메뉴 건너뛰기




Volumn 6, Issue 2, 2016, Pages

Insights from the reconstitution of the divergent outer kinetochore of Drosophila melanogaster

Author keywords

Centromere; Kinetochore; KMN network; Mis12; Ndc80; Spc105

Indexed keywords

CENTROMERE PROTEIN C; NONHISTONE PROTEIN; PROTEIN BINDING; RECOMBINANT PROTEIN;

EID: 84962250488     PISSN: None     EISSN: 20462441     Source Type: Journal    
DOI: 10.1098/rsob.150236     Document Type: Article
Times cited : (28)

References (79)
  • 1
    • 84871530214 scopus 로고    scopus 로고
    • Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
    • Foley EA, Kapoor TM. 2013 Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25-37. (doi: 10.1038/nrm3494)
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 25-37
    • Foley, E.A.1    Kapoor, T.M.2
  • 2
    • 84938097979 scopus 로고    scopus 로고
    • Short- and long-term effects of chromosome mis-segregation and aneuploidy
    • Santaguida S, Amon A. 2015 Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473-485. (doi: 10.1038/nrm4025)
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 473-485
    • Santaguida, S.1    Amon, A.2
  • 4
    • 84878149050 scopus 로고    scopus 로고
    • Family matters: Structural and functional conservation of centromere-associated proteins from yeast to humans
    • Westermann S, Schleiffer A. 2013 Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol. 23, 260-269. (doi: 10.1016/j.tcb.2013.01.010)
    • (2013) Trends Cell Biol. , vol.23 , pp. 260-269
    • Westermann, S.1    Schleiffer, A.2
  • 5
    • 84908218352 scopus 로고    scopus 로고
    • The centromere: Chromatin foundation for the kinetochore machinery
    • Fukagawa T, Earnshaw WC. 2014 The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496-508. (doi: 10.1016/j.devcel.2014.08.016)
    • (2014) Dev. Cell , vol.30 , pp. 496-508
    • Fukagawa, T.1    Earnshaw, W.C.2
  • 6
    • 77956378429 scopus 로고    scopus 로고
    • The MIS12 complex is a protein interaction hub for outer kinetochore assembly
    • Petrovic A et al. 2010 The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol. 190, 835-852. (doi: 10.1083/jcb.201002070)
    • (2010) J Cell Biol. , vol.190 , pp. 835-852
    • Petrovic, A.1
  • 7
    • 84873566629 scopus 로고    scopus 로고
    • A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
    • Malvezzi F, Litos G, Schleiffer A, Heuck A, Mechtler K, Clausen T, Westermann S. 2013 A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 32, 409-423. (doi: 10.1038/emboj.2012.356)
    • (2013) EMBO J. , vol.32 , pp. 409-423
    • Malvezzi, F.1    Litos, G.2    Schleiffer, A.3    Heuck, A.4    Mechtler, K.5    Clausen, T.6    Westermann, S.7
  • 9
    • 33646740560 scopus 로고    scopus 로고
    • Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells
    • Izuta H et al. 2006 Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673-684. (doi: 10.1111/j.1365-2443.2006.00969.x)
    • (2006) Genes Cells , vol.11 , pp. 673-684
    • Izuta, H.1
  • 10
    • 1542330121 scopus 로고    scopus 로고
    • Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently colocalized with the centromeric region in interphase
    • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K. 2004 Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently colocalized with the centromeric region in interphase. Genes Cells 9, 105-120. (doi: 10.1111/j.1365-2443.2004.00705.x)
    • (2004) Genes Cells , vol.9 , pp. 105-120
    • Obuse, C.1    Yang, H.2    Nozaki, N.3    Goto, S.4    Okazaki, T.5    Yoda, K.6
  • 11
    • 57149129148 scopus 로고    scopus 로고
    • CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
    • Hori T et al. 2008 CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039-1052. (doi: 10.1016/j.cell.2008.10.019)
    • (2008) Cell , vol.135 , pp. 1039-1052
    • Hori, T.1
  • 12
    • 33744970012 scopus 로고    scopus 로고
    • The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
    • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JRIII, Desai A, Fukagawa T. 2006 The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446-457. (doi: 10.1038/ncb1396)
    • (2006) Nat. Cell Biol. , vol.8 , pp. 446-457
    • Okada, M.1    Cheeseman, I.M.2    Hori, T.3    Okawa, K.4    McLeod, I.X.5    Yates, J.R.6    Desai, A.7    Fukagawa, T.8
  • 13
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman IM, Desai A. 2008 Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33-46. (doi: 10.1038/nrm2310)
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 33-46
    • Cheeseman, I.M.1    Desai, A.2
  • 14
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED. 2006 Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969-982. (doi: 10.1016/j.cell.2006.09.047)
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1    Gall, W.E.2    Ciferri, C.3    Cimini, D.4    Musacchio, A.5    Salmon, E.D.6
  • 15
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A. 2006 The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983-997. (doi: 10.1016/j.cell.2006.09.039)
    • (2006) Cell , vol.127 , pp. 983-997
    • Cheeseman, I.M.1    Chappie, J.S.2    Wilson-Kubalek, E.M.3    Desai, A.4
  • 16
    • 84945583575 scopus 로고    scopus 로고
    • The molecular biology of spindle assembly checkpoint signaling dynamic
    • Musacchio A. 2015 The molecular biology of spindle assembly checkpoint signaling dynamic. Curr. Biol. 25, R1002-R1018. (doi: 10.1016/j.cub.2015.08.051)
    • (2015) Curr. Biol. , vol.25 , pp. R1002-R1018
    • Musacchio, A.1
  • 17
    • 69249206590 scopus 로고    scopus 로고
    • Intrakinetochore localization and essential functional domains of Drosophila Spc105
    • Schittenhelm RB, Chaleckis R, Lehner CF. 2009 Intrakinetochore localization and essential functional domains of Drosophila Spc105. EMBO J. 28, 2374-2386. (doi: 10.1038/emboj.2009.188)
    • (2009) EMBO J. , vol.28 , pp. 2374-2386
    • Schittenhelm, R.B.1    Chaleckis, R.2    Lehner, C.F.3
  • 18
    • 35649019314 scopus 로고    scopus 로고
    • Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
    • Kiyomitsu T, Obuse C, Yanagida M. 2007 Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 13, 663-676. (doi: 10.1016/j.devcel.2007.09.005)
    • (2007) Dev. Cell , vol.13 , pp. 663-676
    • Kiyomitsu, T.1    Obuse, C.2    Yanagida, M.3
  • 21
    • 79955539577 scopus 로고    scopus 로고
    • Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
    • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. 2011 Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410-422. (doi: 10.1016/j.ce11.2011.03.031)
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.E.1    Takeuchi, K.2    Suzuki, A.3    Hori, T.4    Fukagawa, T.5    Cheeseman, I.M.6
  • 22
    • 84924761760 scopus 로고    scopus 로고
    • Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T
    • Rago F, Gascoigne KE, Cheeseman IM. 2015 Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr. Biol. 25, 671-677. (doi: 10.1016/j.cub.2015.01.059)
    • (2015) Curr. Biol. , vol.25 , pp. 671-677
    • Rago, F.1    Gascoigne, K.E.2    Cheeseman, I.M.3
  • 23
    • 84921757340 scopus 로고    scopus 로고
    • Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores
    • Kim S, Yu H. 2015 Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J. Cell Biol. 208, 181-196. (doi: 10.1083/jcb.201407074)
    • (2015) J. Cell Biol. , vol.208 , pp. 181-196
    • Kim, S.1    Yu, H.2
  • 24
    • 84894260637 scopus 로고    scopus 로고
    • Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization
    • Petrovic A et al. 2014 Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol. Cell 53, 591-605. (doi: 10.1016/j.molcel.2014.01.019)
    • (2014) Mol. Cell , vol.53 , pp. 591-605
    • Petrovic, A.1
  • 25
    • 78650856481 scopus 로고    scopus 로고
    • Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex
    • Hornung P, Maier M, Alushin GM, Lander GC, Nogales E, Westermann S. 2011 Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J. Mol. Biol. 405, 548-559. (doi: 10.1016/j.jmb.2010.11.012)
    • (2011) J. Mol. Biol. , vol.405 , pp. 548-559
    • Hornung, P.1    Maier, M.2    Alushin, G.M.3    Lander, G.C.4    Nogales, E.5    Westermann, S.6
  • 27
    • 77949755046 scopus 로고    scopus 로고
    • Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes
    • Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. 2010 Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol. 188, 791-807. (doi: 10.1083/jcb.200908096)
    • (2010) J. Cell Biol. , vol.188 , pp. 791-807
    • Kiyomitsu, T.1    Iwasaki, O.2    Obuse, C.3    Yanagida, M.4
  • 28
    • 84906490469 scopus 로고    scopus 로고
    • A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A
    • Hornung P et al. 2014 A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J. Cell Biol. 206, 509-524. (doi: 10.1083/jcb.201403081)
    • (2014) J. Cell Biol. , vol.206 , pp. 509-524
    • Hornung, P.1
  • 29
    • 65549149069 scopus 로고    scopus 로고
    • Protein architecture of the human kinetochore microtubule attachment site
    • Wan X et al. 2009 Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672-684. (doi: 10.1016/j.cell.2009.03.035)
    • (2009) Cell , vol.137 , pp. 672-684
    • Wan, X.1
  • 30
    • 65049088564 scopus 로고    scopus 로고
    • In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
    • Joglekar AP, Bloom K, Salmon ED. 2009 In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19, 694-699. (doi: 10.1016/j.cub.2009.02.056)
    • (2009) Curr. Biol. , vol.19 , pp. 694-699
    • Joglekar, A.P.1    Bloom, K.2    Salmon, E.D.3
  • 31
    • 84886640344 scopus 로고    scopus 로고
    • Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila
    • Feijao T, Afonso O, Maia AF, Sunkel CE. 2013 Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila. Cytoskeleton (Hoboken) 70, 661-675. (doi: 10.1002/cm.21131)
    • (2013) Cytoskeleton (Hoboken) , vol.70 , pp. 661-675
    • Feijao, T.1    Afonso, O.2    Maia, A.F.3    Sunkel, C.E.4
  • 32
    • 84944081102 scopus 로고    scopus 로고
    • Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex
    • Kudalkar EM et al. 2015 Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc. Natl Acad. Sci. USA 112, E5583-E5589. (doi: 10.1073/pnas.1513882112)
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E5583-E5589
    • Kudalkar, E.M.1
  • 33
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. 2006 Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23. (doi: 10.1186/gb-2006-7-3-r23)
    • (2006) Genome Biol. , vol.7 , pp. R23
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 36
    • 84928674884 scopus 로고    scopus 로고
    • Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects
    • Drinnenberg IA, de Young D, Henikoff S, Malik HS. 2014 Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 3, 2104. (doi: 10.7554/eLife.03676)
    • (2014) Elife , vol.3 , pp. 2104
    • Drinnenberg, I.A.1    De Young, D.2    Henikoff, S.3    Malik, H.S.4
  • 37
    • 0026650005 scopus 로고
    • CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
    • Saitoh H, Tomkiel J, Cooke CA, Ratrie HIN, Maurer M, Rothfield NF, Earnshaw WC. 1992 CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115-125. (doi: 10.1016/0092-8674(92)90538-N)
    • (1992) Cell , vol.70 , pp. 115-125
    • Saitoh, H.1    Tomkiel, J.2    Cooke, C.A.3    Ratrie, H.I.N.4    Maurer, M.5    Rothfield, N.F.6    Earnshaw, W.C.7
  • 38
    • 24344438173 scopus 로고    scopus 로고
    • Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog
    • Heeger S, Leismann O, Schittenhelm R, Schraidt O, Heidmann S, Lehner CF. 2005 Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev. 19, 2041-2053. (doi: 10.1101/gad.347805)
    • (2005) Genes Dev. , vol.19 , pp. 2041-2053
    • Heeger, S.1    Leismann, O.2    Schittenhelm, R.3    Schraidt, O.4    Heidmann, S.5    Lehner, C.F.6
  • 39
    • 0035844881 scopus 로고    scopus 로고
    • HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres
    • Moore LL, Roth MB. 2001 HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199-1208. (doi: 10.1083/jcb.153.6.1199)
    • (2001) J. Cell Biol. , vol.153 , pp. 1199-1208
    • Moore, L.L.1    Roth, M.B.2
  • 40
    • 0035844871 scopus 로고    scopus 로고
    • Functional analysis of kinetochore assembly in Caenorhabditis elegans
    • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. 2001 Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209-1226. (doi: 10.1083/jcb.153.6.1209)
    • (2001) J. Cell Biol. , vol.153 , pp. 1209-1226
    • Oegema, K.1    Desai, A.2    Rybina, S.3    Kirkham, M.4    Hyman, A.A.5
  • 42
    • 84872063204 scopus 로고    scopus 로고
    • The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
    • Hori T, Shang WH, Takeuchi K, Fukagawa T. 2013 The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45-60. (doi: 10.1083/jcb.201210106)
    • (2013) J. Cell Biol. , vol.200 , pp. 45-60
    • Hori, T.1    Shang, W.H.2    Takeuchi, K.3    Fukagawa, T.4
  • 43
    • 84929192908 scopus 로고    scopus 로고
    • CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere
    • Falk SJ et al. 2015 CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348, 699-703. (doi: 10.1126/science.1259308)
    • (2015) Science , vol.348 , pp. 699-703
    • Falk, S.J.1
  • 44
    • 4444241998 scopus 로고    scopus 로고
    • A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
    • Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR III, Oegema K, Desai A. 2004 A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255-2268. (doi: 10.1101/gad.1234104)
    • (2004) Genes Dev. , vol.18 , pp. 2255-2268
    • Cheeseman, I.M.1    Niessen, S.2    Anderson, S.3    Hyndman, F.4    Yates, J.R.5    Oegema, K.6    Desai, A.7
  • 45
    • 84904052265 scopus 로고    scopus 로고
    • The pseudo GTPase CENP-M drives human kinetochore assembly
    • Basilico F et al. 2014 The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 3, e02978. (doi: 10.7554/eLife.02978)
    • (2014) Elife , vol.3
    • Basilico, F.1
  • 47
    • 84885852996 scopus 로고    scopus 로고
    • An Im13-Ch14 heterodimer links the core centromere to factors required for accurate chromosome segregation
    • Hinshaw SM, Harrison SC. 2013 An Im13-Ch14 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep. 5, 29-36. (doi: 10.1016/j.celrep.2013.08.036)
    • (2013) Cell Rep. , vol.5 , pp. 29-36
    • Hinshaw, S.M.1    Harrison, S.C.2
  • 48
    • 69949161719 scopus 로고    scopus 로고
    • CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis
    • Tanaka K, Chang HL, Kagami A, Watanabe Y 2009 CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev. Cell 17, 334-343. (doi: 10.1016/j.devcel.2009.08.004)
    • (2009) Dev. Cell , vol.17 , pp. 334-343
    • Tanaka, K.1    Chang, H.L.2    Kagami, A.3    Watanabe, Y.4
  • 49
    • 84945907177 scopus 로고    scopus 로고
    • Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression
    • Nagpal H, Hori T, Furukawa A, Sugase K, Osakabe A, Kurumizaka H, Fukagawa T. 2015 Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol. Biol. Cell 26, 3768-3776. (doi: 10.1091/mbc.E15-07-0531)
    • (2015) Mol. Biol. Cell , vol.26 , pp. 3768-3776
    • Nagpal, H.1    Hori, T.2    Furukawa, A.3    Sugase, K.4    Osakabe, A.5    Kurumizaka, H.6    Fukagawa, T.7
  • 50
    • 77954396194 scopus 로고    scopus 로고
    • Dual recognition of CENP-A nucleosomes is required for centromere assembly
    • Carroll CW, Milks KJ, Straight AF. 2010 Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143-1155. (doi: 10.1083/jcb.201001013)
    • (2010) J. Cell Biol. , vol.189 , pp. 1143-1155
    • Carroll, C.W.1    Milks, K.J.2    Straight, A.F.3
  • 51
    • 70350234658 scopus 로고    scopus 로고
    • Dissection of CENP-C-directed centromere and kinetochore assembly
    • Milks KJ, Moree B, Straight AF. 2009 Dissection of CENP-C-directed centromere and kinetochore assembly. Mol. Biol. Cell 20, 4246-4255. (doi: 10.1091/mbc.E09-05-0378)
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4246-4255
    • Milks, K.J.1    Moree, B.2    Straight, A.F.3
  • 52
    • 80053934686 scopus 로고    scopus 로고
    • CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
    • Moree B, Meyer CB, Fuller CJ, Straight AF. 2011 CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 855-871. (doi: 10.1083/jcb.201106079)
    • (2011) J. Cell Biol. , vol.194 , pp. 855-871
    • Moree, B.1    Meyer, C.B.2    Fuller, C.J.3    Straight, A.F.4
  • 53
    • 84952641649 scopus 로고    scopus 로고
    • A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance
    • Westhorpe FG, Fuller CJ, Straight AF. 2015 A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J. Cell Biol. 209, 789-801. (doi: 10.1083/jcb.201503132)
    • (2015) J. Cell Biol. , vol.209 , pp. 789-801
    • Westhorpe, F.G.1    Fuller, C.J.2    Straight, A.F.3
  • 55
    • 33947274529 scopus 로고    scopus 로고
    • Propagation of centromeric chromatin requires exit from mitosis
    • Jansen LE, Black BE, Foltz DR, Cleveland DW. 2007 Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795-805. (doi: 10.1083/jcb.200701066)
    • (2007) J. Cell Biol. , vol.176 , pp. 795-805
    • Jansen, L.E.1    Black, B.E.2    Foltz, D.R.3    Cleveland, D.W.4
  • 56
    • 84871672177 scopus 로고    scopus 로고
    • The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C
    • Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. 2012 The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol. 10, e1001460. (doi: 10.1371/journal.pbio.1001460)
    • (2012) PLoS Biol. , vol.10
    • Dunleavy, E.M.1    Beier, N.L.2    Gorgescu, W.3    Tang, J.4    Costes, S.V.5    Karpen, G.H.6
  • 57
    • 84889644216 scopus 로고    scopus 로고
    • Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation
    • Unhavaithaya Y, Orr-Weaver TL. 2013 Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc. Natl Acad. Sci USA 110, 19878-19883. (doi: 10.1073/pnas.1320074110)
    • (2013) Proc. Natl Acad. Sci USA , vol.110 , pp. 19878-19883
    • Unhavaithaya, Y.1    Orr-Weaver, T.L.2
  • 58
    • 84883667139 scopus 로고    scopus 로고
    • A two-step mechanism for epigenetic specification of centromere identity and function
    • Fachinetti D et al. 2013 A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 15, 1056-1066. (doi: 10.1038/ncb2805)
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1056-1066
    • Fachinetti, D.1
  • 59
    • 79952360683 scopus 로고    scopus 로고
    • Drosophila CENP-C is essential for centromere identity
    • Orr B, Sunkel CE. 2011 Drosophila CENP-C is essential for centromere identity. Chromosoma 120, 83-96. (doi: 10.1007/s00412-010-0293-6)
    • (2011) Chromosoma , vol.120 , pp. 83-96
    • Orr, B.1    Sunkel, C.E.2
  • 60
    • 58149305928 scopus 로고    scopus 로고
    • Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
    • Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. 2008 Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805-818. (doi: 10.1083/jcb.200806038)
    • (2008) J. Cell Biol. , vol.183 , pp. 805-818
    • Erhardt, S.1    Mellone, B.G.2    Betts, C.M.3    Zhang, W.4    Karpen, G.H.5    Straight, A.F.6
  • 61
    • 78951492501 scopus 로고    scopus 로고
    • Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint
    • Venkei Z, Przewloka MR, Glover DM. 2011 Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint. Genetici 187, 131-140. (doi: 10.1534/genetics.110.119628)
    • (2011) Genetici , vol.187 , pp. 131-140
    • Venkei, Z.1    Przewloka, M.R.2    Glover, D.M.3
  • 62
    • 65949093712 scopus 로고    scopus 로고
    • Searching for Drosophila Dsn1 kinetochore protein
    • Przewloka MR, Venkei Z, Glover DM. 2009 Searching for Drosophila Dsn1 kinetochore protein. Cell Cycle 8, 1292-1293. (doi: 10.4161/cc.8.8.8159)
    • (2009) Cell Cycle , vol.8 , pp. 1292-1293
    • Przewloka, M.R.1    Venkei, Z.2    Glover, D.M.3
  • 63
    • 34347215876 scopus 로고    scopus 로고
    • Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes
    • Schittenhelm RB, Heeger S, Althoff F, Walter A, Heidmann S, Mechtler K, Lehner CF. 2007 Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116, 385-402. (doi: 10.1007/s00412-007-0103-y)
    • (2007) Chromosoma , vol.116 , pp. 385-402
    • Schittenhelm, R.B.1    Heeger, S.2    Althoff, F.3    Walter, A.4    Heidmann, S.5    Mechtler, K.6    Lehner, C.F.7
  • 64
    • 14844303376 scopus 로고    scopus 로고
    • The pST44 polycistronic expression system for producing protein complexes in Escherichia coli
    • Tan S, Kern RC, Selleck W. 2005 The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr. Purif. 40, 385-395. (doi: 10.1016/j.pep.2004.12.002)
    • (2005) Protein Expr. Purif. , vol.40 , pp. 385-395
    • Tan, S.1    Kern, R.C.2    Selleck, W.3
  • 65
    • 77956361304 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the yeast kinetochore MIND complex
    • Maskell DP, Hu XW, Singleton MR. 2010 Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190, 823-834. (doi: 10.1083/jcb.201002059)
    • (2010) J. Cell Biol. , vol.190 , pp. 823-834
    • Maskell, D.P.1    Hu, X.W.2    Singleton, M.R.3
  • 66
    • 84866095385 scopus 로고    scopus 로고
    • Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry
    • Herzog F et al. 2012 Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 1348-1352. (doi: 10.1126/science.1221483)
    • (2012) Science , vol.337 , pp. 1348-1352
    • Herzog, F.1
  • 67
    • 0030935916 scopus 로고    scopus 로고
    • Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: Role of DNA-binding and self-associating activities in kinetochore organization
    • Sugimoto K, Kuriyama K, Shibata A, Himeno M. 1997 Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: role of DNA-binding and self-associating activities in kinetochore organization. Chromosome Res. 5, 132-141. (doi: 10.1023/A:1018422325569)
    • (1997) Chromosome Res. , vol.5 , pp. 132-141
    • Sugimoto, K.1    Kuriyama, K.2    Shibata, A.3    Himeno, M.4
  • 68
    • 0026356891 scopus 로고
    • Predicting coiled coils from protein sequences
    • Lupas A, Van Dyke M, Stock J. 1991 Predicting coiled coils from protein sequences. Science 252, 1162-1164. (doi: 10.1126/science.252.5009.1162)
    • (1991) Science , vol.252 , pp. 1162-1164
    • Lupas, A.1    Van Dyke, M.2    Stock, J.3
  • 69
    • 84930074657 scopus 로고    scopus 로고
    • The Phyre2 web portal for protein modeling, prediction and analysis
    • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015 The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858. (doi: 10.1038/nprot.2015.053)
    • (2015) Nat. Protoc. , vol.10 , pp. 845-858
    • Kelley, L.A.1    Mezulis, S.2    Yates, C.M.3    Wass, M.N.4    Sternberg, M.J.5
  • 70
    • 84979854249 scopus 로고    scopus 로고
    • JPred4: A protein secondary structure prediction server
    • Drozdetskiy A, Cole C, Procter J, Barton GJ. 2015 JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389-W394. (doi: 10.1093/nar/gkv332)
    • (2015) Nucleic Acids Res. , vol.43 , pp. W389-W394
    • Drozdetskiy, A.1    Cole, C.2    Procter, J.3    Barton, G.J.4
  • 71
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT 1999 Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202. (doi: 10.1006/jmbi.1999.3091)
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 72
    • 84861589937 scopus 로고    scopus 로고
    • Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore
    • Bock U et al. 2012 Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol. 14, 614-624. (doi: 10.1038/ncb2495)
    • (2012) Nat. Cell Biol. , vol.14 , pp. 614-624
    • Bock, U.1
  • 73
    • 84941047044 scopus 로고    scopus 로고
    • A quantitative description of Ndc80 complex linkage to human kinetochores
    • Suzuki A, Badger BL, Salmon ED. 2015 A quantitative description of Ndc80 complex linkage to human kinetochores. Nat. Commun. 6, 8161. (doi: 10.1038/ncomms9161)
    • (2015) Nat. Commun. , vol.6 , pp. 8161
    • Suzuki, A.1    Badger, B.L.2    Salmon, E.D.3
  • 74
    • 84928111498 scopus 로고    scopus 로고
    • The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts
    • Krizaic I, Williams SJ, Sanchez P, Rodriguez-Corsino M, Stukenberg PT, Losada A. 2015 The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts. Nucleus 6, 133-143. (doi: 10.1080/19491034.2014.1003509)
    • (2015) Nucleus , vol.6 , pp. 133-143
    • Krizaic, I.1    Williams, S.J.2    Sanchez, P.3    Rodriguez-Corsino, M.4    Stukenberg, P.T.5    Losada, A.6
  • 76
    • 84873570232 scopus 로고    scopus 로고
    • CENP-T provides a structural platform for outer kinetochore assembly
    • Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T. 2013 CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 32, 424-436. (doi: 10.1038/emboj.2012.348)
    • (2013) EMBO J. , vol.32 , pp. 424-436
    • Nishino, T.1    Rago, F.2    Hori, T.3    Tomii, K.4    Cheeseman, I.M.5    Fukagawa, T.6
  • 77
    • 0034009520 scopus 로고    scopus 로고
    • Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
    • Schuck P. 2000 Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-1619. (doi: 10.1016/S0006-3495(00)76713-0)
    • (2000) Biophys. J. , vol.78 , pp. 1606-1619
    • Schuck, P.1
  • 79
    • 84979856632 scopus 로고    scopus 로고
    • xVis: A web server for the schematic visualization and interpretation of crosslink-derived spatial restraints
    • Grimm M, Zimniak T, Kahraman A, Herzog F. 2015 xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43, W362-W369. (doi: 10.1093/nar/gkv463)
    • (2015) Nucleic Acids Res. , vol.43 , pp. W362-W369
    • Grimm, M.1    Zimniak, T.2    Kahraman, A.3    Herzog, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.