-
1
-
-
79961094174
-
Assembly of minicellulosomes on the surface of Bacillus subtilis
-
Anderson TD, et al. 2011. Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl. Environ. Microbiol. 77:4849-4858.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 4849-4858
-
-
Anderson, T.D.1
-
2
-
-
33846818917
-
Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation
-
Arai T, et al. 2007. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. U. S. A. 104:1456-1460.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 1456-1460
-
-
Arai, T.1
-
3
-
-
4143139469
-
The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
-
Bayer EA, Belaich JP, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521-554.
-
(2004)
Annu. Rev. Microbiol.
, vol.58
, pp. 521-554
-
-
Bayer, E.A.1
Belaich, J.P.2
Shoham, Y.3
Lamed, R.4
-
4
-
-
77953557660
-
Development of a LytE-based high-density surface display system in Bacillus subtilis
-
Chen C-L, et al. 2008. Development of a LytE-based high-density surface display system in Bacillus subtilis. Microb. Biotechnol. 1:177-190.
-
(2008)
Microb. Biotechnol.
, vol.1
, pp. 177-190
-
-
Chen, C.-L.1
-
5
-
-
4644345269
-
Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800
-
Cho H-Y, Yukawa H, Inui M, Doi RH, Wong S-L. 2004. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol. 70:5704-5707.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 5704-5707
-
-
Cho, H.-Y.1
Yukawa, H.2
Inui, M.3
Doi, R.H.4
Wong, S.-L.5
-
6
-
-
14944356813
-
Cellulase, clostridia, and ethanol
-
Demain AL, Newcomb M, Wu JHD. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124-154.
-
(2005)
Microbiol. Mol. Biol. Rev.
, vol.69
, pp. 124-154
-
-
Demain, A.L.1
Newcomb, M.2
Wu, J.H.D.3
-
7
-
-
46549089294
-
A biophysical perspective on the cellulosome: new opportunities for biomass conversion
-
Ding SY, et al. 2008. A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr. Opin. Biotechnol. 19:218-227.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 218-227
-
-
Ding, S.Y.1
-
8
-
-
41349123095
-
Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers
-
Doi RH. 2008. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann. N. Y. Acad. Sci. 1125:267-279.
-
(2008)
Ann. N. Y. Acad. Sci.
, vol.1125
, pp. 267-279
-
-
Doi, R.H.1
-
9
-
-
0028247092
-
The Clostridium cellulovorans cellulosome
-
Doi RH, Goldstein M, Hashida S, Park JS, Takagi M. 1994. The Clostridium cellulovorans cellulosome. Crit. Rev. Microbiol. 20:87-93.
-
(1994)
Crit. Rev. Microbiol.
, vol.20
, pp. 87-93
-
-
Doi, R.H.1
Goldstein, M.2
Hashida, S.3
Park, J.S.4
Takagi, M.5
-
10
-
-
3142757398
-
Cellulosomes: plant-cell-wall-degrading enzyme complexes
-
Doi RH, Kosugi A. 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2:541-551.
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 541-551
-
-
Doi, R.H.1
Kosugi, A.2
-
12
-
-
77957347059
-
Cellodextrin transport in yeast for improved biofuel production
-
Galazka JM, et al. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330:84-86.
-
(2010)
Science
, vol.330
, pp. 84-86
-
-
Galazka, J.M.1
-
13
-
-
0027285934
-
Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology
-
Gerngross UT, Romaniec MP, Kobayashi T, Huskisson NS, Demain AL. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8:325-334.
-
(1993)
Mol. Microbiol.
, vol.8
, pp. 325-334
-
-
Gerngross, U.T.1
Romaniec, M.P.2
Kobayashi, T.3
Huskisson, N.S.4
Demain, A.L.5
-
14
-
-
79952334316
-
Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation
-
Huang WD, Zhang Y-HP. 2011. Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation. Energy Environ. Sci. 4:784-792.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 784-792
-
-
Huang, W.D.1
Zhang, Y.-H.P.2
-
15
-
-
0032485897
-
Metabolic engineering of bacteria for ethanol production
-
Ingram LO, et al. 1998. Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58:204-214.
-
(1998)
Biotechnol. Bioeng.
, vol.58
, pp. 204-214
-
-
Ingram, L.O.1
-
16
-
-
67149099176
-
Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains
-
Ito J, et al. 2009. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 75:4149-4154.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 4149-4154
-
-
Ito, J.1
-
17
-
-
0020425618
-
Inhibition of Clostridium thermocellum cellulase by end products of cellulolysis
-
Johnson EA, Reese ET, Demain AL. 1982. Inhibition of Clostridium thermocellum cellulase by end products of cellulolysis. J. Appl. Biochem. 4:64-71.
-
(1982)
J. Appl. Biochem.
, vol.4
, pp. 64-71
-
-
Johnson, E.A.1
Reese, E.T.2
Demain, A.L.3
-
19
-
-
80052499822
-
A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose
-
Liao HH, Zhang XZ, Rollin JA, Zhang Y-HP. 2011. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol. J. 6:1409-1418.
-
(2011)
Biotechnol. J.
, vol.6
, pp. 1409-1418
-
-
Liao, H.H.1
Zhang, X.Z.2
Rollin, J.A.3
Zhang, Y.-H.P.4
-
20
-
-
0242458482
-
Protein disorder prediction: implications for structural proteomics
-
Linding R, et al. 2003. Protein disorder prediction: implications for structural proteomics. Structure 11:1453-1459.
-
(2003)
Structure
, vol.11
, pp. 1453-1459
-
-
Linding, R.1
-
21
-
-
33750838967
-
Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum
-
Lu Y, Zhang Y-HP, Lynd LR. 2006. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. U. S. A. 103:16165-16169.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 16165-16169
-
-
Lu, Y.1
Zhang, Y.-H.P.2
Lynd, L.R.3
-
22
-
-
38949132602
-
How biotech can transform biofuels
-
Lynd LR, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26:169-172.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 169-172
-
-
Lynd, L.R.1
-
25
-
-
79952167181
-
Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate
-
Moraïs S, et al. 2010. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1:e00285-10.
-
(2010)
mBio
, vol.1
-
-
Moraïs, S.1
-
26
-
-
65649087926
-
Homolactic fermentation from glucose and cellobiose using Bacillus subtilis
-
Romero-Garcia S, Hernandez-Bustos C, Merino E, Gosset G, Martinez A. 2009. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb. Cell Fact. 8:23.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 23
-
-
Romero-Garcia, S.1
Hernandez-Bustos, C.2
Merino, E.3
Gosset, G.4
Martinez, A.5
-
27
-
-
0033167973
-
The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides
-
Shoham Y, Lamed R, Bayer EA. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275-281.
-
(1999)
Trends Microbiol
, vol.7
, pp. 275-281
-
-
Shoham, Y.1
Lamed, R.2
Bayer, E.A.3
-
28
-
-
25044434363
-
Construction of yeast xylulokinase mutant by recombinant DNA techniques
-
Stevis PE, Ho NWY. 1989. Construction of yeast xylulokinase mutant by recombinant DNA techniques. Appl. Biochem. Biotechnol. 20:327-334.
-
(1989)
Appl. Biochem. Biotechnol.
, vol.20
, pp. 327-334
-
-
Stevis, P.E.1
Ho, N.W.Y.2
-
29
-
-
79951904581
-
Comparison of the mesophilic cellulosomeproducing Clostridium cellulovorans genome with other cellulosomerelated clostridial genomes
-
Tamaru Y, et al. 2011. Comparison of the mesophilic cellulosomeproducing Clostridium cellulovorans genome with other cellulosomerelated clostridial genomes. Microb. Biotechnol. 4:64-73.
-
(2011)
Microb. Biotechnol.
, vol.4
, pp. 64-73
-
-
Tamaru, Y.1
-
30
-
-
78751495229
-
Proteome-wide systems analysis of a cellulosic biofuel-producing microbe
-
Tolonen AC, et al. 2011. Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol. Syst. Biol. 7:461.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 461
-
-
Tolonen, A.C.1
-
31
-
-
70349436024
-
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production
-
Tsai SL, Oh J, Singh S, Chen R, Chen W. 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75:6087-6093.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 6087-6093
-
-
Tsai, S.L.1
Oh, J.2
Singh, S.3
Chen, R.4
Chen, W.5
-
32
-
-
77952267292
-
Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states
-
Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. 2010. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl. Environ. Microbiol. 76: 3236-3243.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 3236-3243
-
-
Vazana, Y.1
Morais, S.2
Barak, Y.3
Lamed, R.4
Bayer, E.A.5
-
33
-
-
78650803173
-
Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis
-
Wang Z-W, Hamilton-Brehm SD, Lochner A, Elkins JG, Morrell-Falvey JL. 2011. Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis. Biores. Technol. 102:3155-3162.
-
(2011)
Biores. Technol.
, vol.102
, pp. 3155-3162
-
-
Wang, Z.-W.1
Hamilton-Brehm, S.D.2
Lochner, A.3
Elkins, J.G.4
Morrell-Falvey, J.L.5
-
34
-
-
76649105430
-
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
-
Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76:1251-1260.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 1251-1260
-
-
Wen, F.1
Sun, J.2
Zhao, H.3
-
35
-
-
0026338822
-
Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases
-
Wu XC, Lee W, Tran L, Wong SL. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173:4952-4958.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 4952-4958
-
-
Wu, X.C.1
Lee, W.2
Tran, L.3
Wong, S.L.4
-
36
-
-
0242575014
-
Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases
-
Yamamoto H, S-i, Kurosawa Sekiguchi J. 2003. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 185:6666-6677.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 6666-6677
-
-
Yamamoto, H.-S.I.1
Kurosawa Sekiguchi, J.2
-
37
-
-
79958703776
-
One-step production of lactate from cellulose as sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis
-
Zhang X-Z, Sathitsuksanoh N, Zhu Z, Zhang Y-HP. 2011. One-step production of lactate from cellulose as sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab. Eng. 13:364-372.
-
(2011)
Metab. Eng.
, vol.13
, pp. 364-372
-
-
Zhang, X.-Z.1
Sathitsuksanoh, N.2
Zhu, Z.3
Zhang, Y.-H.P.4
-
38
-
-
79951667638
-
Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis
-
Zhang X-Z, Zhang Y-HP. 2011. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb. Biotechnol. 4:98-105.
-
(2011)
Microb. Biotechnol.
, vol.4
, pp. 98-105
-
-
Zhang, X.-Z.1
Zhang, Y.-H.P.2
-
39
-
-
77249100715
-
The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity
-
Zhang XZ, et al. 2010. The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity. Appl. Microbiol. Biotechnol. 86:525-533.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, pp. 525-533
-
-
Zhang, X.Z.1
-
40
-
-
0037439184
-
Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an ELISA-based method with application to Clostridium thermocellum batch cultures
-
Zhang Y-H, Lynd LR. 2003. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an ELISA-based method with application to Clostridium thermocellum batch cultures. Anal. Chem. 75:219-227.
-
(2003)
Anal. Chem.
, vol.75
, pp. 219-227
-
-
Zhang, Y.-H.1
Lynd, L.R.2
-
41
-
-
79960216783
-
Substrate channeling and enzyme complexes for biotechnological applications
-
Zhang Y-HP. 2011. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29:715-725.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 715-725
-
-
Zhang, Y.-H.P.1
-
42
-
-
18844371475
-
Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation
-
Zhang Y-HP, Lynd LR. 2005. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. U. S. A. 102:7321-7325.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 7321-7325
-
-
Zhang, Y.-H.P.1
Lynd, L.R.2
-
43
-
-
44949173182
-
Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose
-
Zverlov VV, Klupp M, Krauss J, Schwarz WH. 2008. Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J. Bacteriol. 190:4321-4327.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 4321-4327
-
-
Zverlov, V.V.1
Klupp, M.2
Krauss, J.3
Schwarz, W.H.4
|