, Y.9
-
24
-
-
79952107079
-
Sensing centromere tension: Aurora B and the regulation of kinetochore function
-
Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011, 21:133-140.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 133-140
-
-
Lampson, M.A.1
Cheeseman, I.M.2
-
25
-
-
81355161263
-
Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome
-
Lawrimore J., Bloom K.S., Salmon E.D. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 2011, 195:573-582.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 573-582
-
-
Lawrimore, J.1
Bloom, K.S.2
Salmon, E.D.3
-
26
-
-
62149111407
-
Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates
-
Liu D., Vader G., Vromans M.J., Lampson M.A., Lens S.M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 2009, 323:1350-1353.
-
(2009)
Science
, vol.323
, pp. 1350-1353
-
-
Liu, D.1
Vader, G.2
Vromans, M.J.3
Lampson, M.A.4
Lens, S.M.5
-
27
-
-
84873566629
-
A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
-
Malvezzi F., Litos G., Schleiffer A., Heuck A., Mechtler K., Clausen T., Westermann S. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 2013, 32:409-423.
-
(2013)
EMBO J.
, vol.32
, pp. 409-423
-
-
Malvezzi, F.1
Litos, G.2
Schleiffer, A.3
Heuck, A.4
Mechtler, K.5
Clausen, T.6
Westermann, S.7
-
28
-
-
62849085547
-
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
-
Maresca T.J., Salmon E.D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J.Cell Biol. 2009, 184:373-381.
-
(2009)
J.Cell Biol.
, vol.184
, pp. 373-381
-
-
Maresca, T.J.1
Salmon, E.D.2
-
29
-
-
77951196642
-
Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal
-
Maresca T.J., Salmon E.D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J.Cell Sci. 2010, 123:825-835.
-
(2010)
J.Cell Sci.
, vol.123
, pp. 825-835
-
-
Maresca, T.J.1
Salmon, E.D.2
-
30
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
Musacchio A., Salmon E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 2007, 8:379-393.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
31
-
-
84856719568
-
CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold
-
Nishino T., Takeuchi K., Gascoigne K.E., Suzuki A., Hori T., Oyama T., Morikawa K., Cheeseman I.M., Fukagawa T. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 2012, 148:487-501.
-
(2012)
Cell
, vol.148
, pp. 487-501
-
-
Nishino, T.1
Takeuchi, K.2
Gascoigne, K.E.3
Suzuki, A.4
Hori, T.5
Oyama, T.6
Morikawa, K.7
Cheeseman, I.M.8
Fukagawa, T.9
-
32
-
-
84873570232
-
CENP-T provides a structural platform for outer kinetochore assembly
-
Nishino T., Rago F., Hori T., Tomii K., Cheeseman I.M., Fukagawa T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 2013, 32:424-436.
-
(2013)
EMBO J.
, vol.32
, pp. 424-436
-
-
Nishino, T.1
Rago, F.2
Hori, T.3
Tomii, K.4
Cheeseman, I.M.5
Fukagawa, T.6
-
33
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada M., Cheeseman I.M., Hori T., Okawa K., McLeod I.X., Yates J.R., Desai A., Fukagawa T. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 2006, 8:446-457.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates, J.R.6
Desai, A.7
Fukagawa, T.8
-
35
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka M.R., Venkei Z., Bolanos-Garcia V.M., Debski J., Dadlez M., Glover D.M. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 2011, 21:399-405.
-
(2011)
Curr. Biol.
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
Glover, D.M.6
-
36
-
-
84874970891
-
Review series: The functions and consequences of force at kinetochores
-
Rago F., Cheeseman I.M. Review series: The functions and consequences of force at kinetochores. J.Cell Biol. 2013, 200:557-565.
-
(2013)
J.Cell Biol.
, vol.200
, pp. 557-565
-
-
Rago, F.1
Cheeseman, I.M.2
-
37
-
-
77953801741
-
A super-resolution map of the vertebrate kinetochore
-
Ribeiro S.A., Vagnarelli P., Dong Y., Hori T., McEwen B.F., Fukagawa T., Flors C., Earnshaw W.C. A super-resolution map of the vertebrate kinetochore. Proc. Natl. Acad. Sci. USA 2010, 107:10484-10489.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 10484-10489
-
-
Ribeiro, S.A.1
Vagnarelli, P.2
Dong, Y.3
Hori, T.4
McEwen, B.F.5
Fukagawa, T.6
Flors, C.7
Earnshaw, W.C.8
-
38
-
-
79952364478
-
Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore
-
Screpanti E., De Antoni A., Alushin G.M., Petrovic A., Melis T., Nogales E., Musacchio A. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 2011, 21:391-398.
-
(2011)
Curr. Biol.
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
De Antoni, A.2
Alushin, G.M.3
Petrovic, A.4
Melis, T.5
Nogales, E.6
Musacchio, A.7
-
39
-
-
84864795108
-
Transient defects of mitotic spindle geometry and chromosome segregation errors
-
Silkworth W.T., Cimini D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div. 2012, 7:19.
-
(2012)
Cell Div.
, vol.7
, pp. 19
-
-
Silkworth, W.T.1
Cimini, D.2
-
40
-
-
79955497376
-
Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
-
Suzuki A., Hori T., Nishino T., Usukura J., Miyagi A., Morikawa K., Fukagawa T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J.Cell Biol. 2011, 193:125-140.
-
(2011)
J.Cell Biol.
, vol.193
, pp. 125-140
-
-
Suzuki, A.1
Hori, T.2
Nishino, T.3
Usukura, J.4
Miyagi, A.5
Morikawa, K.6
Fukagawa, T.7
-
41
-
-
84873723524
-
Regulatory mechanisms of kinetochore-microtubule interaction in mitosis
-
Tanaka K. Regulatory mechanisms of kinetochore-microtubule interaction in mitosis. Cell. Mol. Life Sci. 2013, 70:559-579.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, pp. 559-579
-
-
Tanaka, K.1
-
42
-
-
0028287114
-
CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase
-
Tomkiel J., Cooke C.A., Saitoh H., Bernat R.L., Earnshaw W.C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J.Cell Biol. 1994, 125:531-545.
-
(1994)
J.Cell Biol.
, vol.125
, pp. 531-545
-
-
Tomkiel, J.1
Cooke, C.A.2
Saitoh, H.3
Bernat, R.L.4
Earnshaw, W.C.5
-
43
-
-
62849098748
-
Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly
-
Toso A., Winter J.R., Garrod A.J., Amaro A.C., Meraldi P., McAinsh A.D. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J.Cell Biol. 2009, 184:365-372.
-
(2009)
J.Cell Biol.
, vol.184
, pp. 365-372
-
-
Toso, A.1
Winter, J.R.2
Garrod, A.J.3
Amaro, A.C.4
Meraldi, P.5
McAinsh, A.D.6
-
44
-
-
62849128355
-
Kinetochore stretching inactivates the spindle assembly checkpoint
-
Uchida K.S., Takagaki K., Kumada K., Hirayama Y., Noda T., Hirota T. Kinetochore stretching inactivates the spindle assembly checkpoint. J.Cell Biol. 2009, 184:383-390.
-
(2009)
J.Cell Biol.
, vol.184
, pp. 383-390
-
-
Uchida, K.S.1
Takagaki, K.2
Kumada, K.3
Hirayama, Y.4
Noda, T.5
Hirota, T.6
-
45
-
-
84884170422
-
Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores
-
Varma D., Wan X., Cheerambathur D., Gassmann R., Suzuki A., Lawrimore J., Desai A., Salmon E.D. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores. J.Cell Biol. 2013, 202:735-746.
-
(2013)
J.Cell Biol.
, vol.202
, pp. 735-746
-
-
Varma, D.1
Wan, X.2
Cheerambathur, D.3
Gassmann, R.4
Suzuki, A.5
Lawrimore, J.6
Desai, A.7
Salmon, E.D.8
-
46
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., O'Quinn R.P., Pierce H.L., Joglekar A.P., Gall W.E., DeLuca J.G., Carroll C.W., Liu S.T., Yen T.J., McEwen B.F., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
DeLuca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
McEwen, B.F.10
-
47
-
-
53149128681
-
Architecture and flexibility of the yeast Ndc80 kinetochore complex
-
Wang H.W., Long S., Ciferri C., Westermann S., Drubin D., Barnes G., Nogales E. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J.Mol. Biol. 2008, 383:894-903.
-
(2008)
J.Mol. Biol.
, vol.383
, pp. 894-903
-
-
Wang, H.W.1
Long, S.2
Ciferri, C.3
Westermann, S.4
Drubin, D.5
Barnes, G.6
Nogales, E.7
-
48
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
Wei R.R., Sorger P.K., Harrison S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 2005, 102:5363-5367.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
Sorger, P.K.2
Harrison, S.C.3
-
49
-
-
33846100785
-
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
-
Wei R.R., Al-Bassam J., Harrison S.C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 2007, 14:54-59.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 54-59
-
-
Wei, R.R.1
Al-Bassam, J.2
Harrison, S.C.3
-
50
-
-
77951952612
-
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
-
Welburn J.P., Vleugel M., Liu D., Yates J.R., Lampson M.A., Fukagawa T., Cheeseman I.M. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 2010, 38:383-392.
-
(2010)
Mol. Cell
, vol.38
, pp. 383-392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates, J.R.4
Lampson, M.A.5
Fukagawa, T.6
Cheeseman, I.M.7
-
51
-
-
0029927081
-
Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C
-
Yang C.H., Tomkiel J., Saitoh H., Johnson D.H., Earnshaw W.C. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol. 1996, 16:3576-3586.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 3576-3586
-
-
Yang, C.H.1
Tomkiel, J.2
Saitoh, H.3
Johnson, D.H.4
Earnshaw, W.C.5
|