-
1
-
-
84871530214
-
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
-
Foley EA, Kapoor TM. 2013 Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25-37. (doi: 10.1038/nrm3494)
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 25-37
-
-
Foley, E.A.1
Kapoor, T.M.2
-
2
-
-
84938097979
-
Short- and long-term effects of chromosome mis-segregation and aneuploidy
-
Santaguida S, Amon A. 2015 Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473-485. (doi: 10.1038/nrm4025)
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 473-485
-
-
Santaguida, S.1
Amon, A.2
-
4
-
-
84878149050
-
Family matters: Structural and functional conservation of centromere-associated proteins from yeast to humans
-
Westermann S, Schleiffer A. 2013 Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol. 23, 260-269. (doi: 10.1016/j.tcb.2013.01.010)
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 260-269
-
-
Westermann, S.1
Schleiffer, A.2
-
5
-
-
84908218352
-
The centromere: Chromatin foundation for the kinetochore machinery
-
Fukagawa T, Earnshaw WC. 2014 The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496-508. (doi: 10.1016/j.devcel.2014.08.016)
-
(2014)
Dev. Cell
, vol.30
, pp. 496-508
-
-
Fukagawa, T.1
Earnshaw, W.C.2
-
6
-
-
77956378429
-
The MIS12 complex is a protein interaction hub for outer kinetochore assembly
-
Petrovic A et al. 2010 The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol. 190, 835-852. (doi: 10.1083/jcb.201002070)
-
(2010)
J Cell Biol.
, vol.190
, pp. 835-852
-
-
Petrovic, A.1
-
7
-
-
84873566629
-
A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
-
Malvezzi F, Litos G, Schleiffer A, Heuck A, Mechtler K, Clausen T, Westermann S. 2013 A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 32, 409-423. (doi: 10.1038/emboj.2012.356)
-
(2013)
EMBO J.
, vol.32
, pp. 409-423
-
-
Malvezzi, F.1
Litos, G.2
Schleiffer, A.3
Heuck, A.4
Mechtler, K.5
Clausen, T.6
Westermann, S.7
-
8
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR III, Cleveland DW. 2006 The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458-469. (doi: 10.1038/ncb1397)
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates, J.R.5
Cleveland, D.W.6
-
9
-
-
33646740560
-
Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells
-
Izuta H et al. 2006 Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673-684. (doi: 10.1111/j.1365-2443.2006.00969.x)
-
(2006)
Genes Cells
, vol.11
, pp. 673-684
-
-
Izuta, H.1
-
10
-
-
1542330121
-
Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently colocalized with the centromeric region in interphase
-
Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K. 2004 Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently colocalized with the centromeric region in interphase. Genes Cells 9, 105-120. (doi: 10.1111/j.1365-2443.2004.00705.x)
-
(2004)
Genes Cells
, vol.9
, pp. 105-120
-
-
Obuse, C.1
Yang, H.2
Nozaki, N.3
Goto, S.4
Okazaki, T.5
Yoda, K.6
-
11
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori T et al. 2008 CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039-1052. (doi: 10.1016/j.cell.2008.10.019)
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
-
12
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JRIII, Desai A, Fukagawa T. 2006 The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446-457. (doi: 10.1038/ncb1396)
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates, J.R.6
Desai, A.7
Fukagawa, T.8
-
13
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman IM, Desai A. 2008 Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33-46. (doi: 10.1038/nrm2310)
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
14
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED. 2006 Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969-982. (doi: 10.1016/j.cell.2006.09.047)
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
15
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A. 2006 The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983-997. (doi: 10.1016/j.cell.2006.09.039)
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
16
-
-
84945583575
-
The molecular biology of spindle assembly checkpoint signaling dynamic
-
Musacchio A. 2015 The molecular biology of spindle assembly checkpoint signaling dynamic. Curr. Biol. 25, R1002-R1018. (doi: 10.1016/j.cub.2015.08.051)
-
(2015)
Curr. Biol.
, vol.25
, pp. R1002-R1018
-
-
Musacchio, A.1
-
17
-
-
69249206590
-
Intrakinetochore localization and essential functional domains of Drosophila Spc105
-
Schittenhelm RB, Chaleckis R, Lehner CF. 2009 Intrakinetochore localization and essential functional domains of Drosophila Spc105. EMBO J. 28, 2374-2386. (doi: 10.1038/emboj.2009.188)
-
(2009)
EMBO J.
, vol.28
, pp. 2374-2386
-
-
Schittenhelm, R.B.1
Chaleckis, R.2
Lehner, C.F.3
-
18
-
-
35649019314
-
Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
-
Kiyomitsu T, Obuse C, Yanagida M. 2007 Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 13, 663-676. (doi: 10.1016/j.devcel.2007.09.005)
-
(2007)
Dev. Cell
, vol.13
, pp. 663-676
-
-
Kiyomitsu, T.1
Obuse, C.2
Yanagida, M.3
-
19
-
-
79952364478
-
Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore
-
Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A. 2011 Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391-398. (doi: 10.1016/j.cub.2010.12.039)
-
(2011)
Curr. Biol.
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
De Antoni, A.2
Alushin, G.M.3
Petrovic, A.4
Melis, T.5
Nogales, E.6
Musacchio, A.7
-
20
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM. 2011 CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399-405. (doi: 10.1016/j.cub.2011.02.005)
-
(2011)
Curr. Biol.
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
Glover, D.M.6
-
21
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. 2011 Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410-422. (doi: 10.1016/j.ce11.2011.03.031)
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
Takeuchi, K.2
Suzuki, A.3
Hori, T.4
Fukagawa, T.5
Cheeseman, I.M.6
-
22
-
-
84924761760
-
Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T
-
Rago F, Gascoigne KE, Cheeseman IM. 2015 Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr. Biol. 25, 671-677. (doi: 10.1016/j.cub.2015.01.059)
-
(2015)
Curr. Biol.
, vol.25
, pp. 671-677
-
-
Rago, F.1
Gascoigne, K.E.2
Cheeseman, I.M.3
-
23
-
-
84921757340
-
Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores
-
Kim S, Yu H. 2015 Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J. Cell Biol. 208, 181-196. (doi: 10.1083/jcb.201407074)
-
(2015)
J. Cell Biol.
, vol.208
, pp. 181-196
-
-
Kim, S.1
Yu, H.2
-
24
-
-
84894260637
-
Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization
-
Petrovic A et al. 2014 Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol. Cell 53, 591-605. (doi: 10.1016/j.molcel.2014.01.019)
-
(2014)
Mol. Cell
, vol.53
, pp. 591-605
-
-
Petrovic, A.1
-
25
-
-
78650856481
-
Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex
-
Hornung P, Maier M, Alushin GM, Lander GC, Nogales E, Westermann S. 2011 Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J. Mol. Biol. 405, 548-559. (doi: 10.1016/j.jmb.2010.11.012)
-
(2011)
J. Mol. Biol.
, vol.405
, pp. 548-559
-
-
Hornung, P.1
Maier, M.2
Alushin, G.M.3
Lander, G.C.4
Nogales, E.5
Westermann, S.6
-
26
-
-
84864019112
-
Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore
-
Venkei Z, Przewloka MR, Ladak Y, Albadri S, Sossick A, Juhasz G, Novak B, Glover DM. 2012 Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore. Open Biol. 2, 110032. (doi: 10.1098/rsob.110032)
-
(2012)
Open Biol.
, vol.2
-
-
Venkei, Z.1
Przewloka, M.R.2
Ladak, Y.3
Albadri, S.4
Sossick, A.5
Juhasz, G.6
Novak, B.7
Glover, D.M.8
-
27
-
-
77949755046
-
Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes
-
Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. 2010 Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol. 188, 791-807. (doi: 10.1083/jcb.200908096)
-
(2010)
J. Cell Biol.
, vol.188
, pp. 791-807
-
-
Kiyomitsu, T.1
Iwasaki, O.2
Obuse, C.3
Yanagida, M.4
-
28
-
-
84906490469
-
A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A
-
Hornung P et al. 2014 A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J. Cell Biol. 206, 509-524. (doi: 10.1083/jcb.201403081)
-
(2014)
J. Cell Biol.
, vol.206
, pp. 509-524
-
-
Hornung, P.1
-
29
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X et al. 2009 Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672-684. (doi: 10.1016/j.cell.2009.03.035)
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
-
30
-
-
65049088564
-
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
-
Joglekar AP, Bloom K, Salmon ED. 2009 In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19, 694-699. (doi: 10.1016/j.cub.2009.02.056)
-
(2009)
Curr. Biol.
, vol.19
, pp. 694-699
-
-
Joglekar, A.P.1
Bloom, K.2
Salmon, E.D.3
-
31
-
-
84886640344
-
Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila
-
Feijao T, Afonso O, Maia AF, Sunkel CE. 2013 Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila. Cytoskeleton (Hoboken) 70, 661-675. (doi: 10.1002/cm.21131)
-
(2013)
Cytoskeleton (Hoboken)
, vol.70
, pp. 661-675
-
-
Feijao, T.1
Afonso, O.2
Maia, A.F.3
Sunkel, C.E.4
-
32
-
-
84944081102
-
Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex
-
Kudalkar EM et al. 2015 Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc. Natl Acad. Sci. USA 112, E5583-E5589. (doi: 10.1073/pnas.1513882112)
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E5583-E5589
-
-
Kudalkar, E.M.1
-
33
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. 2006 Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23. (doi: 10.1186/gb-2006-7-3-r23)
-
(2006)
Genome Biol.
, vol.7
, pp. R23
-
-
Meraldi, P.1
McAinsh, A.D.2
Rheinbay, E.3
Sorger, P.K.4
-
34
-
-
35649025423
-
Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster
-
Przewloka MR, Zhang W, Costa P, Archambault V, D'Avino PP, Lilley KS, Laue ED, McAinsh AD, Glover DM. 2007 Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS ONE 2, e478. (doi: 10.1371/journal.pone.0000478)
-
(2007)
PLoS ONE
, vol.2
, pp. e478
-
-
Przewloka, M.R.1
Zhang, W.2
Costa, P.3
Archambault, V.4
D'Avino, P.P.5
Lilley, K.S.6
Laue, E.D.7
McAinsh, A.D.8
Glover, D.M.9
-
35
-
-
84908066041
-
Identification of novel Drosophila centromere-associated proteins
-
Barth TK, Schade GO, Schmidt A, Vetter I, Wirth M, Heun P, Thomae AW, Imhof A. 2014 Identification of novel Drosophila centromere-associated proteins. Proteomics 14, 2167-2178. (doi: 10.1002/pmic.201400052)
-
(2014)
Proteomics
, vol.14
, pp. 2167-2178
-
-
Barth, T.K.1
Schade, G.O.2
Schmidt, A.3
Vetter, I.4
Wirth, M.5
Heun, P.6
Thomae, A.W.7
Imhof, A.8
-
36
-
-
84928674884
-
Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects
-
Drinnenberg IA, de Young D, Henikoff S, Malik HS. 2014 Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 3, 2104. (doi: 10.7554/eLife.03676)
-
(2014)
Elife
, vol.3
, pp. 2104
-
-
Drinnenberg, I.A.1
De Young, D.2
Henikoff, S.3
Malik, H.S.4
-
37
-
-
0026650005
-
CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
-
Saitoh H, Tomkiel J, Cooke CA, Ratrie HIN, Maurer M, Rothfield NF, Earnshaw WC. 1992 CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115-125. (doi: 10.1016/0092-8674(92)90538-N)
-
(1992)
Cell
, vol.70
, pp. 115-125
-
-
Saitoh, H.1
Tomkiel, J.2
Cooke, C.A.3
Ratrie, H.I.N.4
Maurer, M.5
Rothfield, N.F.6
Earnshaw, W.C.7
-
38
-
-
24344438173
-
Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog
-
Heeger S, Leismann O, Schittenhelm R, Schraidt O, Heidmann S, Lehner CF. 2005 Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev. 19, 2041-2053. (doi: 10.1101/gad.347805)
-
(2005)
Genes Dev.
, vol.19
, pp. 2041-2053
-
-
Heeger, S.1
Leismann, O.2
Schittenhelm, R.3
Schraidt, O.4
Heidmann, S.5
Lehner, C.F.6
-
39
-
-
0035844881
-
HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres
-
Moore LL, Roth MB. 2001 HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199-1208. (doi: 10.1083/jcb.153.6.1199)
-
(2001)
J. Cell Biol.
, vol.153
, pp. 1199-1208
-
-
Moore, L.L.1
Roth, M.B.2
-
40
-
-
0035844871
-
Functional analysis of kinetochore assembly in Caenorhabditis elegans
-
Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. 2001 Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209-1226. (doi: 10.1083/jcb.153.6.1209)
-
(2001)
J. Cell Biol.
, vol.153
, pp. 1209-1226
-
-
Oegema, K.1
Desai, A.2
Rybina, S.3
Kirkham, M.4
Hyman, A.A.5
-
41
-
-
84878363880
-
A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C
-
Kato H, Jiang J, Zhou BR, Rozendaal M, Feng H, Ghirlando R, Xiao TS, Straight AF, Bai Y. 2013 A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110-1113. (doi: 10.1126/science.1235532)
-
(2013)
Science
, vol.340
, pp. 1110-1113
-
-
Kato, H.1
Jiang, J.2
Zhou, B.R.3
Rozendaal, M.4
Feng, H.5
Ghirlando, R.6
Xiao, T.S.7
Straight, A.F.8
Bai, Y.9
-
42
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori T, Shang WH, Takeuchi K, Fukagawa T. 2013 The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45-60. (doi: 10.1083/jcb.201210106)
-
(2013)
J. Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
Shang, W.H.2
Takeuchi, K.3
Fukagawa, T.4
-
43
-
-
84929192908
-
CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere
-
Falk SJ et al. 2015 CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348, 699-703. (doi: 10.1126/science.1259308)
-
(2015)
Science
, vol.348
, pp. 699-703
-
-
Falk, S.J.1
-
44
-
-
4444241998
-
A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
-
Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR III, Oegema K, Desai A. 2004 A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255-2268. (doi: 10.1101/gad.1234104)
-
(2004)
Genes Dev.
, vol.18
, pp. 2255-2268
-
-
Cheeseman, I.M.1
Niessen, S.2
Anderson, S.3
Hyndman, F.4
Yates, J.R.5
Oegema, K.6
Desai, A.7
-
45
-
-
84904052265
-
The pseudo GTPase CENP-M drives human kinetochore assembly
-
Basilico F et al. 2014 The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 3, e02978. (doi: 10.7554/eLife.02978)
-
(2014)
Elife
, vol.3
-
-
Basilico, F.1
-
46
-
-
84945921601
-
CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores
-
Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A. 2015 CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J. Cell Biol. 210, 11-22. (doi: 10.1083/jcb.201412028)
-
(2015)
J. Cell Biol.
, vol.210
, pp. 11-22
-
-
Klare, K.1
Weir, J.R.2
Basilico, F.3
Zimniak, T.4
Massimiliano, L.5
Ludwigs, N.6
Herzog, F.7
Musacchio, A.8
-
47
-
-
84885852996
-
An Im13-Ch14 heterodimer links the core centromere to factors required for accurate chromosome segregation
-
Hinshaw SM, Harrison SC. 2013 An Im13-Ch14 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep. 5, 29-36. (doi: 10.1016/j.celrep.2013.08.036)
-
(2013)
Cell Rep.
, vol.5
, pp. 29-36
-
-
Hinshaw, S.M.1
Harrison, S.C.2
-
48
-
-
69949161719
-
CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis
-
Tanaka K, Chang HL, Kagami A, Watanabe Y 2009 CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev. Cell 17, 334-343. (doi: 10.1016/j.devcel.2009.08.004)
-
(2009)
Dev. Cell
, vol.17
, pp. 334-343
-
-
Tanaka, K.1
Chang, H.L.2
Kagami, A.3
Watanabe, Y.4
-
49
-
-
84945907177
-
Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression
-
Nagpal H, Hori T, Furukawa A, Sugase K, Osakabe A, Kurumizaka H, Fukagawa T. 2015 Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol. Biol. Cell 26, 3768-3776. (doi: 10.1091/mbc.E15-07-0531)
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 3768-3776
-
-
Nagpal, H.1
Hori, T.2
Furukawa, A.3
Sugase, K.4
Osakabe, A.5
Kurumizaka, H.6
Fukagawa, T.7
-
50
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll CW, Milks KJ, Straight AF. 2010 Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143-1155. (doi: 10.1083/jcb.201001013)
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
51
-
-
70350234658
-
Dissection of CENP-C-directed centromere and kinetochore assembly
-
Milks KJ, Moree B, Straight AF. 2009 Dissection of CENP-C-directed centromere and kinetochore assembly. Mol. Biol. Cell 20, 4246-4255. (doi: 10.1091/mbc.E09-05-0378)
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4246-4255
-
-
Milks, K.J.1
Moree, B.2
Straight, A.F.3
-
52
-
-
80053934686
-
CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
-
Moree B, Meyer CB, Fuller CJ, Straight AF. 2011 CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 855-871. (doi: 10.1083/jcb.201106079)
-
(2011)
J. Cell Biol.
, vol.194
, pp. 855-871
-
-
Moree, B.1
Meyer, C.B.2
Fuller, C.J.3
Straight, A.F.4
-
53
-
-
84952641649
-
A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance
-
Westhorpe FG, Fuller CJ, Straight AF. 2015 A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J. Cell Biol. 209, 789-801. (doi: 10.1083/jcb.201503132)
-
(2015)
J. Cell Biol.
, vol.209
, pp. 789-801
-
-
Westhorpe, F.G.1
Fuller, C.J.2
Straight, A.F.3
-
54
-
-
84893456706
-
CAL1 is the Drosophila CENP-A assembly factor
-
Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG. 2014 CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204, 313-329. (doi: 10.1083/jcb.201305036)
-
(2014)
J. Cell Biol.
, vol.204
, pp. 313-329
-
-
Chen, C.C.1
Dechassa, M.L.2
Bettini, E.3
Ledoux, M.B.4
Belisario, C.5
Heun, P.6
Luger, K.7
Mellone, B.G.8
-
55
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen LE, Black BE, Foltz DR, Cleveland DW. 2007 Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795-805. (doi: 10.1083/jcb.200701066)
-
(2007)
J. Cell Biol.
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
Black, B.E.2
Foltz, D.R.3
Cleveland, D.W.4
-
56
-
-
84871672177
-
The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C
-
Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. 2012 The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol. 10, e1001460. (doi: 10.1371/journal.pbio.1001460)
-
(2012)
PLoS Biol.
, vol.10
-
-
Dunleavy, E.M.1
Beier, N.L.2
Gorgescu, W.3
Tang, J.4
Costes, S.V.5
Karpen, G.H.6
-
57
-
-
84889644216
-
Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation
-
Unhavaithaya Y, Orr-Weaver TL. 2013 Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc. Natl Acad. Sci USA 110, 19878-19883. (doi: 10.1073/pnas.1320074110)
-
(2013)
Proc. Natl Acad. Sci USA
, vol.110
, pp. 19878-19883
-
-
Unhavaithaya, Y.1
Orr-Weaver, T.L.2
-
58
-
-
84883667139
-
A two-step mechanism for epigenetic specification of centromere identity and function
-
Fachinetti D et al. 2013 A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 15, 1056-1066. (doi: 10.1038/ncb2805)
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1056-1066
-
-
Fachinetti, D.1
-
59
-
-
79952360683
-
Drosophila CENP-C is essential for centromere identity
-
Orr B, Sunkel CE. 2011 Drosophila CENP-C is essential for centromere identity. Chromosoma 120, 83-96. (doi: 10.1007/s00412-010-0293-6)
-
(2011)
Chromosoma
, vol.120
, pp. 83-96
-
-
Orr, B.1
Sunkel, C.E.2
-
60
-
-
58149305928
-
Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
-
Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. 2008 Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805-818. (doi: 10.1083/jcb.200806038)
-
(2008)
J. Cell Biol.
, vol.183
, pp. 805-818
-
-
Erhardt, S.1
Mellone, B.G.2
Betts, C.M.3
Zhang, W.4
Karpen, G.H.5
Straight, A.F.6
-
61
-
-
78951492501
-
Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint
-
Venkei Z, Przewloka MR, Glover DM. 2011 Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint. Genetici 187, 131-140. (doi: 10.1534/genetics.110.119628)
-
(2011)
Genetici
, vol.187
, pp. 131-140
-
-
Venkei, Z.1
Przewloka, M.R.2
Glover, D.M.3
-
62
-
-
65949093712
-
Searching for Drosophila Dsn1 kinetochore protein
-
Przewloka MR, Venkei Z, Glover DM. 2009 Searching for Drosophila Dsn1 kinetochore protein. Cell Cycle 8, 1292-1293. (doi: 10.4161/cc.8.8.8159)
-
(2009)
Cell Cycle
, vol.8
, pp. 1292-1293
-
-
Przewloka, M.R.1
Venkei, Z.2
Glover, D.M.3
-
63
-
-
34347215876
-
Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes
-
Schittenhelm RB, Heeger S, Althoff F, Walter A, Heidmann S, Mechtler K, Lehner CF. 2007 Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116, 385-402. (doi: 10.1007/s00412-007-0103-y)
-
(2007)
Chromosoma
, vol.116
, pp. 385-402
-
-
Schittenhelm, R.B.1
Heeger, S.2
Althoff, F.3
Walter, A.4
Heidmann, S.5
Mechtler, K.6
Lehner, C.F.7
-
64
-
-
14844303376
-
The pST44 polycistronic expression system for producing protein complexes in Escherichia coli
-
Tan S, Kern RC, Selleck W. 2005 The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr. Purif. 40, 385-395. (doi: 10.1016/j.pep.2004.12.002)
-
(2005)
Protein Expr. Purif.
, vol.40
, pp. 385-395
-
-
Tan, S.1
Kern, R.C.2
Selleck, W.3
-
65
-
-
77956361304
-
Molecular architecture and assembly of the yeast kinetochore MIND complex
-
Maskell DP, Hu XW, Singleton MR. 2010 Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190, 823-834. (doi: 10.1083/jcb.201002059)
-
(2010)
J. Cell Biol.
, vol.190
, pp. 823-834
-
-
Maskell, D.P.1
Hu, X.W.2
Singleton, M.R.3
-
66
-
-
84866095385
-
Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry
-
Herzog F et al. 2012 Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 1348-1352. (doi: 10.1126/science.1221483)
-
(2012)
Science
, vol.337
, pp. 1348-1352
-
-
Herzog, F.1
-
67
-
-
0030935916
-
Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: Role of DNA-binding and self-associating activities in kinetochore organization
-
Sugimoto K, Kuriyama K, Shibata A, Himeno M. 1997 Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: role of DNA-binding and self-associating activities in kinetochore organization. Chromosome Res. 5, 132-141. (doi: 10.1023/A:1018422325569)
-
(1997)
Chromosome Res.
, vol.5
, pp. 132-141
-
-
Sugimoto, K.1
Kuriyama, K.2
Shibata, A.3
Himeno, M.4
-
68
-
-
0026356891
-
Predicting coiled coils from protein sequences
-
Lupas A, Van Dyke M, Stock J. 1991 Predicting coiled coils from protein sequences. Science 252, 1162-1164. (doi: 10.1126/science.252.5009.1162)
-
(1991)
Science
, vol.252
, pp. 1162-1164
-
-
Lupas, A.1
Van Dyke, M.2
Stock, J.3
-
69
-
-
84930074657
-
The Phyre2 web portal for protein modeling, prediction and analysis
-
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015 The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858. (doi: 10.1038/nprot.2015.053)
-
(2015)
Nat. Protoc.
, vol.10
, pp. 845-858
-
-
Kelley, L.A.1
Mezulis, S.2
Yates, C.M.3
Wass, M.N.4
Sternberg, M.J.5
-
70
-
-
84979854249
-
JPred4: A protein secondary structure prediction server
-
Drozdetskiy A, Cole C, Procter J, Barton GJ. 2015 JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389-W394. (doi: 10.1093/nar/gkv332)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. W389-W394
-
-
Drozdetskiy, A.1
Cole, C.2
Procter, J.3
Barton, G.J.4
-
71
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
Jones DT 1999 Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202. (doi: 10.1006/jmbi.1999.3091)
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
72
-
-
84861589937
-
Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore
-
Bock U et al. 2012 Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol. 14, 614-624. (doi: 10.1038/ncb2495)
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 614-624
-
-
Bock, U.1
-
73
-
-
84941047044
-
A quantitative description of Ndc80 complex linkage to human kinetochores
-
Suzuki A, Badger BL, Salmon ED. 2015 A quantitative description of Ndc80 complex linkage to human kinetochores. Nat. Commun. 6, 8161. (doi: 10.1038/ncomms9161)
-
(2015)
Nat. Commun.
, vol.6
, pp. 8161
-
-
Suzuki, A.1
Badger, B.L.2
Salmon, E.D.3
-
74
-
-
84928111498
-
The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts
-
Krizaic I, Williams SJ, Sanchez P, Rodriguez-Corsino M, Stukenberg PT, Losada A. 2015 The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts. Nucleus 6, 133-143. (doi: 10.1080/19491034.2014.1003509)
-
(2015)
Nucleus
, vol.6
, pp. 133-143
-
-
Krizaic, I.1
Williams, S.J.2
Sanchez, P.3
Rodriguez-Corsino, M.4
Stukenberg, P.T.5
Losada, A.6
-
75
-
-
84861637392
-
CENP-T proteins are conserved centromere receptors of the Ndc80 complex
-
Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, Mechtler K, Westermann S. 2012 CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol. 14, 604-613. (doi: 10.1038/ncb2493)
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 604-613
-
-
Schleiffer, A.1
Maier, M.2
Litos, G.3
Lampert, F.4
Hornung, P.5
Mechtler, K.6
Westermann, S.7
-
76
-
-
84873570232
-
CENP-T provides a structural platform for outer kinetochore assembly
-
Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T. 2013 CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 32, 424-436. (doi: 10.1038/emboj.2012.348)
-
(2013)
EMBO J.
, vol.32
, pp. 424-436
-
-
Nishino, T.1
Rago, F.2
Hori, T.3
Tomii, K.4
Cheeseman, I.M.5
Fukagawa, T.6
-
77
-
-
0034009520
-
Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
-
Schuck P. 2000 Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-1619. (doi: 10.1016/S0006-3495(00)76713-0)
-
(2000)
Biophys. J.
, vol.78
, pp. 1606-1619
-
-
Schuck, P.1
-
78
-
-
84866118432
-
False discovery rate estimation for cross-linked peptides identified by mass spectrometry
-
Walzthoeni T, Claassen M, Leitner A, Herzog F, Bohn S, Forster F, Beck M, Aebersold R. 2012 False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nat. Methods 9, 901-903. (doi: 10.1038/nmeth.2103)
-
(2012)
Nat. Methods
, vol.9
, pp. 901-903
-
-
Walzthoeni, T.1
Claassen, M.2
Leitner, A.3
Herzog, F.4
Bohn, S.5
Forster, F.6
Beck, M.7
Aebersold, R.8
-
79
-
-
84979856632
-
xVis: A web server for the schematic visualization and interpretation of crosslink-derived spatial restraints
-
Grimm M, Zimniak T, Kahraman A, Herzog F. 2015 xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43, W362-W369. (doi: 10.1093/nar/gkv463)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. W362-W369
-
-
Grimm, M.1
Zimniak, T.2
Kahraman, A.3
Herzog, F.4
|