-
1
-
-
84859841455
-
HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly
-
Bassett, E.A., J. DeNizio, M.C. Barnhart-Dailey, T. Panchenko, N. Sekulic, D.J. Rogers, D.R. Foltz, and B.E. Black. 2012. HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly. Dev. Cell. 22:749-762. http://dx.doi.org/10.1016/j.devcel.2012.02.001
-
(2012)
Dev. Cell.
, vol.22
, pp. 749-762
-
-
Bassett, E.A.1
DeNizio, J.2
Barnhart-Dailey, M.C.3
Panchenko, T.4
Sekulic, N.5
Rogers, D.J.6
Foltz, D.R.7
Black, B.E.8
-
2
-
-
78751636707
-
Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
-
Bergmann, J.H., M.G. Rodríguez, N.M. Martins, H. Kimura, D.A. Kelly, H. Masumoto, V. Larionov, L.E. Jansen, and W.C. Earnshaw. 2011. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30:328-340. http://dx.doi.org/10.1038/emboj.2010.329
-
(2011)
EMBO J.
, vol.30
, pp. 328-340
-
-
Bergmann, J.H.1
Rodríguez, M.G.2
Martins, N.M.3
Kimura, H.4
Kelly, D.A.5
Masumoto, H.6
Larionov, V.7
Jansen, L.E.8
Earnshaw, W.C.9
-
3
-
-
79951905050
-
Xenopus HJURP and condensin II are required for CENP-A assembly
-
Bernad, R., P. Sánchez, T. Rivera, M. Rodríguez-Corsino, E. Boyarchuk, I. Vassias, D. Ray-Gallet, A. Arnaoutov, M. Dasso, G. Almouzni, and A. Losada. 2011. Xenopus HJURP and condensin II are required for CENP-A assembly. J. Cell Biol. 192:569-582. http://dx.doi.org/10.1083/jcb.201005136
-
(2011)
J. Cell Biol.
, vol.192
, pp. 569-582
-
-
Bernad, R.1
Sánchez, P.2
Rivera, T.3
Rodríguez-Corsino, M.4
Boyarchuk, E.5
Vassias, I.6
Ray-Gallet, D.7
Arnaoutov, A.8
Dasso, M.9
Almouzni, G.10
Losada, A.11
-
4
-
-
3242884785
-
Structural determinants for generating centromeric chromatin
-
Black, B.E., D.R. Foltz, S. Chakravarthy, K. Luger, V.L. Woods Jr., and D.W. Cleveland. 2004. Structural determinants for generating centromeric chromatin. Nature. 430:578-582. http://dx.doi.org/10.1038/nature02766
-
(2004)
Nature.
, vol.430
, pp. 578-582
-
-
Black, B.E.1
Foltz, D.R.2
Chakravarthy, S.3
Luger, K.4
Woods, V.L.5
Cleveland, D.W.6
-
5
-
-
0036200147
-
Conserved organization of centromeric chromatin in flies and humans
-
Blower, M.D., B.A. Sullivan, and G.H. Karpen. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell. 2:319-330. http://dx.doi.org/10.1016/S1534-5807(02)00135-1
-
(2002)
Dev. Cell.
, vol.2
, pp. 319-330
-
-
Blower, M.D.1
Sullivan, B.A.2
Karpen, G.H.3
-
6
-
-
84875445835
-
Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes
-
Bodor, D.L., L.P. Valente, J.F. Mata, B.E. Black, and L.E. Jansen. 2013. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol. Biol. Cell. 24:923-932.
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 923-932
-
-
Bodor, D.L.1
Valente, L.P.2
Mata, J.F.3
Black, B.E.4
Jansen, L.E.5
-
7
-
-
84904431218
-
The quantitative architecture of centromeric chromatin
-
Bodor, D.L., J.F. Mata, M. Sergeev, A.F. David, K.J. Salimian, T. Panchenko, D.W. Cleveland, B.E. Black, J.V. Shah, and L.E. Jansen. 2014. The quantitative architecture of centromeric chromatin. eLife. 3:e02137. http://dx.doi.org/10.7554/eLife.02137
-
(2014)
eLife
, vol.3
-
-
Bodor, D.L.1
Mata, J.F.2
Sergeev, M.3
David, A.F.4
Salimian, K.J.5
Panchenko, T.6
Cleveland, D.W.7
Black, B.E.8
Shah, J.V.9
Jansen, L.E.10
-
8
-
-
67650065426
-
Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
-
Carroll, C.W., M.C. Silva, K.M. Godek, L.E. Jansen, and A.F. Straight. 2009. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 11:896-902.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 896-902
-
-
Carroll, C.W.1
Silva, M.C.2
Godek, K.M.3
Jansen, L.E.4
Straight, A.F.5
-
9
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll, C.W., K.J. Milks, and A.F. Straight. 2010. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189:1143-1155.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
10
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman, I.M., and A. Desai. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9:33-46. http://dx.doi.org/10.1038/nrm2310
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
11
-
-
84860201576
-
CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin
-
Dambacher, S., W. Deng, M. Hahn, D. Sadic, J. Fröhlich, A. Nuber, C. Hoischen, S. Diekmann, H. Leonhardt, and G. Schotta. 2012. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus. 3:101-110. http://dx.doi.org/10.4161/nucl.18955
-
(2012)
Nucleus.
, vol.3
, pp. 101-110
-
-
Dambacher, S.1
Deng, W.2
Hahn, M.3
Sadic, D.4
Fröhlich, J.5
Nuber, A.6
Hoischen, C.7
Diekmann, S.8
Leonhardt, H.9
Schotta, G.10
-
12
-
-
0032608492
-
The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro
-
Desai, A., A. Murray, T.J. Mitchison, and C.E. Walczak. 1999. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61:385-412.
-
(1999)
Methods Cell Biol.
, vol.61
, pp. 385-412
-
-
Desai, A.1
Murray, A.2
Mitchison, T.J.3
Walczak, C.E.4
-
13
-
-
65249129208
-
HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres
-
Dunleavy, E.M., D. Roche, H. Tagami, N. Lacoste, D. Ray-Gallet, Y. Nakamura, Y. Daigo, Y. Nakatani, and G. Almouzni-Pettinotti. 2009. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell. 137:485-497. http://dx.doi.org/10.1016/j.cell.2009.02.040
-
(2009)
Cell.
, vol.137
, pp. 485-497
-
-
Dunleavy, E.M.1
Roche, D.2
Tagami, H.3
Lacoste, N.4
Ray-Gallet, D.5
Nakamura, Y.6
Daigo, Y.7
Nakatani, Y.8
Almouzni-Pettinotti, G.9
-
14
-
-
84855956123
-
H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase
-
Dunleavy, E.M., G. Almouzni, and G.H. Karpen. 2011. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus. 2:146-157. http://dx.doi.org/10.4161/nucl.2.2.15211
-
(2011)
Nucleus.
, vol.2
, pp. 146-157
-
-
Dunleavy, E.M.1
Almouzni, G.2
Karpen, G.H.3
-
15
-
-
58149305928
-
Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
-
Erhardt, S., B.G. Mellone, C.M. Betts, W. Zhang, G.H. Karpen, and A.F. Straight. 2008. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183:805-818. http://dx.doi.org/10.1083/jcb.200806038
-
(2008)
J. Cell Biol.
, vol.183
, pp. 805-818
-
-
Erhardt, S.1
Mellone, B.G.2
Betts, C.M.3
Zhang, W.4
Karpen, G.H.5
Straight, A.F.6
-
16
-
-
84883667139
-
A two-step mechanism for epigenetic specification of centromere identity and function
-
Fachinetti, D., H.D. Folco, Y. Nechemia-Arbely, L.P. Valente, K. Nguyen, A.J. Wong, Q. Zhu, A.J. Holland, A. Desai, L.E. Jansen, and D.W. Cleveland. 2013. A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 15:1056-1066. http://dx.doi.org/10.1038/ncb2805
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1056-1066
-
-
Fachinetti, D.1
Folco, H.D.2
Nechemia-Arbely, Y.3
Valente, L.P.4
Nguyen, K.5
Wong, A.J.6
Zhu, Q.7
Holland, A.J.8
Desai, A.9
Jansen, L.E.10
Cleveland, D.W.11
-
17
-
-
84928797239
-
DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function
-
Fachinetti, D., J.S. Han, M.A. McMahon, P. Ly, A. Abdullah, A.J. Wong, and D.W. Cleveland. 2015. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev. Cell. 33:314-327. http://dx.doi.org/10.1016/j.devcel.2015.03.020
-
(2015)
Dev. Cell.
, vol.33
, pp. 314-327
-
-
Fachinetti, D.1
Han, J.S.2
McMahon, M.A.3
Ly, P.4
Abdullah, A.5
Wong, A.J.6
Cleveland, D.W.7
-
18
-
-
84922851097
-
The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast
-
Folco, H.D., C.S. Campbell, K.M. May, C.A. Espinoza, K. Oegema, K.G. Hardwick, S.I. Grewal, and A. Desai. 2015. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr. Biol. 25:348-356. http://dx.doi.org/10.1016/j.cub.2014.11.060
-
(2015)
Curr. Biol.
, vol.25
, pp. 348-356
-
-
Folco, H.D.1
Campbell, C.S.2
May, K.M.3
Espinoza, C.A.4
Oegema, K.5
Hardwick, K.G.6
Grewal, S.I.7
Desai, A.8
-
19
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz, D.R., L.E. Jansen, B.E. Black, A.O. Bailey, J.R. Yates III, and D.W. Cleveland. 2006. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8:458-469. http://dx.doi.org/10.1038/ncb1397
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates, J.R.5
Cleveland, D.W.6
-
20
-
-
65249115338
-
Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP
-
Foltz, D.R., L.E. Jansen, A.O. Bailey, J.R. Yates III, E.A. Bassett, S. Wood, B.E. Black, and D.W. Cleveland. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell. 137:472-484. http://dx.doi.org/10.1016/j.cell.2009.02.039
-
(2009)
Cell.
, vol.137
, pp. 472-484
-
-
Foltz, D.R.1
Jansen, L.E.2
Bailey, A.O.3
Yates, J.R.4
Bassett, E.A.5
Wood, S.6
Black, B.E.7
Cleveland, D.W.8
-
21
-
-
33845744494
-
Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1
-
Fujita, Y., T. Hayashi, T. Kiyomitsu, Y. Toyoda, A. Kokubu, C. Obuse, and M. Yanagida. 2007. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell. 12:17-30. http://dx.doi.org/10.1016/j.devcel.2006.11.002
-
(2007)
Dev. Cell.
, vol.12
, pp. 17-30
-
-
Fujita, Y.1
Hayashi, T.2
Kiyomitsu, T.3
Toyoda, Y.4
Kokubu, A.5
Obuse, C.6
Yanagida, M.7
-
22
-
-
84894441214
-
CENP-A arrays are more condensed than canonical arrays at low ionic strength
-
Geiss, C.P., D. Keramisanou, N. Sekulic, M.P. Scheffer, B.E. Black, and A.S. Frangakis. 2014. CENP-A arrays are more condensed than canonical arrays at low ionic strength. Biophys. J. 106:875-882. http://dx.doi.org/10.1016/j.bpj.2014.01.005
-
(2014)
Biophys. J.
, vol.106
, pp. 875-882
-
-
Geiss, C.P.1
Keramisanou, D.2
Sekulic, N.3
Scheffer, M.P.4
Black, B.E.5
Frangakis, A.S.6
-
23
-
-
80052849224
-
In vitro centromere and kinetochore assembly on defined chromatin templates
-
Guse, A., C.W. Carroll, B. Moree, C.J. Fuller, and A.F. Straight. 2011. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature. 477:354-358. http://dx.doi.org/10.1038/nature10379
-
(2011)
Nature.
, vol.477
, pp. 354-358
-
-
Guse, A.1
Carroll, C.W.2
Moree, B.3
Fuller, C.J.4
Straight, A.F.5
-
24
-
-
84870051852
-
A cell-free system for functional centromere and kinetochore assembly
-
Guse, A., C.J. Fuller, and A.F. Straight. 2012. A cell-free system for functional centromere and kinetochore assembly. Nat. Protoc. 7:1847-1869. http://dx.doi.org/10.1038/nprot.2012.112
-
(2012)
Nat. Protoc.
, vol.7
, pp. 1847-1869
-
-
Guse, A.1
Fuller, C.J.2
Straight, A.F.3
-
25
-
-
4544275776
-
Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
-
Hayashi, T., Y. Fujita, O. Iwasaki, Y. Adachi, K. Takahashi, and M. Yanagida. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 118:715-729. http://dx.doi.org/10.1016/j.cell.2004.09.002
-
(2004)
Cell.
, vol.118
, pp. 715-729
-
-
Hayashi, T.1
Fujita, Y.2
Iwasaki, O.3
Adachi, Y.4
Takahashi, K.5
Yanagida, M.6
-
26
-
-
84903310378
-
Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex
-
Hayashi, T., M. Ebe, K. Nagao, A. Kokubu, K. Sajiki, and M. Yanagida. 2014. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex. Genes Cells. 19:541-554. http://dx.doi.org/10.1111/gtc.12152
-
(2014)
Genes Cells.
, vol.19
, pp. 541-554
-
-
Hayashi, T.1
Ebe, M.2
Nagao, K.3
Kokubu, A.4
Sajiki, K.5
Yanagida, M.6
-
27
-
-
84863393544
-
Dynamics of CENP-N kinetochore binding during the cell cycle
-
Hellwig, D., S. Emmerth, T. Ulbricht, V. Döring, C. Hoischen, R. Martin, C.P. Samora, A.D. McAinsh, C.W. Carroll, A.F. Straight, et al. 2011. Dynamics of CENP-N kinetochore binding during the cell cycle. J. Cell Sci. 124:3871-3883.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 3871-3883
-
-
Hellwig, D.1
Emmerth, S.2
Ulbricht, T.3
Döring, V.4
Hoischen, C.5
Martin, R.6
Samora, C.P.7
McAinsh, A.D.8
Carroll, C.W.9
Straight, A.F.10
-
28
-
-
84885852996
-
An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation
-
Hinshaw, S.M., and S.C. Harrison. 2013. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Reports. 5:29-36. http://dx.doi.org/10.1016/j.celrep.2013.08.036
-
(2013)
Cell Reports.
, vol.5
, pp. 29-36
-
-
Hinshaw, S.M.1
Harrison, S.C.2
-
29
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori, T., M. Amano, A. Suzuki, C.B. Backer, J.P. Welburn, Y. Dong, B.F. McEwen, W.H. Shang, E. Suzuki, K. Okawa, et al. 2008. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell. 135:1039-1052. http://dx.doi.org/10.1016/j.cell.2008.10.019
-
(2008)
Cell.
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
Dong, Y.6
McEwen, B.F.7
Shang, W.H.8
Suzuki, E.9
Okawa, K.10
-
30
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori, T., W.H. Shang, K. Takeuchi, and T. Fukagawa. 2013. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200:45-60. http://dx.doi.org/10.1083/jcb.201210106
-
(2013)
J. Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
31
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen, L.E., B.E. Black, D.R. Foltz, and D.W. Cleveland. 2007. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176:795-805. http://dx.doi.org/10.1083/jcb.200701066
-
(2007)
J. Cell Biol.
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
Black, B.E.2
Foltz, D.R.3
Cleveland, D.W.4
-
32
-
-
84878363880
-
A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C
-
Kato, H., J. Jiang, B.R. Zhou, M. Rozendaal, H. Feng, R. Ghirlando, T.S. Xiao, A.F. Straight, and Y. Bai. 2013. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science. 340:1110-1113. http://dx.doi.org/10.1126/science.1235532
-
(2013)
Science.
, vol.340
, pp. 1110-1113
-
-
Kato, H.1
Jiang, J.2
Zhou, B.R.3
Rozendaal, M.4
Feng, H.5
Ghirlando, R.6
Xiao, T.S.7
Straight, A.F.8
Bai, Y.9
-
33
-
-
34250346905
-
CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
-
Kwon, M.S., T. Hori, M. Okada, and T. Fukagawa. 2007. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell. 18:2155-2168. http://dx.doi.org/10.1091/mbc.E07-01-0045
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 2155-2168
-
-
Kwon, M.S.1
Hori, T.2
Okada, M.3
Fukagawa, T.4
-
34
-
-
78649835035
-
A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A
-
Lagana, A., J.F. Dorn, V. De Rop, A.M. Ladouceur, A.S. Maddox, and P.S. Maddox. 2010. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat. Cell Biol. 12:1186-1193. http://dx.doi.org/10.1038/ncb2129
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1186-1193
-
-
Lagana, A.1
Dorn, J.F.2
De Rop, V.3
Ladouceur, A.M.4
Maddox, A.S.5
Maddox, P.S.6
-
35
-
-
84924911769
-
Both tails and the centromere targeting domain of CENP-A are required for centromere establishment
-
Logsdon, G.A., E.J. Barrey, E.A. Bassett, J.E. DeNizio, L.Y. Guo, T. Panchenko, J.M. Dawicki-McKenna, P. Heun, and B.E. Black. 2015. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol. 208:521-531. http://dx.doi.org/10.1083/jcb.201412011
-
(2015)
J. Cell Biol.
, vol.208
, pp. 521-531
-
-
Logsdon, G.A.1
Barrey, E.J.2
Bassett, E.A.3
DeNizio, J.E.4
Guo, L.Y.5
Panchenko, T.6
Dawicki-McKenna, J.M.7
Heun, P.8
Black, B.E.9
-
36
-
-
33947239252
-
Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
-
Maddox, P.S., F. Hyndman, J. Monen, K. Oegema, and A. Desai. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176:757-763. http://dx.doi.org/10.1083/jcb.200701065
-
(2007)
J. Cell Biol.
, vol.176
, pp. 757-763
-
-
Maddox, P.S.1
Hyndman, F.2
Monen, J.3
Oegema, K.4
Desai, A.5
-
37
-
-
84904568486
-
Polo-like kinase 1 licenses CENP-A deposition at centromeres
-
McKinley, K.L., and I.M. Cheeseman. 2014. Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell. 158:397-411. http://dx.doi.org/10.1016/j.cell.2014.06.016
-
(2014)
Cell.
, vol.158
, pp. 397-411
-
-
McKinley, K.L.1
Cheeseman, I.M.2
-
38
-
-
84878898862
-
CENP-A confers a reduction in height on octameric nucleosomes
-
Miell, M.D., C.J. Fuller, A. Guse, H.M. Barysz, A. Downes, T. Owen-Hughes, J. Rappsilber, A.F. Straight, and R.C. Allshire. 2013. CENP-A confers a reduction in height on octameric nucleosomes. Nat. Struct. Mol. Biol. 20:763-765. http://dx.doi.org/10.1038/nsmb.2574
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 763-765
-
-
Miell, M.D.1
Fuller, C.J.2
Guse, A.3
Barysz, H.M.4
Downes, A.5
Owen-Hughes, T.6
Rappsilber, J.7
Straight, A.F.8
Allshire, R.C.9
-
39
-
-
70350234658
-
Dissection of CENP-C-directed centromere and kinetochore assembly
-
Milks, K.J., B. Moree, and A.F. Straight. 2009. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol. Biol. Cell. 20:4246-4255.
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 4246-4255
-
-
Milks, K.J.1
Moree, B.2
Straight, A.F.3
-
40
-
-
80053934686
-
CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
-
Moree, B., C.B. Meyer, C.J. Fuller, and A.F. Straight. 2011. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194:855-871. http://dx.doi.org/10.1083/jcb.201106079
-
(2011)
J. Cell Biol.
, vol.194
, pp. 855-871
-
-
Moree, B.1
Meyer, C.B.2
Fuller, C.J.3
Straight, A.F.4
-
41
-
-
84861926478
-
Replicating centromeric chromatin: spatial and temporal control of CENP-A assembly
-
Nechemia-Arbely, Y., D. Fachinetti, and D.W. Cleveland. 2012. Replicating centromeric chromatin: spatial and temporal control of CENP-A assembly. Exp. Cell Res. 318:1353-1360. http://dx.doi.org/10.1016/j.yexcr.2012.04.007
-
(2012)
Exp. Cell Res.
, vol.318
, pp. 1353-1360
-
-
Nechemia-Arbely, Y.1
Fachinetti, D.2
Cleveland, D.W.3
-
42
-
-
84861191874
-
Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly
-
Ohzeki, J., J.H. Bergmann, N. Kouprina, V.N. Noskov, M. Nakano, H. Kimura, W.C. Earnshaw, V. Larionov, and H. Masumoto. 2012. Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 31:2391-2402. http://dx.doi.org/10.1038/emboj.2012.82
-
(2012)
EMBO J.
, vol.31
, pp. 2391-2402
-
-
Ohzeki, J.1
Bergmann, J.H.2
Kouprina, N.3
Noskov, V.N.4
Nakano, M.5
Kimura, H.6
Earnshaw, W.C.7
Larionov, V.8
Masumoto, H.9
-
43
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada, M., I.M. Cheeseman, T. Hori, K. Okawa, I.X. McLeod, J.R. Yates III, A. Desai, and T. Fukagawa. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8:446-457. http://dx.doi.org/10.1038/ncb1396
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates, J.R.6
Desai, A.7
Fukagawa, T.8
-
44
-
-
0018306059
-
Threshold selection method from gray-level histograms
-
Otsu, N. 1979. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9:62-66. http://dx.doi.org/10.1109/TSMC.1979.4310076
-
(1979)
IEEE Trans. Syst. Man Cybern.
, vol.9
, pp. 62-66
-
-
Otsu, N.1
-
45
-
-
80053653297
-
Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini
-
Panchenko, T., T.C. Sorensen, C.L. Woodcock, Z.Y. Kan, S. Wood, M.G. Resch, K. Luger, S.W. Englander, J.C. Hansen, and B.E. Black. 2011. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl. Acad. Sci. USA. 108:16588-16593. http://dx.doi.org/10.1073/pnas.1113621108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 16588-16593
-
-
Panchenko, T.1
Sorensen, T.C.2
Woodcock, C.L.3
Kan, Z.Y.4
Wood, S.5
Resch, M.G.6
Luger, K.7
Englander, S.W.8
Hansen, J.C.9
Black, B.E.10
-
46
-
-
84861933825
-
Molecular underpinnings of centromere identity and maintenance
-
Sekulic, N., and B.E. Black. 2012. Molecular underpinnings of centromere identity and maintenance. Trends Biochem. Sci. 37:220-229. http://dx.doi.org/10.1016/j.tibs.2012.01.003
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 220-229
-
-
Sekulic, N.1
Black, B.E.2
-
47
-
-
84855969901
-
Cdk activity couples epigenetic centromere inheritance to cell cycle progression
-
Silva, M.C., D.L. Bodor, M.E. Stellfox, N.M. Martins, H. Hochegger, D.R. Foltz, and L.E. Jansen. 2012. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev. Cell. 22:52-63. http://dx.doi.org/10.1016/j.devcel.2011.10.014
-
(2012)
Dev. Cell.
, vol.22
, pp. 52-63
-
-
Silva, M.C.1
Bodor, D.L.2
Stellfox, M.E.3
Martins, N.M.4
Hochegger, H.5
Foltz, D.R.6
Jansen, L.E.7
-
48
-
-
84901044469
-
Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly
-
Subramanian, L., N.R. Toda, J. Rappsilber, and R.C. Allshire. 2014. Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly. Open Biol. 4:140043. http://dx.doi.org/10.1098/rsob.140043
-
(2014)
Open Biol.
, vol.4
-
-
Subramanian, L.1
Toda, N.R.2
Rappsilber, J.3
Allshire, R.C.4
-
49
-
-
7544227521
-
Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin
-
Sullivan, B.A., and G.H. Karpen. 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11:1076-1083.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 1076-1083
-
-
Sullivan, B.A.1
Karpen, G.H.2
-
50
-
-
84927696445
-
HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment
-
Tachiwana, H., S. Müller, J. Blümer, K. Klare, A. Musacchio, and G. Almouzni. 2015. HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Reports. 11:22-32. http://dx.doi.org/10.1016/j.celrep.2015.03.013
-
(2015)
Cell Reports.
, vol.11
, pp. 22-32
-
-
Tachiwana, H.1
Müller, S.2
Blümer, J.3
Klare, K.4
Musacchio, A.5
Almouzni, G.6
-
51
-
-
0034963119
-
A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli
-
Tan, S. 2001. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr. Purif. 21:224-234. http://dx.doi.org/10.1006/prep.2000.1363
-
(2001)
Protein Expr. Purif.
, vol.21
, pp. 224-234
-
-
Tan, S.1
-
52
-
-
84879239743
-
Functions of the centromere and kinetochore in chromosome segregation
-
Westhorpe, F.G., and A.F. Straight. 2013. Functions of the centromere and kinetochore in chromosome segregation. Curr. Opin. Cell Biol. 25:334-340.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 334-340
-
-
Westhorpe, F.G.1
Straight, A.F.2
-
53
-
-
84920546321
-
The centromere: epigenetic control of chromosome segregation during mitosis
-
Westhorpe, F.G., and A.F. Straight. 2015. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb. Perspect. Biol. 7:a015818. http://dx.doi.org/10.1101/cshperspect.a015818
-
(2015)
Cold Spring Harb. Perspect. Biol.
, vol.7
-
-
Westhorpe, F.G.1
Straight, A.F.2
-
54
-
-
77951117024
-
Segmentation of Drosophila RNAI fluorescence images using level sets
-
Xiong, G., X. Zhou, L. Ji, P. Bradley, N. Perrimon, and S. Wong. 2006. Segmentation of Drosophila RNAI fluorescence images using level sets. IEEE Image Processing, 2006 IEEE International Conference. 2006:73-76. http://dx.doi.org/10.1109/ICIP.2006.312365
-
(2006)
IEEE Image Processing, 2006 IEEE International Conference.
, vol.2006
, pp. 73-76
-
-
Xiong, G.1
Zhou, X.2
Ji, L.3
Bradley, P.4
Perrimon, N.5
Wong, S.6
-
55
-
-
84922343527
-
Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres
-
Yu, Z., X. Zhou, W. Wang, W. Deng, J. Fang, H. Hu, Z. Wang, S. Li, L. Cui, J. Shen, et al. 2015. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev. Cell. 32:68-81. http://dx.doi.org/10.1016/j.devcel.2014.11.030
-
(2015)
Dev. Cell.
, vol.32
, pp. 68-81
-
-
Yu, Z.1
Zhou, X.2
Wang, W.3
Deng, W.4
Fang, J.5
Hu, H.6
Wang, Z.7
Li, S.8
Cui, L.9
Shen, J.10
|