-
1
-
-
0142123381
-
Comparison of hexmethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge
-
Araujo, J. C., et al. 2003. Comparison of hexmethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J. Electron Microsc. 52:429-433.
-
(2003)
J. Electron Microsc.
, vol.52
, pp. 429-433
-
-
Araujo, J.C.1
-
2
-
-
53049083876
-
Metabolic engineering for advanced biofuels production from Escherichia coli
-
Atsumi, S., and J. C. Liao. 2008. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19:414-419.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 414-419
-
-
Atsumi, S.1
Liao, J.C.2
-
3
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
Bond, D. R., and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:1548-1555.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
4
-
-
35949000517
-
Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants
-
Bretschger, O., et al. 2007. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73:7003-7012.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 7003-7012
-
-
Bretschger, O.1
-
5
-
-
67349145017
-
The genus Sporomusa
-
M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), Springer, New York, NY
-
Breznak, J. 2006. The genus Sporomusa, p. 991-1001. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes, vol. 4. Springer, New York, NY.
-
(2006)
The prokaryotes
, vol.4
, pp. 991-1001
-
-
Breznak, J.1
-
6
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng, S., D. Xing, D. F. Call, and B. E. Logan. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43:3953-3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
7
-
-
0033050621
-
Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments
-
Conrad, R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28:193-202.
-
(1999)
FEMS Microbiol. Ecol.
, vol.28
, pp. 193-202
-
-
Conrad, R.1
-
8
-
-
0001422189
-
The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor
-
Cord-Ruwisch, R., H. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350-357.
-
(1988)
Arch. Microbiol.
, vol.149
, pp. 350-357
-
-
Cord-Ruwisch, R.1
Seitz, H.2
Conrad, R.3
-
9
-
-
47549102061
-
Electricity from microorganisms
-
Debabov, V. G. 2008. Electricity from microorganisms. Microbiology 77:123-131.
-
(2008)
Microbiology
, vol.77
, pp. 123-131
-
-
Debabov, V.G.1
-
10
-
-
0242690158
-
How the diverse physiologic potentials of acetogens determine their in situ realities
-
J. G. Ljungdahli, M. W. Adams, L. L. Barton, J. G. Ferry, and M. K. Johnson (ed.), Springer, New York, NY
-
Drake, H. L., and K. Küsel. 2003. How the diverse physiologic potentials of acetogens determine their in situ realities, p. 171-190. In J. G. Ljungdahli, M. W. Adams, L. L. Barton, J. G. Ferry, and M. K. Johnson (ed.), Biochemistry and physiology of anaerobic bacteria. Springer, New York, NY.
-
(2003)
Biochemistry and physiology of anaerobic bacteria
, pp. 171-190
-
-
Drake, H.L.1
Küsel, K.2
-
11
-
-
37349062455
-
Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
-
Dumas, C., R. Basseguy, and A. Bergel. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta 53:2494-2500.
-
(2008)
Electrochim. Acta 53
, pp. 2494-2500
-
-
Dumas, C.1
Basseguy, R.2
Bergel, A.3
-
12
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
Gregory, K. B., D. R. Bond, and D. R. Lovley. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6:596-604.
-
(2004)
Environ. Microbiol.
, vol.6
, pp. 596-604
-
-
Gregory, K.B.1
Bond, D.R.2
Lovley, D.R.3
-
13
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
Gregory, K. B., and D. R. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39:8943-8947.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
14
-
-
0024430852
-
Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii
-
Heise, R., V. Müller, and G. Gottschalk. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. 171:5473-5478.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 5473-5478
-
-
Heise, R.1
Müller, V.2
Gottschalk, G.3
-
15
-
-
34249931692
-
Microbiology of synthesis gas fermentation for biofuel production
-
Henstra, A., J. Sipma, A. Rinzema, and A. Stams. 2007. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18:200-206.
-
(2007)
Curr. Opin. Biotechnol.
, vol.18
, pp. 200-206
-
-
Henstra, A.1
Sipma, J.2
Rinzema, A.3
Stams, A.4
-
16
-
-
33745202132
-
Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens
-
Holmes, D. E., et al. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8:1805-1815.
-
(2006)
Environ. Microbiol.
, vol.8
, pp. 1805-1815
-
-
Holmes, D.E.1
-
17
-
-
77957348875
-
Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
-
Huang, L., J. M. Regan, and X. Quan. 2011. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 102:316-323.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 316-323
-
-
Huang, L.1
Regan, J.M.2
Quan, X.3
-
18
-
-
77955610491
-
Clostridium ljungdahlii represents a microbial production platform based on syngas
-
Köpke, M., et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U. S. A. 107:13087-13092.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 13087-13092
-
-
Köpke, M.1
-
19
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
Lewis, N. S., and D. G. Nocera. 2006. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103:15729-15735.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
20
-
-
33745225414
-
Bug juice: harvesting electricity with microorganisms
-
Lovley, D. R. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4:497-508.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. 497-508
-
-
Lovley, D.R.1
-
21
-
-
0021880984
-
Minimum threshold for hydrogen metabolism in methanogenic bacteria
-
Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530-1531.
-
(1985)
Appl. Environ. Microbiol.
, vol.49
, pp. 1530-1531
-
-
Lovley, D.R.1
-
22
-
-
79953759834
-
Powering microbes with electricity: direct electron transfer from electrodes to microbes
-
doi:10.1111/ j.1758-2229.2010.00211.x
-
Lovley, D. R. 2010. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. doi:10.1111/ j.1758-2229.2010.00211.x.
-
(2010)
Environ. Microbiol. Rep.
-
-
Lovley, D.R.1
-
23
-
-
57049119571
-
The microbe electric: conversion of organic matter to electricity
-
Lovley, D. R. 2008. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19:564-571.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 564-571
-
-
Lovley, D.R.1
-
24
-
-
79958010826
-
A shift in the current: new applications and concepts for microbe-electrode electron exchange
-
in press
-
Lovley, D. R., and K. P. Nevin. A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr. Opin. Biotechnol., in press.
-
Curr. Opin. Biotechnol
-
-
Lovley, D.R.1
Nevin, K.P.2
-
25
-
-
78650298909
-
In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling
-
Mahadevan, R., B. Ø. Palsson, and D. R. Lovley. 2011. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat. Rev. Microbiol. 9:39-50.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 39-50
-
-
Mahadevan, R.1
Palsson, B.Ø.2
Lovley, D.R.3
-
26
-
-
66749142547
-
Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium
-
Marshall, C. W., and H. D. May. 2009. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ. Sci. 2:699-705.
-
(2009)
Thermincola ferriacetica. Energy Environ. Sci.
, vol.2
, pp. 699-705
-
-
Marshall C.W. H.D., May.1
-
27
-
-
33845740271
-
Sustained generation of electricity by the spore-forming, Gram-positive Desulfitobacterium hafniense strain DCB2
-
Milliken, C. E., and H. D. May. 2007. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol. 73:1180-1189.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1180-1189
-
-
Milliken, C.E.1
May, H.D.2
-
28
-
-
0001375592
-
Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov
-
Moller, B., R. Obmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 1984:338-396.
-
(1984)
Arch. Microbiol.
, vol.1984
, pp. 338-396
-
-
Moller, B.1
Obmer, R.2
Howard, B.H.3
Gottschalk, G.4
Hippe, H.5
-
29
-
-
51649118803
-
Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells
-
Nevin, K. P., et al. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10:2505-2514.
-
(2008)
Environ. Microbiol.
, vol.10
, pp. 2505-2514
-
-
Nevin, K.P.1
-
30
-
-
78650173757
-
-
mBio doi:10.1128/mBio.00103-10
-
Nevin, K. P., T. L. Woodard, A. E. Franks, Z. M. Summers, and D. R. Lovley. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio doi:10.1128/mBio.00103-10.
-
(2010)
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
31
-
-
0035717337
-
A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell
-
Park, H. S., et al. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297-306.
-
(2001)
Anaerobe
, vol.7
, pp. 297-306
-
-
Park, H.S.1
-
32
-
-
33751014053
-
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells
-
Reguera, G., et al. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72:7345-7348.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 7345-7348
-
-
Reguera, G.1
-
33
-
-
0028224825
-
Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1FO-type enzyme
-
Reidlinger, J., and V. Müller. 1994. Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1FO-type enzyme. Eur. J. Biochem. 223:275-283.
-
(1994)
Eur. J. Biochem.
, vol.223
, pp. 275-283
-
-
Reidlinger, J.1
Müller, V.2
-
34
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour
-
Rosenbaum, M., F. Aulenta, M. Villano, and L. T. Angenent. 2011. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102:324-333.
-
(2011)
Technol
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
35
-
-
77954841243
-
Anaeromyxobacter dehalogens interacts with a poised graphite electrode for reductive dechlorination of 2-chlorophenol
-
Strycharz, S. M., et al. 2010. Anaeromyxobacter dehalogens interacts with a poised graphite electrode for reductive dechlorination of 2-chlorophenol. Environ. Microbiol. Rep. 289-294.
-
(2010)
Environ. Microbiol. Rep.
, pp. 289-294
-
-
Strycharz, S.M.1
-
36
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
Strycharz, S. M., et al. 2011. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142-150.
-
(2011)
Bioelectrochemistry
, vol.80
, pp. 142-150
-
-
Strycharz, S.M.1
-
37
-
-
51649127655
-
Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
-
Strycharz, S. M., et al. 2008. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74:5943-5947.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 5943-5947
-
-
Strycharz, S.M.1
-
38
-
-
78650778559
-
A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens uncovered by adapative evolution
-
Tremblay, P.-L., et al. 2011. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens uncovered by adapative evolution. Environ. Microbiol. 13:13-23.
-
(2011)
Environ. Microbiol.
, vol.13
, pp. 13-23
-
-
Tremblay, P.-L.1
-
39
-
-
74649087256
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technol. 101:3085-3090.
-
(2010)
Bioresource Technol
, vol.101
, pp. 3085-3090
-
-
Villano, M.1
-
40
-
-
55549118558
-
A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells
-
Wrighton, K. C., et al. 2008. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2:1146-1156.
-
(2008)
ISME J
, vol.2
, pp. 1146-1156
-
-
Wrighton, K.C.1
-
41
-
-
67650085480
-
Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
-
Yi, H., et al. 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors Bioelectron. 24:3498-3503.
-
(2009)
Biosensors Bioelectron
, vol.24
, pp. 3498-3503
-
-
Yi, H.1
|