-
1
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
doi:10.1083/jcb.200903100
-
Amano, M., A. Suzuki, T. Hori, C. Backer, K. Okawa, I.M. Cheeseman, and T. Fukagawa. 2009. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186:173-182. doi:10.1083/jcb.200903100.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
Cheeseman, I.M.6
Fukagawa, T.7
-
2
-
-
0035940402
-
A high-speed atomic force microscope for studying biological macromolecules
-
doi:10.1073/pnas.211400898
-
Ando, T., N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda. 2001. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA. 98:12468-12472. doi:10.1073/pnas.211400898.
-
(2001)
Proc. Natl. Acad. Sci. USA.
, vol.98
, pp. 12468-12472
-
-
Ando, T.1
Kodera, N.2
Takai, E.3
Maruyama, D.4
Saito, K.5
Toda, A.6
-
3
-
-
54149113310
-
High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes
-
doi:10.1016/j.progsurf.2008.09.001
-
Ando, T., T. Uchihashi, and T. Fukuma. 2008. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83:337-437. doi:10.1016/j.progsurf.2008.09.001.
-
(2008)
Prog. Surf. Sci.
, vol.83
, pp. 337-437
-
-
Ando, T.1
Uchihashi, T.2
Fukuma, T.3
-
4
-
-
0013869542
-
The fine structure of the kinetochore of a mammalian cell in vitro
-
doi:10.1007/BF00332792
-
Brinkley, B.R., and E. Stubblefield. 1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 19:28-43. doi:10.1007/BF00332792.
-
(1966)
Chromosoma
, vol.19
, pp. 28-43
-
-
Brinkley, B.R.1
Stubblefield, E.2
-
5
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
doi:10.1038/nrm2310
-
Cheeseman, I.M., and A. Desai. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9:33-46. doi:10.1038/nrm2310.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
6
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
doi:10.1016/j.cell.2006.09.039
-
Cheeseman, I.M., J.S. Chappie, E.M. Wilson-Kubalek, and A. Desai. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell. 127:983-997. doi:10.1016/j.cell.2006.09.039.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
7
-
-
0015089380
-
Fine structure of kinetochore in Indian muntjac
-
doi:10.1016/0014-4827(71)90625-2
-
Comings, D.E., and T.A. Okada. 1971. Fine structure of kinetochore in Indian muntjac. Exp. Cell Res. 67:97-110. doi:10.1016/0014-4827(71)90625-2.
-
(1971)
Exp. Cell Res.
, vol.67
, pp. 97-110
-
-
Comings, D.E.1
Okada, T.A.2
-
8
-
-
0031439982
-
Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase
-
doi:10.1007/s004120050266
-
Cooke, C.A., B. Schaar, T.J. Yen, and W.C. Earnshaw. 1997. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma. 106:446-455. doi:10.1007/s004120050266.
-
(1997)
Chromosoma
, vol.106
, pp. 446-455
-
-
Cooke, C.A.1
Schaar, B.2
Yen, T.J.3
Earnshaw, W.C.4
-
9
-
-
12844283239
-
Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites
-
doi:10.1091/mbc.E04-09-0852
-
DeLuca, J.G., Y. Dong, P. Hergert, J. Strauss, J.M. Hickey, E.D. Salmon, and B.F. McEwen. 2005. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell. 16:519-531. doi:10.1091/mbc.E04-09-0852.
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 519-531
-
-
DeLuca, J.G.1
Dong, Y.2
Hergert, P.3
Strauss, J.4
Hickey, J.M.5
Salmon, E.D.6
McEwen, B.F.7
-
10
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
doi:10.1016/j.cell.2006.09.047
-
DeLuca, J.G., W.E. Gall, C. Ciferri, D. Cimini, A. Musacchio, and E.D. Salmon. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell. 127:969-982. doi:10.1016/j.cell.2006.09.047.
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
11
-
-
34247891773
-
The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions
-
doi:10.1038/ncb1576
-
Dong, Y., K.J. Vanden Beldt, X. Meng, A. Khodjakov, and B.F. McEwen. 2007. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9:516-522. doi:10.1038/ncb1576.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 516-522
-
-
Dong, Y.1
Vanden Beldt, K.J.2
Meng, X.3
Khodjakov, A.4
McEwen, B.F.5
-
12
-
-
0033517101
-
CENP-C is necessary but not sufficient to induce formation of a functional centromere
-
doi:10.1093/emboj/18.15.4196
-
Fukagawa, T., C. Pendon, J. Morris, and W. Brown. 1999. CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J. 18:4196-4209. doi:10.1093/emboj/18.15.4196.
-
(1999)
EMBO J
, vol.18
, pp. 4196-4209
-
-
Fukagawa, T.1
Pendon, C.2
Morris, J.3
Brown, W.4
-
13
-
-
17944382377
-
CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells
-
doi:10.1093/emboj/20.16.4603
-
Fukagawa, T., Y. Mikami, A. Nishihashi, V. Regnier, T. Haraguchi, Y. Hiraoka, N. Sugata, K. Todokoro, W. Brown, and T. Ikemura. 2001. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20:4603-4617. doi:10.1093/emboj/20.16.4603.
-
(2001)
EMBO J
, vol.20
, pp. 4603-4617
-
-
Fukagawa, T.1
Mikami, Y.2
Nishihashi, A.3
Regnier, V.4
Haraguchi, T.5
Hiraoka, Y.6
Sugata, N.7
Todokoro, K.8
Brown, W.9
Ikemura, T.10
-
14
-
-
56349089656
-
Kinetochoremicrotubule attachment relies on the disordered N-terminal tail domain of Hec1
-
doi:10.1016/j.cub.2008.08.012
-
Guimaraes, G.J., Y. Dong, B.F. McEwen, and J.G. Deluca. 2008. Kinetochoremicrotubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 18:1778-1784. doi:10.1016/j.cub.2008.08.012.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1778-1784
-
-
Guimaraes, G.J.1
Dong, Y.2
McEwen, B.F.3
Deluca, J.G.4
-
15
-
-
0042887146
-
Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells
-
doi:10.1242/jcs.00645
-
Hori, T., T. Haraguchi, Y. Hiraoka, H. Kimura, and T. Fukagawa. 2003. Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116:3347-3362. doi:10.1242/jcs.00645.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3347-3362
-
-
Hori, T.1
Haraguchi, T.2
Hiraoka, Y.3
Kimura, H.4
Fukagawa, T.5
-
16
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
doi:10.1016/j.cell.2008.10.019
-
Hori, T., M. Amano, A. Suzuki, C.B. Backer, J.P. Welburn, Y. Dong, B.F. McEwen, W.H. Shang, E. Suzuki, K. Okawa, et al. 2008a. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell. 135:1039-1052. doi:10.1016/j.cell.2008.10.019.
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
Dong, Y.6
McEwen, B.F.7
Shang, W.H.8
Suzuki, E.9
Okawa, K.10
-
17
-
-
41649109022
-
CENP-O class proteins form a stable complex and are required for proper kinetochore function
-
doi:10.1091/mbc.E07-06-0556
-
Hori, T., M. Okada, K. Maenaka, and T. Fukagawa. 2008b. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell. 19:843-854. doi:10.1091/mbc.E07-06-0556.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 843-854
-
-
Hori, T.1
Okada, M.2
Maenaka, K.3
Fukagawa, T.4
-
18
-
-
77953574250
-
Vertebrate kinetochore protein architecture: protein copy number
-
doi:10.1083/jcb.200912022
-
Johnston, K., A. Joglekar, T. Hori, A. Suzuki, T. Fukagawa, and E.D. Salmon. 2010. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189:937-943. doi:10.1083/jcb.200912022.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 937-943
-
-
Johnston, K.1
Joglekar, A.2
Hori, T.3
Suzuki, A.4
Fukagawa, T.5
Salmon, E.D.6
-
19
-
-
0014109164
-
The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells
-
doi:10. 1016/S0022-5320.(67)80058-3
-
Jokelainen, P.T. 1967. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19:19-44. doi:10.1016/S0022-5320(67)80058-3.
-
(1967)
J. Ultrastruct. Res.
, vol.19
, pp. 19-44
-
-
Jokelainen, P.T.1
-
20
-
-
33645730743
-
The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation
-
doi:10.1083/jcb.200509158
-
Kline, S.L., I.M. Cheeseman, T. Hori, T. Fukagawa, and A. Desai. 2006. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173:9-17. doi:10.1083/jcb.200509158.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 9-17
-
-
Kline, S.L.1
Cheeseman, I.M.2
Hori, T.3
Fukagawa, T.4
Desai, A.5
-
21
-
-
34250346905
-
CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
-
doi:10.1091/mbc.E07-01-0045
-
Kwon, M.S., T. Hori, M. Okada, and T. Fukagawa. 2007. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell. 18:2155-2168. doi:10.1091/mbc.E07-01-0045.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 2155-2168
-
-
Kwon, M.S.1
Hori, T.2
Okada, M.3
Fukagawa, T.4
-
22
-
-
33749569228
-
Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells
-
doi:10.1083/jcb.200606020
-
Liu, S.T., J.B. Rattner, S.A. Jablonski, and T.J. Yen. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175:41-53. doi:10.1083/jcb.200606020.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 41-53
-
-
Liu, S.T.1
Rattner, J.B.2
Jablonski, S.A.3
Yen, T.J.4
-
23
-
-
62849085547
-
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
-
doi:10.1083/jcb.200808130
-
Maresca, T.J., and E.D. Salmon. 2009. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184:373-381. doi:10.1083/jcb.200808130.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 373-381
-
-
Maresca, T.J.1
Salmon, E.D.2
-
24
-
-
0032447325
-
A new look at kinetochore structure in vertebrate somatic cells using highpressure freezing and freeze substitution
-
doi:10.1007/s004120050320
-
McEwen, B.F., C.E. Hsieh, A.L. Mattheyses, and C.L. Rieder. 1998. A new look at kinetochore structure in vertebrate somatic cells using highpressure freezing and freeze substitution. Chromosoma. 107:366-375. doi:10.1007/s004120050320.
-
(1998)
Chromosoma
, vol.107
, pp. 366-375
-
-
McEwen, B.F.1
Hsieh, C.E.2
Mattheyses, A.L.3
Rieder, C.L.4
-
25
-
-
33847236531
-
Using electron microscopy to understand functional mechanisms of chromosome alignment on the mitotic spindle
-
doi:10. 1016/S0091-679X.(06)79011-2
-
McEwen, B.F., Y. Dong, and K.J. VandenBeldt. 2007. Using electron microscopy to understand functional mechanisms of chromosome alignment on the mitotic spindle. Methods Cell Biol. 79:259-293. doi:10.1016/S0091-679X(06)79011-2.
-
(2007)
Methods Cell Biol
, vol.79
, pp. 259-293
-
-
McEwen, B.F.1
Dong, Y.2
VandenBeldt, K.J.3
-
26
-
-
53549118867
-
Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion
-
doi:10.1016/j.cell.2008.08.038
-
McIntosh, J.R., E.L. Grishchuk, M.K. Morphew, A.K. Efremov, K. Zhudenkov, V.A. Volkov, I.M. Cheeseman, A. Desai, D.N. Mastronarde, and F.I. Ataullakhanov. 2008. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell. 135:322-333. doi:10.1016/j.cell.2008.08.038.
-
(2008)
Cell
, vol.135
, pp. 322-333
-
-
McIntosh, J.R.1
Grishchuk, E.L.2
Morphew, M.K.3
Efremov, A.K.4
Zhudenkov, K.5
Volkov, V.A.6
Cheeseman, I.M.7
Desai, A.8
Mastronarde, D.N.9
Ataullakhanov, F.I.10
-
27
-
-
56349098273
-
Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
-
doi:10.1016/j.cub.2008.11.007
-
Miller, S.A., M.L. Johnson, and P.T. Stukenberg. 2008. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr. Biol. 18:1785-1791. doi:10.1016/j.cub.2008.11.007.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1785-1791
-
-
Miller, S.A.1
Johnson, M.L.2
Stukenberg, P.T.3
-
28
-
-
53049099593
-
Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy
-
doi:10.1002/cphc.200800210
-
Miyagi, A., Y. Tsunaka, T. Uchihashi, K. Mayanagi, S. Hirose, K. Morikawa, and T. Ando. 2008. Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. ChemPhysChem. 9:1859-1866. doi:10.1002/cphc.200800210.
-
(2008)
ChemPhysChem
, vol.9
, pp. 1859-1866
-
-
Miyagi, A.1
Tsunaka, Y.2
Uchihashi, T.3
Mayanagi, K.4
Hirose, S.5
Morikawa, K.6
Ando, T.7
-
29
-
-
0023754978
-
The forces that move chromosomes in mitosis
-
doi:10.1146/annurev.bb.17.060188.002243
-
Nicklas, R.B. 1988. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17:431-449. doi:10.1146/annurev.bb.17.060188.002243.
-
(1988)
Annu. Rev. Biophys. Biophys. Chem.
, vol.17
, pp. 431-449
-
-
Nicklas, R.B.1
-
30
-
-
77956167600
-
The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics
-
doi:10.1016/j.cell.2010.07.047
-
Ohta, S., J.C. Bukowski-Wills, L. Sanchez-Pulido, Fde.L. Alves, L. Wood, Z.A. Chen, M. Platani, L. Fischer, D.F. Hudson, C.P. Ponting, et al. 2010. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. 142:810-821. doi:10.1016/j.cell.2010.07.047.
-
(2010)
Cell
, vol.142
, pp. 810-821
-
-
Ohta, S.1
Bukowski-Wills, J.C.2
Sanchez-Pulido, L.3
Alves, Fde.L.4
Wood, L.5
Chen, Z.A.6
Platani, M.7
Fischer, L.8
Hudson, D.F.9
Ponting, C.P.10
-
31
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
doi:10.1038/ncb1396
-
Okada, M., I.M. Cheeseman, T. Hori, K. Okawa, I.X. McLeod, J.R. Yates III, A. Desai, and T. Fukagawa. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8:446-457. doi:10.1038/ncb1396.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates III, J.R.6
Desai, A.7
Fukagawa, T.8
-
32
-
-
65649107604
-
Condensin regulates the stiffness of vertebrate centromeres
-
doi:10.1091/mbc.E08-11-1127
-
Ribeiro, S.A., J.C. Gatlin, Y. Dong, A. Joglekar, L. Cameron, D.F. Hudson, C.J. Farr, B.F. McEwen, E.D. Salmon, W.C. Earnshaw, and P. Vagnarelli. 2009. Condensin regulates the stiffness of vertebrate centromeres. Mol. Biol. Cell. 20:2371-2380. doi:10.1091/mbc.E08-11-1127.
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 2371-2380
-
-
Ribeiro, S.A.1
Gatlin, J.C.2
Dong, Y.3
Joglekar, A.4
Cameron, L.5
Hudson, D.F.6
Farr, C.J.7
McEwen, B.F.8
Salmon, E.D.9
Earnshaw, W.C.10
Vagnarelli, P.11
-
33
-
-
0020333277
-
The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber
-
doi:10. 1016/S0074-7696.(08)61672-1
-
Rieder, C.L. 1982. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79:1-58. doi:10.1016/S0074-7696(08)61672-1.
-
(1982)
Int. Rev. Cytol.
, vol.79
, pp. 1-58
-
-
Rieder, C.L.1
-
34
-
-
0026650005
-
CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
-
doi:10. 1016/0092-8674. (92)90538-N
-
Saitoh, H., J. Tomkiel, C.A. Cooke, H. Ratrie III, M. Maurer, N.F. Rothfield, and W.C. Earnshaw. 1992. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 70:115-125. doi:10.1016/0092-8674(92)90538-N.
-
(1992)
Cell
, vol.70
-
-
Saitoh, H.1
Tomkiel, J.2
Cooke, C.A.3
Ratrie III, H.4
Maurer, M.5
Rothfield, N.F.6
Earnshaw, W.C.7
-
35
-
-
34347215876
-
Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes
-
doi:10.1007/s00412-007-0103-y
-
Schittenhelm, R.B., S. Heeger, F. Althoff, A. Walter, S. Heidmann, K. Mechtler, and C.F. Lehner. 2007. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma. 116:385-402. doi:10.1007/s00412-007-0103-y.
-
(2007)
Chromosoma
, vol.116
, pp. 385-402
-
-
Schittenhelm, R.B.1
Heeger, S.2
Althoff, F.3
Walter, A.4
Heidmann, S.5
Mechtler, K.6
Lehner, C.F.7
-
36
-
-
18044404949
-
Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells
-
doi:10. 1016/S1534-5807.(01)00088-0
-
Sonoda, E., T. Matsusaka, C. Morrison, P. Vagnarelli, O. Hoshi, T. Ushiki, K. Nojima, T. Fukagawa, I.C. Waizenegger, J.M. Peters, et al. 2001. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell. 1:759-770. doi:10.1016/S1534-5807(01)00088-0.
-
(2001)
Dev. Cell.
, vol.1
, pp. 759-770
-
-
Sonoda, E.1
Matsusaka, T.2
Morrison, C.3
Vagnarelli, P.4
Hoshi, O.5
Ushiki, T.6
Nojima, K.7
Fukagawa, T.8
Waizenegger, I.C.9
Peters, J.M.10
-
37
-
-
62849128355
-
Kinetochore stretching inactivates the spindle assembly checkpoint
-
doi:10.1083/jcb.200811028
-
Uchida, K.S., K. Takagaki, K. Kumada, Y. Hirayama, T. Noda, and T. Hirota. 2009. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184:383-390. doi:10.1083/jcb.200811028.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 383-390
-
-
Uchida, K.S.1
Takagaki, K.2
Kumada, K.3
Hirayama, Y.4
Noda, T.5
Hirota, T.6
-
38
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
doi:10.1016/j.cell.2009.03.035
-
Wan, X., R.P. O'Quinn, H.L. Pierce, A.P. Joglekar, W.E. Gall, J.G. DeLuca, C.W. Carroll, S.T. Liu, T.J. Yen, B.F. McEwen, et al. 2009. Protein architecture of the human kinetochore microtubule attachment site. Cell. 137:672-684. doi:10.1016/j.cell.2009.03.035.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
DeLuca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
McEwen, B.F.10
-
39
-
-
77951952612
-
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
-
doi:10.1016/j.molcel.2010.02.034
-
Welburn, J.P., M. Vleugel, D. Liu, J.R. Yates III, M.A. Lampson, T. Fukagawa, and I.M. Cheeseman. 2010. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell. 38:383-392. doi:10.1016/j.molcel.2010.02.034.
-
(2010)
Mol. Cell.
, vol.38
, pp. 383-392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates III, J.R.4
Lampson, M.A.5
Fukagawa, T.6
Cheeseman, I.M.7
|