메뉴 건너뛰기




Volumn 12, Issue 1, 2013, Pages

Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance

Author keywords

Ehrlich pathway; Isobutanol; Saccharomyces cerevisiae; Single gene deletion; Transhydrogenase like shunt

Indexed keywords

ACETYL COENZYME A; GLUCOSE; ISOBUTANOL; MALATE DEHYDROGENASE; MALATE DEHYDROGENASE (DECARBOXYLATING); PYRUVATE CARBOXYLASE; PYRUVATE DEHYDROGENASE COMPLEX;

EID: 84889061841     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/1475-2859-12-119     Document Type: Article
Times cited : (126)

References (36)
  • 1
    • 77955558633 scopus 로고    scopus 로고
    • Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
    • 10.1007/s00253-010-2707-z, 20535464
    • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87(4):1303-1315. 10.1007/s00253-010-2707-z, 20535464.
    • (2010) Appl Microbiol Biotechnol , vol.87 , Issue.4 , pp. 1303-1315
    • Weber, C.1    Farwick, A.2    Benisch, F.3    Brat, D.4    Dietz, H.5    Subtil, T.6    Boles, E.7
  • 2
    • 67649771820 scopus 로고    scopus 로고
    • Microbial production of advanced transportation fuels in non-natural hosts
    • 10.1016/j.copbio.2009.04.002, 19473829
    • Connor MR, Liao JC. Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 2009, 20(3):307-315. 10.1016/j.copbio.2009.04.002, 19473829.
    • (2009) Curr Opin Biotechnol , vol.20 , Issue.3 , pp. 307-315
    • Connor, M.R.1    Liao, J.C.2
  • 3
    • 80955132752 scopus 로고    scopus 로고
    • Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum
    • 10.4161/bbug.2.6.17845, 3242789, 22008938
    • Blombach B, Eikmanns BJ. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2011, 2(6):346-350. 10.4161/bbug.2.6.17845, 3242789, 22008938.
    • (2011) Bioeng Bugs , vol.2 , Issue.6 , pp. 346-350
    • Blombach, B.1    Eikmanns, B.J.2
  • 4
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • 10.1038/nature06450, 18172501
    • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451(7174):86-89. 10.1038/nature06450, 18172501.
    • (2008) Nature , vol.451 , Issue.7174 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 5
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • 10.1038/nbt.1586, 19915552
    • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27(12):1177-1180. 10.1038/nbt.1586, 19915552.
    • (2009) Nat Biotechnol , vol.27 , Issue.12 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 6
    • 70349427105 scopus 로고    scopus 로고
    • Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
    • 10.1128/AEM.01160-09, 2753059, 19684168
    • Atsumi S, Li Z, Liao JC. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 2009, 75(19):6306-6311. 10.1128/AEM.01160-09, 2753059, 19684168.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.19 , pp. 6306-6311
    • Atsumi, S.1    Li, Z.2    Liao, J.C.3
  • 7
    • 74149094503 scopus 로고    scopus 로고
    • Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
    • 10.1007/s00253-009-2085-6, 2802489, 19609521
    • Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85(3):651-657. 10.1007/s00253-009-2085-6, 2802489, 19609521.
    • (2010) Appl Microbiol Biotechnol , vol.85 , Issue.3 , pp. 651-657
    • Atsumi, S.1    Wu, T.Y.2    Eckl, E.M.3    Hawkins, S.D.4    Buelter, T.5    Liao, J.C.6
  • 8
    • 79958177780 scopus 로고    scopus 로고
    • High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
    • 10.1007/s00253-011-3173-y, 3094657, 21547458
    • Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011, 90(5):1681-1690. 10.1007/s00253-011-3173-y, 3094657, 21547458.
    • (2011) Appl Microbiol Biotechnol , vol.90 , Issue.5 , pp. 1681-1690
    • Baez, A.1    Cho, K.M.2    Liao, J.C.3
  • 9
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • 10.1016/j.ymben.2011.02.004, 21515217
    • Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13(3):345-352. 10.1016/j.ymben.2011.02.004, 21515217.
    • (2011) Metab Eng , vol.13 , Issue.3 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.5    Arnold, F.H.6
  • 11
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • 10.1128/AEM.02454-10, 3126361, 21378054
    • Higashide W, Li Y, Yang Y, Liao JC. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 2011, 77(8):2727-2733. 10.1128/AEM.02454-10, 3126361, 21378054.
    • (2011) Appl Environ Microbiol , vol.77 , Issue.8 , pp. 2727-2733
    • Higashide, W.1    Li, Y.2    Yang, Y.3    Liao, J.C.4
  • 12
    • 77955665708 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for isobutanol production
    • 10.1007/s00253-010-2522-6, 2886118, 20376637
    • Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87(3):1045-1055. 10.1007/s00253-010-2522-6, 2886118, 20376637.
    • (2010) Appl Microbiol Biotechnol , vol.87 , Issue.3 , pp. 1045-1055
    • Smith, K.M.1    Cho, K.M.2    Liao, J.C.3
  • 13
    • 84884533991 scopus 로고    scopus 로고
    • Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation
    • Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 2013, 110(10):2938-2948.
    • (2013) Biotechnol Bioeng , vol.110 , Issue.10 , pp. 2938-2948
    • Yamamoto, S.1    Suda, M.2    Niimi, S.3    Inui, M.4    Yukawa, H.5
  • 14
    • 79960712071 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
    • 10.1007/s00253-011-3280-9, 21533914
    • Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91(3):577-589. 10.1007/s00253-011-3280-9, 21533914.
    • (2011) Appl Microbiol Biotechnol , vol.91 , Issue.3 , pp. 577-589
    • Li, S.1    Wen, J.2    Jia, X.3
  • 15
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
    • 10.1128/AEM.02625-07, 2293160, 18281432
    • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74(8):2259-2266. 10.1128/AEM.02625-07, 2293160, 18281432.
    • (2008) Appl Environ Microbiol , vol.74 , Issue.8 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 16
    • 84872189552 scopus 로고    scopus 로고
    • Development of microbial cell factories for bio-refinery through synthetic bioengineering
    • 10.1016/j.jbiotec.2012.05.021, 22728424
    • Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F. Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 2013, 163(2):204-216. 10.1016/j.jbiotec.2012.05.021, 22728424.
    • (2013) J Biotechnol , vol.163 , Issue.2 , pp. 204-216
    • Kondo, A.1    Ishii, J.2    Hara, K.Y.3    Hasunuma, T.4    Matsuda, F.5
  • 17
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Journal of Biotechnology 2012, 159(1-2):32-37.
    • (2012) Journal of Biotechnology , vol.159 , Issue.1-2 , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 18
    • 79960656765 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
    • 10.1186/1754-6834-4-21, 3162486, 21798060
    • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 4:21. 10.1186/1754-6834-4-21, 3162486, 21798060.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 21
    • Chen, X.1    Nielsen, K.F.2    Borodina, I.3    Kielland-Brandt, M.C.4    Karhumaa, K.5
  • 19
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae
    • 10.1186/1754-6834-5-65, 3476451, 22954227
    • Brat D, Weber C, Lorenzen W, Bode HB, Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5(1):65. 10.1186/1754-6834-5-65, 3476451, 22954227.
    • (2012) Biotechnol Biofuels , vol.5 , Issue.1 , pp. 65
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.B.4    Boles, E.5
  • 20
    • 84870228515 scopus 로고    scopus 로고
    • Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae
    • 10.1271/bbb.120420, 23132567
    • Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2012, 76(11):2139-2141. 10.1271/bbb.120420, 23132567.
    • (2012) Biosci Biotechnol Biochem , vol.76 , Issue.11 , pp. 2139-2141
    • Matsuda, F.1    Kondo, T.2    Ida, K.3    Tezuka, H.4    Ishii, J.5    Kondo, A.6
  • 21
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • 10.1038/nbt.2509, 3659820, 23417095
    • Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013, 31:335-341. 10.1038/nbt.2509, 3659820, 23417095.
    • (2013) Nat Biotechnol , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 22
    • 0004354516 scopus 로고    scopus 로고
    • The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse
    • 10.1016/0005-2728(95)00159-X, 8616157
    • Arkblad EL, Betsholtz C, Rydstrom J. The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. Biochim Biophys Acta 1996, 1273(3):203-205. 10.1016/0005-2728(95)00159-X, 8616157.
    • (1996) Biochim Biophys Acta , vol.1273 , Issue.3 , pp. 203-205
    • Arkblad, E.L.1    Betsholtz, C.2    Rydstrom, J.3
  • 23
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279(8):6613-6619.
    • (2004) J Biol Chem , vol.279 , Issue.8 , pp. 6613-6619
    • Sauer, U.1    Canonaco, F.2    Heri, S.3    Perrenoud, A.4    Fischer, E.5
  • 24
    • 0032976492 scopus 로고    scopus 로고
    • Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation
    • 91345, 10347010
    • Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B, Kielland-Brandt MC. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 1999, 65(6):2333-2340. 91345, 10347010.
    • (1999) Appl Environ Microbiol , vol.65 , Issue.6 , pp. 2333-2340
    • Anderlund, M.1    Nissen, T.L.2    Nielsen, J.3    Villadsen, J.4    Rydstrom, J.5    Hahn-Hagerdal, B.6    Kielland-Brandt, M.C.7
  • 25
    • 0035862739 scopus 로고    scopus 로고
    • Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
    • 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5, 11124698
    • Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18(1):19-32. 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5, 11124698.
    • (2001) Yeast , vol.18 , Issue.1 , pp. 19-32
    • Nissen, T.L.1    Anderlund, M.2    Nielsen, J.3    Villadsen, J.4    Kielland-Brandt, M.C.5
  • 26
    • 6044273857 scopus 로고    scopus 로고
    • Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    • 10.1016/j.ymben.2004.06.002, 15491864
    • Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 2004, 6(4):352-363. 10.1016/j.ymben.2004.06.002, 15491864.
    • (2004) Metab Eng , vol.6 , Issue.4 , pp. 352-363
    • Moreira dos Santos, M.1    Raghevendran, V.2    Kotter, P.3    Olsson, L.4    Nielsen, J.5
  • 27
    • 84874356184 scopus 로고    scopus 로고
    • Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae
    • Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012, 97(4):1669-1678.
    • (2012) Appl Microbiol Biotechnol , vol.97 , Issue.4 , pp. 1669-1678
    • Suga, H.1    Matsuda, F.2    Hasunuma, T.3    Ishii, J.4    Kondo, A.5
  • 28
    • 80052600481 scopus 로고    scopus 로고
    • Engineering strategy of yeast metabolism for higher alcohol production
    • 10.1186/1475-2859-10-70, 3184262, 21902829
    • Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A. Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 2011, 10(1):70. 10.1186/1475-2859-10-70, 3184262, 21902829.
    • (2011) Microb Cell Fact , vol.10 , Issue.1 , pp. 70
    • Matsuda, F.1    Furusawa, C.2    Kondo, T.3    Ishii, J.4    Shimizu, H.5    Kondo, A.6
  • 29
    • 0032455440 scopus 로고    scopus 로고
    • Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme
    • 107252, 9603875
    • Boles E, de Jong-Gubbels P, Pronk JT. Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 1998, 180(11):2875-2882. 107252, 9603875.
    • (1998) J Bacteriol , vol.180 , Issue.11 , pp. 2875-2882
    • Boles, E.1    de Jong-Gubbels, P.2    Pronk, J.T.3
  • 30
    • 84856777402 scopus 로고    scopus 로고
    • Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
    • 10.1016/j.jbiosc.2011.09.019, 22033067
    • Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 2012, 113(2):192-195. 10.1016/j.jbiosc.2011.09.019, 22033067.
    • (2012) J Biosci Bioeng , vol.113 , Issue.2 , pp. 192-195
    • Ida, Y.1    Furusawa, C.2    Hirasawa, T.3    Shimizu, H.4
  • 32
    • 0026315442 scopus 로고
    • Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae
    • 212591, 1744053
    • Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 1991, 173(24):7963-7969. 212591, 1744053.
    • (1991) J Bacteriol , vol.173 , Issue.24 , pp. 7963-7969
    • Hohmann, S.1
  • 33
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • 10.1186/1475-2859-11-131, 3503853, 22978798
    • Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131. 10.1186/1475-2859-11-131, 3503853, 22978798.
    • (2012) Microb Cell Fact , vol.11 , pp. 131
    • Oud, B.1    Flores, C.L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.M.6    Pronk, J.T.7    van Maris, A.J.8
  • 34
    • 67651165085 scopus 로고    scopus 로고
    • A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
    • 10.1093/jb/mvp028, 19237442
    • Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 2009, 145(6):701-708. 10.1093/jb/mvp028, 19237442.
    • (2009) J Biochem , vol.145 , Issue.6 , pp. 701-708
    • Ishii, J.1    Izawa, K.2    Matsumura, S.3    Wakamura, K.4    Tanino, T.5    Tanaka, T.6    Ogino, C.7    Fukuda, H.8    Kondo, A.9
  • 35
    • 0020529962 scopus 로고
    • Transformation of intact yeast cells treated with alkali cations
    • 217353, 6336730
    • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983, 153(1):163-168. 217353, 6336730.
    • (1983) J Bacteriol , vol.153 , Issue.1 , pp. 163-168
    • Ito, H.1    Fukuda, Y.2    Murata, K.3    Kimura, A.4
  • 36
    • 33749828025 scopus 로고    scopus 로고
    • Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain
    • 10.1007/s00253-006-0402-x, 16575564
    • Katahira S, Mizuike A, Fukuda H, Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006, 72(6):1136-1143. 10.1007/s00253-006-0402-x, 16575564.
    • (2006) Appl Microbiol Biotechnol , vol.72 , Issue.6 , pp. 1136-1143
    • Katahira, S.1    Mizuike, A.2    Fukuda, H.3    Kondo, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.