메뉴 건너뛰기




Volumn 30, Issue 5, 2014, Pages 496-508

The centromere: Chromatin foundation for the kinetochore machinery

Author keywords

[No Author keywords available]

Indexed keywords

CENTROMERE PROTEIN A; COHESIN; DNA BINDING PROTEIN; HISTONE; HISTONE H3; HISTONE H4; REPETITIVE DNA; AUTOANTIGEN; NONHISTONE PROTEIN;

EID: 84908218352     PISSN: 15345807     EISSN: 18781551     Source Type: Journal    
DOI: 10.1016/j.devcel.2014.08.016     Document Type: Review
Times cited : (317)

References (175)
  • 1
    • 84896398000 scopus 로고    scopus 로고
    • Discovery of unconventional kinetochores in kinetoplastids
    • Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014, 156:1247-1258.
    • (2014) Cell , vol.156 , pp. 1247-1258
    • Akiyoshi, B.1    Gull, K.2
  • 2
    • 84893040699 scopus 로고    scopus 로고
    • The past, present, and future of human centromere genomics
    • Aldrup-Macdonald M.E., Sullivan B.A. The past, present, and future of human centromere genomics. Genes (Basel) 2014, 5:33-50.
    • (2014) Genes (Basel) , vol.5 , pp. 33-50
    • Aldrup-Macdonald, M.E.1    Sullivan, B.A.2
  • 6
    • 0028065035 scopus 로고
    • The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere
    • Baum M., Ngan V.K., Clarke L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 1994, 5:747-761.
    • (1994) Mol. Biol. Cell , vol.5 , pp. 747-761
    • Baum, M.1    Ngan, V.K.2    Clarke, L.3
  • 7
    • 33749505847 scopus 로고    scopus 로고
    • Formation of functional centromeric chromatin is specified epigenetically in Candida albicans
    • Baum M., Sanyal K., Mishra P.K., Thaler N., Carbon J. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc. Natl. Acad. Sci. USA 2006, 103:14877-14882.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 14877-14882
    • Baum, M.1    Sanyal, K.2    Mishra, P.K.3    Thaler, N.4    Carbon, J.5
  • 8
    • 0000009360 scopus 로고
    • A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila
    • Beadle G.W. A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. Proc. Natl. Acad. Sci. USA 1932, 18:160-165.
    • (1932) Proc. Natl. Acad. Sci. USA , vol.18 , pp. 160-165
    • Beadle, G.W.1
  • 11
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENP-a nucleosomes
    • Black B.E., Cleveland D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144:471-479.
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 13
  • 14
    • 0020324991 scopus 로고
    • Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes
    • Bloom K.S., Carbon J. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 1982, 29:305-317.
    • (1982) Cell , vol.29 , pp. 305-317
    • Bloom, K.S.1    Carbon, J.2
  • 15
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower M.D., Sullivan B.A., Karpen G.H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2002, 2:319-330.
    • (2002) Dev. Cell , vol.2 , pp. 319-330
    • Blower, M.D.1    Sullivan, B.A.2    Karpen, G.H.3
  • 17
    • 0013869542 scopus 로고
    • The fine structure of the kinetochore of a mammalian cell invitro
    • Brinkley B.R., Stubblefield E. The fine structure of the kinetochore of a mammalian cell invitro. Chromosoma 1966, 19:28-43.
    • (1966) Chromosoma , vol.19 , pp. 28-43
    • Brinkley, B.R.1    Stubblefield, E.2
  • 19
    • 34250316190 scopus 로고    scopus 로고
    • Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore
    • Camahort R., Li B., Florens L., Swanson S.K., Washburn M.P., Gerton J.L. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 2007, 26:853-865.
    • (2007) Mol. Cell , vol.26 , pp. 853-865
    • Camahort, R.1    Li, B.2    Florens, L.3    Swanson, S.K.4    Washburn, M.P.5    Gerton, J.L.6
  • 22
    • 84870192369 scopus 로고    scopus 로고
    • The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis
    • Carmena M., Wheelock M., Funabiki H., Earnshaw W.C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 2012, 13:789-803.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 789-803
    • Carmena, M.1    Wheelock, M.2    Funabiki, H.3    Earnshaw, W.C.4
  • 23
    • 67650065426 scopus 로고    scopus 로고
    • Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
    • Carroll C.W., Silva M.C., Godek K.M., Jansen L.E., Straight A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 2009, 11:896-902.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 896-902
    • Carroll, C.W.1    Silva, M.C.2    Godek, K.M.3    Jansen, L.E.4    Straight, A.F.5
  • 24
    • 0028052990 scopus 로고
    • Cloning and characterization of centromeric DNA from Neurospora crassa
    • Centola M., Carbon J. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 1994, 14:1510-1519.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1510-1519
    • Centola, M.1    Carbon, J.2
  • 26
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008, 9:33-46.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 33-46
    • Cheeseman, I.M.1    Desai, A.2
  • 27
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    • Cheeseman I.M., Chappie J.S., Wilson-Kubalek E.M., Desai A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
    • (2006) Cell , vol.127 , pp. 983-997
    • Cheeseman, I.M.1    Chappie, J.S.2    Wilson-Kubalek, E.M.3    Desai, A.4
  • 28
    • 38949208022 scopus 로고    scopus 로고
    • Cell cycle control of centromeric repeat transcription and heterochromatin assembly
    • Chen E.S., Zhang K., Nicolas E., Cam H.P., Zofall M., Grewal S.I. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008, 451:734-737.
    • (2008) Nature , vol.451 , pp. 734-737
    • Chen, E.S.1    Zhang, K.2    Nicolas, E.3    Cam, H.P.4    Zofall, M.5    Grewal, S.I.6
  • 29
    • 0032054999 scopus 로고    scopus 로고
    • Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes
    • Clarke L. Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 1998, 8:212-218.
    • (1998) Curr. Opin. Genet. Dev. , vol.8 , pp. 212-218
    • Clarke, L.1
  • 30
    • 81355149553 scopus 로고    scopus 로고
    • CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast
    • Coffman V.C., Wu P., Parthun M.R., Wu J.Q. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J.Cell Biol. 2011, 195:563-572.
    • (2011) J.Cell Biol. , vol.195 , pp. 563-572
    • Coffman, V.C.1    Wu, P.2    Parthun, M.R.3    Wu, J.Q.4
  • 36
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., Salmon E.D. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1    Gall, W.E.2    Ciferri, C.3    Cimini, D.4    Musacchio, A.5    Salmon, E.D.6
  • 40
    • 0022254326 scopus 로고
    • Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome
    • Earnshaw W.C., Migeon B.R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 1985, 92:290-296.
    • (1985) Chromosoma , vol.92 , pp. 290-296
    • Earnshaw, W.C.1    Migeon, B.R.2
  • 41
    • 0021989578 scopus 로고
    • Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
    • Earnshaw W.C., Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 1985, 91:313-321.
    • (1985) Chromosoma , vol.91 , pp. 313-321
    • Earnshaw, W.C.1    Rothfield, N.2
  • 43
    • 0024333605 scopus 로고
    • Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads
    • Earnshaw W.C., Ratrie H., Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 1989, 98:1-12.
    • (1989) Chromosoma , vol.98 , pp. 1-12
    • Earnshaw, W.C.1    Ratrie, H.2    Stetten, G.3
  • 45
    • 0034235802 scopus 로고    scopus 로고
    • Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats
    • Ebersole T.A., Ross A., Clark E., McGill N., Schindelhauer D., Cooke H., Grimes B. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum. Mol. Genet. 2000, 9:1623-1631.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 1623-1631
    • Ebersole, T.A.1    Ross, A.2    Clark, E.3    McGill, N.4    Schindelhauer, D.5    Cooke, H.6    Grimes, B.7
  • 46
    • 44449100870 scopus 로고    scopus 로고
    • Epigenetic control of centromere behavior
    • Ekwall K. Epigenetic control of centromere behavior. Annu. Rev. Genet. 2007, 41:63-81.
    • (2007) Annu. Rev. Genet. , vol.41 , pp. 63-81
    • Ekwall, K.1
  • 47
    • 58149305928 scopus 로고    scopus 로고
    • Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
    • Erhardt S., Mellone B.G., Betts C.M., Zhang W., Karpen G.H., Straight A.F. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J.Cell Biol. 2008, 183:805-818.
    • (2008) J.Cell Biol. , vol.183 , pp. 805-818
    • Erhardt, S.1    Mellone, B.G.2    Betts, C.M.3    Zhang, W.4    Karpen, G.H.5    Straight, A.F.6
  • 48
    • 37849021647 scopus 로고    scopus 로고
    • Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres
    • Folco H.D., Pidoux A.L., Urano T., Allshire R.C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 2008, 319:94-97.
    • (2008) Science , vol.319 , pp. 94-97
    • Folco, H.D.1    Pidoux, A.L.2    Urano, T.3    Allshire, R.C.4
  • 51
  • 52
    • 35548985820 scopus 로고    scopus 로고
    • Centromere identity is specified by a single centromeric nucleosome in budding yeast
    • Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA 2007, 104:14706-14711.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 14706-14711
    • Furuyama, S.1    Biggins, S.2
  • 53
    • 67649664594 scopus 로고    scopus 로고
    • Centromeric nucleosomes induce positive DNA supercoils
    • Furuyama T., Henikoff S. Centromeric nucleosomes induce positive DNA supercoils. Cell 2009, 138:104-113.
    • (2009) Cell , vol.138 , pp. 104-113
    • Furuyama, T.1    Henikoff, S.2
  • 54
    • 63049116550 scopus 로고    scopus 로고
    • Heterochromatin and the cohesion of sister chromatids
    • Gartenberg M. Heterochromatin and the cohesion of sister chromatids. Chromosome Res. 2009, 17:229-238.
    • (2009) Chromosome Res. , vol.17 , pp. 229-238
    • Gartenberg, M.1
  • 55
    • 79955539577 scopus 로고    scopus 로고
    • Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
    • Gascoigne K.E., Takeuchi K., Suzuki A., Hori T., Fukagawa T., Cheeseman I.M. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011, 145:410-422.
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.E.1    Takeuchi, K.2    Suzuki, A.3    Hori, T.4    Fukagawa, T.5    Cheeseman, I.M.6
  • 57
    • 80052849224 scopus 로고    scopus 로고
    • Invitro centromere and kinetochore assembly on defined chromatin templates
    • Guse A., Carroll C.W., Moree B., Fuller C.J., Straight A.F. Invitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
    • (2011) Nature , vol.477 , pp. 354-358
    • Guse, A.1    Carroll, C.W.2    Moree, B.3    Fuller, C.J.4    Straight, A.F.5
  • 58
    • 84862505293 scopus 로고    scopus 로고
    • Shugoshins: from protectors of cohesion to versatile adaptors at the centromere
    • Gutiérrez-Caballero C., Cebollero L.R., Pendás A.M. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet. 2012, 28:351-360.
    • (2012) Trends Genet. , vol.28 , pp. 351-360
    • Gutiérrez-Caballero, C.1    Cebollero, L.R.2    Pendás, A.M.3
  • 59
    • 0030910465 scopus 로고    scopus 로고
    • Formation of de novo centromeres and construction of first-generation human artificial microchromosomes
    • Harrington J.J., Van Bokkelen G., Mays R.W., Gustashaw K., Willard H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 1997, 15:345-355.
    • (1997) Nat. Genet. , vol.15 , pp. 345-355
    • Harrington, J.J.1    Van Bokkelen, G.2    Mays, R.W.3    Gustashaw, K.4    Willard, H.F.5
  • 61
    • 4544275776 scopus 로고    scopus 로고
    • Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
    • Hayashi T., Fujita Y., Iwasaki O., Adachi Y., Takahashi K., Yanagida M. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 2004, 118:715-729.
    • (2004) Cell , vol.118 , pp. 715-729
    • Hayashi, T.1    Fujita, Y.2    Iwasaki, O.3    Adachi, Y.4    Takahashi, K.5    Yanagida, M.6
  • 62
    • 0027634290 scopus 로고
    • The centromere of budding yeast
    • Hegemann J.H., Fleig U.N. The centromere of budding yeast. Bioessays 1993, 15:451-460.
    • (1993) Bioessays , vol.15 , pp. 451-460
    • Hegemann, J.H.1    Fleig, U.N.2
  • 64
    • 84872063204 scopus 로고    scopus 로고
    • The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
    • Hori T., Shang W.H., Takeuchi K., Fukagawa T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J.Cell Biol. 2013, 200:45-60.
    • (2013) J.Cell Biol. , vol.200 , pp. 45-60
    • Hori, T.1    Shang, W.H.2    Takeuchi, K.3    Fukagawa, T.4
  • 67
    • 84982056009 scopus 로고
    • The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments
    • Hughes-Schrader S., Ris H. The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J.Exp. Zool. 1941, 87:429-456.
    • (1941) J.Exp. Zool. , vol.87 , pp. 429-456
    • Hughes-Schrader, S.1    Ris, H.2
  • 70
    • 33947274529 scopus 로고    scopus 로고
    • Propagation of centromeric chromatin requires exit from mitosis
    • Jansen L.E., Black B.E., Foltz D.R., Cleveland D.W. Propagation of centromeric chromatin requires exit from mitosis. J.Cell Biol. 2007, 176:795-805.
    • (2007) J.Cell Biol. , vol.176 , pp. 795-805
    • Jansen, L.E.1    Black, B.E.2    Foltz, D.R.3    Cleveland, D.W.4
  • 71
    • 44149083326 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
    • Joglekar A.P., Bouck D., Finley K., Liu X., Wan Y., Berman J., He X., Salmon E.D., Bloom K.S. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J.Cell Biol. 2008, 181:587-594.
    • (2008) J.Cell Biol. , vol.181 , pp. 587-594
    • Joglekar, A.P.1    Bouck, D.2    Finley, K.3    Liu, X.4    Wan, Y.5    Berman, J.6    He, X.7    Salmon, E.D.8    Bloom, K.S.9
  • 72
    • 65049088564 scopus 로고    scopus 로고
    • Invivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
    • Joglekar A.P., Bloom K., Salmon E.D. Invivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 2009, 19:694-699.
    • (2009) Curr. Biol. , vol.19 , pp. 694-699
    • Joglekar, A.P.1    Bloom, K.2    Salmon, E.D.3
  • 74
    • 0014109164 scopus 로고
    • The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells
    • Jokelainen P.T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J.Ultrastruct. Res. 1967, 19:19-44.
    • (1967) J.Ultrastruct. Res. , vol.19 , pp. 19-44
    • Jokelainen, P.T.1
  • 77
    • 33847219959 scopus 로고    scopus 로고
    • Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres
    • Kawashima S.A., Tsukahara T., Langegger M., Hauf S., Kitajima T.S., Watanabe Y. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 2007, 21:420-435.
    • (2007) Genes Dev. , vol.21 , pp. 420-435
    • Kawashima, S.A.1    Tsukahara, T.2    Langegger, M.3    Hauf, S.4    Kitajima, T.S.5    Watanabe, Y.6
  • 78
    • 77957725753 scopus 로고    scopus 로고
    • Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B
    • Kelly A.E., Ghenoiu C., Xue J.Z., Zierhut C., Kimura H., Funabiki H. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 2010, 330:235-239.
    • (2010) Science , vol.330 , pp. 235-239
    • Kelly, A.E.1    Ghenoiu, C.2    Xue, J.Z.3    Zierhut, C.4    Kimura, H.5    Funabiki, H.6
  • 81
    • 84921650471 scopus 로고    scopus 로고
    • The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin
    • Kitagawa T., Ishii K., Takeda K., Matsumoto T. The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nature Communications 2014, 5:3597.
    • (2014) Nature Communications , vol.5 , pp. 3597
    • Kitagawa, T.1    Ishii, K.2    Takeda, K.3    Matsumoto, T.4
  • 82
    • 84876675718 scopus 로고    scopus 로고
    • A new generation of human artificial chromosomes for functional genomics and gene therapy
    • Kouprina N., Earnshaw W.C., Masumoto H., Larionov V. A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell. Mol. Life Sci. 2013, 70:1135-1148.
    • (2013) Cell. Mol. Life Sci. , vol.70 , pp. 1135-1148
    • Kouprina, N.1    Earnshaw, W.C.2    Masumoto, H.3    Larionov, V.4
  • 85
    • 81355161263 scopus 로고    scopus 로고
    • Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome
    • Lawrimore J., Bloom K.S., Salmon E.D. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J.Cell Biol. 2011, 195:573-582.
    • (2011) J.Cell Biol. , vol.195 , pp. 573-582
    • Lawrimore, J.1    Bloom, K.S.2    Salmon, E.D.3
  • 89
    • 0013802557 scopus 로고
    • The structure of the kinetochore in meiosis and mitosis in Urechis eggs
    • Luykx P. The structure of the kinetochore in meiosis and mitosis in Urechis eggs. Exp. Cell Res. 1965, 39:643-657.
    • (1965) Exp. Cell Res. , vol.39 , pp. 643-657
    • Luykx, P.1
  • 90
    • 33947239252 scopus 로고    scopus 로고
    • Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
    • Maddox P.S., Hyndman F., Monen J., Oegema K., Desai A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J.Cell Biol. 2007, 176:757-763.
    • (2007) J.Cell Biol. , vol.176 , pp. 757-763
    • Maddox, P.S.1    Hyndman, F.2    Monen, J.3    Oegema, K.4    Desai, A.5
  • 92
    • 0018274661 scopus 로고
    • Chromosomal localization of complex and simple repeated human DNAs
    • Manuelidis L. Chromosomal localization of complex and simple repeated human DNAs. Chromosoma 1978, 66:23-32.
    • (1978) Chromosoma , vol.66 , pp. 23-32
    • Manuelidis, L.1
  • 93
    • 40749092486 scopus 로고    scopus 로고
    • Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution
    • Marshall O.J., Chueh A.C., Wong L.H., Choo K.H. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 2008, 82:261-282.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 261-282
    • Marshall, O.J.1    Chueh, A.C.2    Wong, L.H.3    Choo, K.H.4
  • 94
    • 0015810405 scopus 로고
    • The mechanism of G and C banding in mammalian metaphase chromosomes
    • McKay R.D. The mechanism of G and C banding in mammalian metaphase chromosomes. Chromosoma 1973, 44:1-14.
    • (1973) Chromosoma , vol.44 , pp. 1-14
    • McKay, R.D.1
  • 95
    • 84904568486 scopus 로고    scopus 로고
    • Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres
    • McKinley K.L., Cheeseman I.M. Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres. Cell 2014, 158:397-411.
    • (2014) Cell , vol.158 , pp. 397-411
    • McKinley, K.L.1    Cheeseman, I.M.2
  • 98
    • 84898762051 scopus 로고    scopus 로고
    • Centromere reference models for human chromosomes X and Y satellite arrays
    • Miga K.H., Newton Y., Jain M., Altemose N., Willard H.F., Kent W.J. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 2014, 24:697-707.
    • (2014) Genome Res. , vol.24 , pp. 697-707
    • Miga, K.H.1    Newton, Y.2    Jain, M.3    Altemose, N.4    Willard, H.F.5    Kent, W.J.6
  • 99
    • 0032871844 scopus 로고    scopus 로고
    • Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
    • Minc E., Allory Y., Worman H.J., Courvalin J.C., Buendia B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 1999, 108:220-234.
    • (1999) Chromosoma , vol.108 , pp. 220-234
    • Minc, E.1    Allory, Y.2    Worman, H.J.3    Courvalin, J.C.4    Buendia, B.5
  • 100
    • 34250173486 scopus 로고    scopus 로고
    • Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
    • Mizuguchi G., Xiao H., Wisniewski J., Smith M.M., Wu C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007, 129:1153-1164.
    • (2007) Cell , vol.129 , pp. 1153-1164
    • Mizuguchi, G.1    Xiao, H.2    Wisniewski, J.3    Smith, M.M.4    Wu, C.5
  • 101
    • 80053934686 scopus 로고    scopus 로고
    • CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
    • Moree B., Meyer C.B., Fuller C.J., Straight A.F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J.Cell Biol. 2011, 194:855-871.
    • (2011) J.Cell Biol. , vol.194 , pp. 855-871
    • Moree, B.1    Meyer, C.B.2    Fuller, C.J.3    Straight, A.F.4
  • 103
    • 0029154101 scopus 로고
    • Localization of centromere function in a Drosophila minichromosome
    • Murphy T.D., Karpen G.H. Localization of centromere function in a Drosophila minichromosome. Cell 1995, 82:599-609.
    • (1995) Cell , vol.82 , pp. 599-609
    • Murphy, T.D.1    Karpen, G.H.2
  • 104
    • 0020521363 scopus 로고
    • Construction of artificial chromosomes in yeast
    • Murray A.W., Szostak J.W. Construction of artificial chromosomes in yeast. Nature 1983, 305:189-193.
    • (1983) Nature , vol.305 , pp. 189-193
    • Murray, A.W.1    Szostak, J.W.2
  • 107
    • 30544433085 scopus 로고    scopus 로고
    • Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome
    • Nakashima H., Nakano M., Ohnishi R., Hiraoka Y., Kaneda Y., Sugino A., Masumoto H. Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. J.Cell Sci. 2005, 118:5885-5898.
    • (2005) J.Cell Sci. , vol.118 , pp. 5885-5898
    • Nakashima, H.1    Nakano, M.2    Ohnishi, R.3    Hiraoka, Y.4    Kaneda, Y.5    Sugino, A.6    Masumoto, H.7
  • 108
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama J., Rice J.C., Strahl B.D., Allis C.D., Grewal S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001, 292:110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 109
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: its roles and mechanisms
    • Nasmyth K., Haering C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 2009, 43:525-558.
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 112
    • 84873570232 scopus 로고    scopus 로고
    • CENP-T provides a structural platform for outer kinetochore assembly
    • Nishino T., Rago F., Hori T., Tomii K., Cheeseman I.M., Fukagawa T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 2013, 32:424-436.
    • (2013) EMBO J. , vol.32 , pp. 424-436
    • Nishino, T.1    Rago, F.2    Hori, T.3    Tomii, K.4    Cheeseman, I.M.5    Fukagawa, T.6
  • 115
    • 0037049465 scopus 로고    scopus 로고
    • CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA
    • Ohzeki J., Nakano M., Okada T., Masumoto H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J.Cell Biol. 2002, 159:765-775.
    • (2002) J.Cell Biol. , vol.159 , pp. 765-775
    • Ohzeki, J.1    Nakano, M.2    Okada, T.3    Masumoto, H.4
  • 117
  • 119
    • 84877577424 scopus 로고    scopus 로고
    • Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle
    • Padeganeh A., Ryan J., Boisvert J., Ladouceur A.M., Dorn J.F., Maddox P.S. Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle. Curr. Biol. 2013, 23:764-769.
    • (2013) Curr. Biol. , vol.23 , pp. 764-769
    • Padeganeh, A.1    Ryan, J.2    Boisvert, J.3    Ladouceur, A.M.4    Dorn, J.F.5    Maddox, P.S.6
  • 120
    • 0023275058 scopus 로고
    • A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
    • Palmer D.K., O'Day K., Wener M.H., Andrews B.S., Margolis R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J.Cell Biol. 1987, 104:805-815.
    • (1987) J.Cell Biol. , vol.104 , pp. 805-815
    • Palmer, D.K.1    O'Day, K.2    Wener, M.H.3    Andrews, B.S.4    Margolis, R.L.5
  • 121
    • 0014942371 scopus 로고
    • Chromosomal localization of mouse satellite DNA
    • Pardue M.L., Gall J.G. Chromosomal localization of mouse satellite DNA. Science 1970, 168:1356-1358.
    • (1970) Science , vol.168 , pp. 1356-1358
    • Pardue, M.L.1    Gall, J.G.2
  • 122
    • 7944229979 scopus 로고    scopus 로고
    • Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
    • Pearson C.G., Yeh E., Gardner M., Odde D., Salmon E.D., Bloom K. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 2004, 14:1962-1967.
    • (2004) Curr. Biol. , vol.14 , pp. 1962-1967
    • Pearson, C.G.1    Yeh, E.2    Gardner, M.3    Odde, D.4    Salmon, E.D.5    Bloom, K.6
  • 128
    • 78149424194 scopus 로고    scopus 로고
    • An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain
    • Ranjitkar P., Press M.O., Yi X., Baker R., MacCoss M.J., Biggins S. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 2010, 40:455-464.
    • (2010) Mol. Cell , vol.40 , pp. 455-464
    • Ranjitkar, P.1    Press, M.O.2    Yi, X.3    Baker, R.4    MacCoss, M.J.5    Biggins, S.6
  • 130
    • 0020333277 scopus 로고
    • The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber
    • Rieder C.L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 1982, 79:1-58.
    • (1982) Int. Rev. Cytol. , vol.79 , pp. 1-58
    • Rieder, C.L.1
  • 131
    • 0026650005 scopus 로고
    • CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
    • Saitoh H., Tomkiel J., Cooke C.A., Ratrie H., Maurer M., Rothfield N.F., Earnshaw W.C. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 1992, 70:115-125.
    • (1992) Cell , vol.70 , pp. 115-125
    • Saitoh, H.1    Tomkiel, J.2    Cooke, C.A.3    Ratrie, H.4    Maurer, M.5    Rothfield, N.F.6    Earnshaw, W.C.7
  • 132
    • 67549104312 scopus 로고    scopus 로고
    • Common ancestry of the CENP-A chaperones Scm3 and HJURP
    • Sanchez-Pulido L., Pidoux A.L., Ponting C.P., Allshire R.C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 2009, 137:1173-1174.
    • (2009) Cell , vol.137 , pp. 1173-1174
    • Sanchez-Pulido, L.1    Pidoux, A.L.2    Ponting, C.P.3    Allshire, R.C.4
  • 133
    • 69849107380 scopus 로고    scopus 로고
    • The life and miracles of kinetochores
    • Santaguida S., Musacchio A. The life and miracles of kinetochores. EMBO J. 2009, 28:2511-2531.
    • (2009) EMBO J. , vol.28 , pp. 2511-2531
    • Santaguida, S.1    Musacchio, A.2
  • 134
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal K., Baum M., Carbon J. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. USA 2004, 101:11374-11379.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 11374-11379
    • Sanyal, K.1    Baum, M.2    Carbon, J.3
  • 135
    • 51149211463 scopus 로고
    • Kinetic Regions in Chromosomes
    • Schrader F. Kinetic Regions in Chromosomes. Nature 1939, 143:122.
    • (1939) Nature , vol.143 , pp. 122
    • Schrader, F.1
  • 138
    • 77956897642 scopus 로고    scopus 로고
    • The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres
    • Sekulic N., Bassett E.A., Rogers D.J., Black B.E. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 2010, 467:347-351.
    • (2010) Nature , vol.467 , pp. 347-351
    • Sekulic, N.1    Bassett, E.A.2    Rogers, D.J.3    Black, B.E.4
  • 141
    • 0031049028 scopus 로고    scopus 로고
    • Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites
    • Shelby R.D., Vafa O., Sullivan K.F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J.Cell Biol. 1997, 136:501-513.
    • (1997) J.Cell Biol. , vol.136 , pp. 501-513
    • Shelby, R.D.1    Vafa, O.2    Sullivan, K.F.3
  • 142
  • 145
    • 84898464557 scopus 로고    scopus 로고
    • Holocentromeres are dispersed point centromeres localized at transcription factor hotspots
    • Steiner F.A., Henikoff S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 2014, 3:e02025.
    • (2014) eLife , vol.3 , pp. e02025
    • Steiner, F.A.1    Henikoff, S.2
  • 146
    • 0028946805 scopus 로고
    • A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis
    • Stoler S., Keith K.C., Curnick K.E., Fitzgerald-Hayes M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 1995, 9:573-586.
    • (1995) Genes Dev. , vol.9 , pp. 573-586
    • Stoler, S.1    Keith, K.C.2    Curnick, K.E.3    Fitzgerald-Hayes, M.4
  • 147
    • 7544227521 scopus 로고    scopus 로고
    • Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin
    • Sullivan B.A., Karpen G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 2004, 11:1076-1083.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 1076-1083
    • Sullivan, B.A.1    Karpen, G.H.2
  • 148
    • 79958244227 scopus 로고    scopus 로고
    • Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells
    • Sullivan L.L., Boivin C.D., Mravinac B., Song I.Y., Sullivan B.A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 2011, 19:457-470.
    • (2011) Chromosome Res. , vol.19 , pp. 457-470
    • Sullivan, L.L.1    Boivin, C.D.2    Mravinac, B.3    Song, I.Y.4    Sullivan, B.A.5
  • 149
    • 0037318262 scopus 로고    scopus 로고
    • Sequence analysis of a functional Drosophila centromere
    • Sun X., Le H.D., Wahlstrom J.M., Karpen G.H. Sequence analysis of a functional Drosophila centromere. Genome Res. 2003, 13:182-194.
    • (2003) Genome Res. , vol.13 , pp. 182-194
    • Sun, X.1    Le, H.D.2    Wahlstrom, J.M.3    Karpen, G.H.4
  • 150
    • 79955497376 scopus 로고    scopus 로고
    • Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
    • Suzuki A., Hori T., Nishino T., Usukura J., Miyagi A., Morikawa K., Fukagawa T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J.Cell Biol. 2011, 193:125-140.
    • (2011) J.Cell Biol. , vol.193 , pp. 125-140
    • Suzuki, A.1    Hori, T.2    Nishino, T.3    Usukura, J.4    Miyagi, A.5    Morikawa, K.6    Fukagawa, T.7
  • 152
    • 0027097142 scopus 로고
    • A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere
    • Takahashi K., Murakami S., Chikashige Y., Funabiki H., Niwa O., Yanagida M. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 1992, 3:819-835.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 819-835
    • Takahashi, K.1    Murakami, S.2    Chikashige, Y.3    Funabiki, H.4    Niwa, O.5    Yanagida, M.6
  • 154
    • 84875973583 scopus 로고    scopus 로고
    • Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans
    • Thakur J., Sanyal K. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res. 2013, 23:638-652.
    • (2013) Genome Res. , vol.23 , pp. 638-652
    • Thakur, J.1    Sanyal, K.2
  • 155
    • 0031282531 scopus 로고    scopus 로고
    • Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate
    • Vafa O., Sullivan K.F. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr. Biol. 1997, 7:897-900.
    • (1997) Curr. Biol. , vol.7 , pp. 897-900
    • Vafa, O.1    Sullivan, K.F.2
  • 157
  • 158
    • 0023664929 scopus 로고
    • Human alpha satellite DNA-consensus sequence and conserved regions
    • Vissel B., Choo K.H. Human alpha satellite DNA-consensus sequence and conserved regions. Nucleic Acids Res. 1987, 15:6751-6752.
    • (1987) Nucleic Acids Res. , vol.15 , pp. 6751-6752
    • Vissel, B.1    Choo, K.H.2
  • 159
    • 84865072109 scopus 로고    scopus 로고
    • Evolution and function of the mitotic checkpoint
    • Vleugel M., Hoogendoorn E., Snel B., Kops G.J. Evolution and function of the mitotic checkpoint. Dev. Cell 2012, 23:239-250.
    • (2012) Dev. Cell , vol.23 , pp. 239-250
    • Vleugel, M.1    Hoogendoorn, E.2    Snel, B.3    Kops, G.J.4
  • 160
    • 0037072661 scopus 로고    scopus 로고
    • Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
    • Volpe T.A., Kidner C., Hall I.M., Teng G., Grewal S.I., Martienssen R.A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002, 297:1833-1837.
    • (2002) Science , vol.297 , pp. 1833-1837
    • Volpe, T.A.1    Kidner, C.2    Hall, I.M.3    Teng, G.4    Grewal, S.I.5    Martienssen, R.A.6
  • 161
    • 0027377802 scopus 로고
    • A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere?
    • Voullaire L.E., Slater H.R., Petrovic V., Choo K.H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere?. Am. J. Hum. Genet. 1993, 52:1153-1163.
    • (1993) Am. J. Hum. Genet. , vol.52 , pp. 1153-1163
    • Voullaire, L.E.1    Slater, H.R.2    Petrovic, V.3    Choo, K.H.4
  • 162
    • 70449379045 scopus 로고    scopus 로고
    • Genome sequence, comparative analysis, and population genetics of the domestic horse
    • Broad Institute Genome Sequencing Platform, Broad Institute Whole Genome Assembly TeamBroad Institute Whole Genome Assembly Team
    • Wade C.M., Giulotto E., Sigurdsson S., Zoli M., Gnerre S., Imsland F., Lear T.L., Adelson D.L., Bailey E., Bellone R.R., et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326:865-867. Broad Institute Genome Sequencing Platform, Broad Institute Whole Genome Assembly TeamBroad Institute Whole Genome Assembly Team.
    • (2009) Science , vol.326 , pp. 865-867
    • Wade, C.M.1    Giulotto, E.2    Sigurdsson, S.3    Zoli, M.4    Gnerre, S.5    Imsland, F.6    Lear, T.L.7    Adelson, D.L.8    Bailey, E.9    Bellone, R.R.10
  • 166
    • 20644467986 scopus 로고    scopus 로고
    • Sister chromatid cohesion along arms and at centromeres
    • Watanabe Y. Sister chromatid cohesion along arms and at centromeres. Trends Genet. 2005, 21:405-412.
    • (2005) Trends Genet. , vol.21 , pp. 405-412
    • Watanabe, Y.1
  • 167
    • 0024345905 scopus 로고
    • Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA
    • Waye J.S., Willard H.F. Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc. Natl. Acad. Sci. USA 1989, 86:6250-6254.
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 6250-6254
    • Waye, J.S.1    Willard, H.F.2
  • 168
    • 0031963396 scopus 로고    scopus 로고
    • Neocentromere activity of structurally acentric mini-chromosomes in Drosophila
    • Williams B.C., Murphy T.D., Goldberg M.L., Karpen G.H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 1998, 18:30-37.
    • (1998) Nat. Genet. , vol.18 , pp. 30-37
    • Williams, B.C.1    Murphy, T.D.2    Goldberg, M.L.3    Karpen, G.H.4
  • 169
    • 59649107021 scopus 로고    scopus 로고
    • Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin
    • Williams J.S., Hayashi T., Yanagida M., Russell P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell 2009, 33:287-298.
    • (2009) Mol. Cell , vol.33 , pp. 287-298
    • Williams, J.S.1    Hayashi, T.2    Yanagida, M.3    Russell, P.4
  • 170
    • 84901341958 scopus 로고    scopus 로고
    • Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres
    • Wisniewski J., Hajj B., Chen J., Mizuguchi G., Xiao H., Wei D., Dahan M., Wu C. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 2014, 3:e02203.
    • (2014) eLife , vol.3 , pp. e02203
    • Wisniewski, J.1    Hajj, B.2    Chen, J.3    Mizuguchi, G.4    Xiao, H.5    Wei, D.6    Dahan, M.7    Wu, C.8
  • 171
    • 51649110069 scopus 로고    scopus 로고
    • Heterochromatin links to centromeric protection by recruiting shugoshin
    • Yamagishi Y., Sakuno T., Shimura M., Watanabe Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 2008, 455:251-255.
    • (2008) Nature , vol.455 , pp. 251-255
    • Yamagishi, Y.1    Sakuno, T.2    Shimura, M.3    Watanabe, Y.4
  • 172
    • 77957731584 scopus 로고    scopus 로고
    • Two histone marks establish the inner centromere and chromosome bi-orientation
    • Yamagishi Y., Honda T., Tanno Y., Watanabe Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 2010, 330:239-243.
    • (2010) Science , vol.330 , pp. 239-243
    • Yamagishi, Y.1    Honda, T.2    Tanno, Y.3    Watanabe, Y.4
  • 175
    • 84856278738 scopus 로고    scopus 로고
    • Assembly of Drosophila centromeric nucleosomes requires CID dimerization
    • Zhang W., Colmenares S.U., Karpen G.H. Assembly of Drosophila centromeric nucleosomes requires CID dimerization. Mol. Cell 2012, 45:263-269.
    • (2012) Mol. Cell , vol.45 , pp. 263-269
    • Zhang, W.1    Colmenares, S.U.2    Karpen, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.